CA1339444C - Cleaning method - Google Patents

Cleaning method

Info

Publication number
CA1339444C
CA1339444C CA000597557A CA597557A CA1339444C CA 1339444 C CA1339444 C CA 1339444C CA 000597557 A CA000597557 A CA 000597557A CA 597557 A CA597557 A CA 597557A CA 1339444 C CA1339444 C CA 1339444C
Authority
CA
Canada
Prior art keywords
water
component system
organic solvent
immiscible
substantial absence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA000597557A
Other languages
French (fr)
Inventor
Kurt Hertlein
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shell Canada Ltd
Original Assignee
Shell Canada Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shell Canada Ltd filed Critical Shell Canada Ltd
Application granted granted Critical
Publication of CA1339444C publication Critical patent/CA1339444C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G5/00Cleaning or de-greasing metallic material by other methods; Apparatus for cleaning or de-greasing metallic material with organic solvents
    • C23G5/02Cleaning or de-greasing metallic material by other methods; Apparatus for cleaning or de-greasing metallic material with organic solvents using organic solvents
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G5/00Cleaning or de-greasing metallic material by other methods; Apparatus for cleaning or de-greasing metallic material with organic solvents
    • C23G5/06Cleaning or de-greasing metallic material by other methods; Apparatus for cleaning or de-greasing metallic material with organic solvents using emulsions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D7/00Compositions of detergents based essentially on non-surface-active compounds
    • C11D7/50Solvents
    • C11D7/5004Organic solvents
    • C11D7/5027Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D7/00Compositions of detergents based essentially on non-surface-active compounds
    • C11D7/22Organic compounds
    • C11D7/24Hydrocarbons

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Cleaning By Liquid Or Steam (AREA)
  • Detergent Compositions (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)

Abstract

The invention relates to a method for the cleaning, washing, degreasing, deoiling, removal of swarf or of pigment, of an object which comprises: bringing the object into contact with a two-component system comprising a water-immiscible organic solvent, and water in the substantial absence of a surface tension lowering agent, and in the substantial absence of a substance increasing the alkalinity, and subsequently separating the object from the two-component system, and allowing the two-component system to separate in contaminated organic solvent and water.

Description

CLEANING METHOD

The present invention relates to a method for the cleaning, washing, degreasing, deoiling, removal of swarf or of pigments of objects.
Cleaning operations of metals, plastics, ceramics, glass or textiles are usually performed in a continuous one-phase system, which is a solvent or a solvent mixture or an aqueous system comprising dissolved ingredients, such as detergents, pH-modifiers, complexing agents, etc. Solvents are also used with dissolved ingredients or as emulsions in water.
The invention relates to a method for the cleaning, washing, degreasing, deoiling, removal of swarf or of pigments of an object which comprises bringing the object into contact with a two-component system comprising a water-immiscible organic solvent, and water in the substantial absence of a surface tension lowering agent and in the substantial absence of a substance increasing the alkalinity, and subsequently separating the object from the two-component system, and allowing the two-component system to separate in contaminated organic solvent and water.
The two-component system may be defined as a true two-component system with the two components being immiscible with eachother, which further exist in finely divided form next to each other (in a dispersed form) and are maintained in this form by mechanical force generally.
Since the two components exert their working in the dispersed form, the components should be maintained at least during a certain time in that form. Later the system may disintegrate after it has exerted its action on the surface of an object.
No specific conditions are set to the water, which must not contain compounds which make the composition worthless. The composition may comprise water from different sources, like 133~4~

tap-water, distilled water or desalted water. But fluoridated water will be of no hindrance.
Two-component systems have been described in the patent literature as such, but in these cases the described system always comprises additional components, which make the systems only quasi-two-component systems.
UK Patent Application 2,026,551 discloses a method for the cleaning of surfaces which are contaminated with oil comprising contacting the oily surfaces with a cleaner comprising an organic solvent and an aqueous solution of a substance which decreases the surface tension and/or increases the alkalinity of the solution, and in which subsequent to the cleaning operation the contaminated cleaner is separated from the bodies being cleaned and on standing separates into organic and aqueous phases. According to /he description and the example of the UK Patent Application 2,026,551 there are in fact three phases. A metastable intermediate phase has been formed, which hampers the recycling process as a whole.
US Patent Specification 4,619,706 discloses a two-phase liquid both comprising either glycol phenol ether or ethoxylated furfuryl alcohol as organic phase and an aqueous phase, said phases being relatively insoluble in one another. According to the description ethoxylated furfuryl alcohol has a significant degree of solubility in aqueous solutions having low alkaline concentrations and furthermore 2-phenoxyethanol has a solubility of 2.69 in lOOg of water. The compounds have a too great solubility to be used in the process according to the invention. The system is not a true two-phase system.
German Patent Publication 2056341 discloses an unstable emulsion comprising a water-insoluble organic solvent and an aqueous solution of washing-active ingredients, aralkylsulfonates, phosphates and alkali. The emulsion disintegrates after a few minutes. The disintegration still proceeds too slowly.
Furthermore all systems of the prior art have the disadvantage that the compounds added to the water give rise to effluent problems.

i~39~4 In the process according to the invention the components stay apart by virtue of their immiscibility and on hitting the surface of the object the components exert a stress tension on the dirt layer according to their original surface tension, namely the water droplets at 73 dynes/cm (mN/sec) and the hydrocarbon droplets at about 25 dynes/cm (mN/sec). This helps enormously to remove thick layers (particularly pigment layers) in a short time.
Moreover since the low surface tension of the small hydrocarbon droplets is maintained it helps to remove splinters and pigments from small bores and holes.
Furthermore after the surface of the object has been into contact with the two compound system, the latter disintegrates very quickly, generally within about half a minute, and spontaneously and the separate components may be used again in the cleaning process.
The separation of the two components, water-immiscible organic solvent and water, follows Stoke's law when both have been intimately mixed. This means that the smaller the particles are, the longer the time is, needed for separation. Stoke's law describes the rate of fall of a small sphere in a viscous fluid.
When a small sphere falls under the action of gravity through a viscous medium it ultimately acquires a constant velocity.
V = 2ga (dl-d2) 9'7 where a is the radius of the sphere, dl and d2 the densities of the sphere and the medium respectively and ~ the coefficient of viscosity, g the acceleration due to gravity.
The water-immiscible organic solvent preferably is a mixture of a non-aromatic hydrocarbon and a minor amount of an alkylated aromatic containing at least one alkyl group of from 8 to 18 carbon atoms.
More preferably the organic solvent contains from 85 to 98 parts by weight of a non-aromatic hydrocarbon liquid having an atmospheric initial boiling point of at least 150 ~C, and from 2 to 15 parts by weight of at least one alkylated aromatic cont~ining at 1339~4~

least one alkyl group with from 8 to 18 carbon atoms.
The alkylated aromatics include alkylated xylenes, toluenes and benzenes. Preferred are alkylbenzenes, in particular benzenes containing one linear alkyl group with from 8 to 18, preferably from 10 to 16 carbon atoms. Of course it is possible to apply one pure alkylbenzene. Such pure alkylbenzenes are rather expensive.
Therefore it is cheaper and more feasible to employ mixtures of alkylbenzenes. Further it is often advantageous to use such mixtures since due to their different structures the alkylbenzenes show slightly different solubilizing properties.
The non-aromatic hydrocarbon liquid includes aliphatic and/or cyclo-aliphatic compounds. Saturated hydrocarbons are substantially non-toxic and are therefore very suitable.
The non-aromatic hydrocarbon liquid has an atmospheric initial boiling point of preferably at least 150 ~C. Therefore, the mixture will have a rather high flash point. This is desirable for then it is possible to safely use the mixture even on warm equipment. Preferably, the flash point of the mixture is at least 55 ~C. (The flash point can be determined e.g. by the well-known Abel-Pensky Closed Cup method).
The end boiling point of the non-aromatic hydrocarbon liquid is suitably below 320 ~C, preferably the boiling range is from 180 ~C to 280 ~C.
To make the two-component system ready for use, the water-immiscible organic solvent and the water should be intimately mixed, so that the one fluid is dispersed into the other. This requires mechanical force, such as a pump, a nozzle/jet, ultrasonic waves, stirrer or other equipment.
The volume ratios of the amounts of organic solvent and water may vary within very wide ranges, preferably from 9:1 to 1:9, more preferably from 3:1 to 1:3.
The nozzle to be employed in the process according to the invention may be of any kind, e.g. as used in the well known preparation of polyurethanes. The object to be cleaned can be simply hung in a reservoir, a stream of the two-component system 133944~

just prepared, is directed to the object and exerts its clean-ing action, whereafter two-component system disintegrates and forms two layers in the reservoir. After tapping off both layers from the reservoir the components can be used again.
Another method consists of immersing the object to be cleaned in a reservoir while the two-components are put in the reservoir. Ultrasonic vibration is generated in the fluid of the reservoir by suitable means, e. g. placed on the inner walls of the reservoir. The two components are hereby intimately mixed at a place where the object is hung. As soon as the ultrasonic vibration is stopped the two-component system disintegrates. The object is taken away from the reservoir and rinsed. The reservoir can be used several times.
The process according to the invention may be carried out at a temperature ranging from 10~C to 80~C, prefer-ably from 20~C to 60~C.
Examples All kinds of objects, which were contaminated with oil, grease, chips, turnings, pigments, etc., were subjected to the action of a two-component system comprising Shell cold cleaning agent UKR A 151 and water. The two-component system was a dispersed mixture of the two components, obtained by an intimate mixing procedure in nozzles or via ultrasonic waves.
The system was sprayed, dip-sprayed under sufficient pressure, sometimes under high pressure, or the system was brought under ultrasonic vibration in immersed state. Shell UKR A 151 consisted of a mixture of 93~ vol. "Shellsol D60 Trade-mark X

13394~4 - 5a -(an aliphatic hydrocarbon with initial boiling point of 180 -190~C and an end boiling point of 200 - 220~C) and of 7% vol.
*

"Dobane 45" (a mixture of linear alkylbenzenes with mainly C14 and C15 alkyl groups).
In the tables are given the working conditions and the results obtained by the several processes:

Trade-mark X~' ~

Cleaning results with cold cleaner (Shell UKR A 151), dispersions in water Example Parts Impurity UKR A 151 Method 1 Castings, numerous drill holes, smooth, lapping paste, chips, 1:1 dip-spraying easily damaged surfaces + edges, approx. abraded metal/pigments 10 bar 1 cm high 2 Bearing shells, steel sheet/plate oil, chips, abraded 1:1 dip-spraying matter/pigments 10 bar high-pressure spray-ing 3 Bearing shells, steel sheet/plate oil, chips, abraded 1:1 dip-spraying matter/pigments lO bar 4 Bearing shells, copper-plated steel oil, chips, abraded 1:1 dip-spraying +
sheet/plate, dense dumped packing in matter/pigments dip-spraying +
cages high-pressure spraying Repair tools (hammer drill, power drill), thick gear lubricant, Sinarol spraying 4 bar plastic, Fe, Cu, Al abraded metal + 1:1 (multi-stage) C~

133~444 Dl rd rd ~ UJ O
r I . rd ~ ~
~ rd , ~ ~ ~ r u, V O a) ~--C ~U~
O ~r~
rC
~~ rO -r~i 3 O
a~ C r~ S_l 1 41 ~ rd ~/ u rC O a) _I
3 -U~ ~ ~1 ~ rd C ~ O ~ O r~ ~ rC
p~ Or ~ ~ rd C ~ a~ . rd ' ~ S~bO C r~ . c ~_ UJ O a) O) ~rC r~ I
C
O ~ ~4~ u~ _ rS ~_~~ Ul UJ . t- rd ~ ~ ~IJ ) ~ ~_ ~_ . t~
a) _I ~ u ul O ~ rO ~r u~
r~ C~_ a) O ~ _~ 41 I C
0 ~ h~ O ~ ~,1 E~
¢ o O O

~C
C
rC ~~1 Vl ~
s~
c a) E
.
v E~

-d ~ o o V ~C~ C~ C~
,~ aJ o CO CO o ~,~

U~ ~, U
~_ U~ CY
a~
e - - -o Q O ~~ ~ ~ ~ ~ o E u~ ~J ~ ~ ~ ;t E~

_I
e 1~39~44 'U
~, C ~ ~ o ~ ~
c; ~ n g ~~ rq ,~ ~ ~ ~ n cd JJ ~ 3 o ~ ~ o~_I . ~ ~ o ~o ~~1 ~_I
~ ~ rn ~ 5:
_, ~u In .~ ¢ ~.~. ~ ~ ~. ~.
rn ~
C
o .~ ~n ~
r~ rn ~n ~ ~ ~~ ~c)~ o ~n ~~ u ~1 0 , ~- V ~ *
o o .,1 - ~_ ~ ~n ~: ~ a û ~
~U ~ ~U J- ' ~~--~,~ n . ~ ~ E ~n ¢
¢ ~ U .L) ~
E o v r ~ r ~n~5 .,~, a o ~ ~ nS ~, - .C
~ ~ . , ro ~ u U ~ _ a ~- ~n ~D ~C ~ n~ d ~ ~ c 5~ J~ ~r; C O ~~
r~un ~ un ~ o ~d ~ o rCID
a~
~c ~, ~ ,~ a, o ~ . JJ
-a~n ~ a ~D g ~ r I ~ 4 ~SJ
o E ~ ~d ~, ,~ n; ID ~ ~
,~g .~ C
3c~ IV r~ ~ O
E ~ v rno c~ , ~ ~_~
c~ C . .
~ ~ ~ ~_ ~ un ~$
unun ,~ - O ~ ) -~U~D L~ ~ " n~
~_ o .5 E ~~ - u o O X S~ n o ID C~ JJ
~-~n ~ X '' J~ ~D C~ ~ ~-1 E ~ .-~
~D E ~ n~
n~ n o n un ~D
~ ~D~ O
~_ ~ E ~ n r~ 5 D ~ S
--I ~ C
O ~D ~ E ~ ~ D
a, ~D .5 a SJ
C ~ I ~ o ¢ ~ ¢
¢

X ~ o~

1339~44 g a) ~
u~ ~ a a~
~ 1 - a~ D ~ ) -a~ v ~ c ~ a~ ~~
s~ n ~5 a~ aO ~ ~ ~ ,- ~, u~
a~ ~ a~ - ~ ~ a~
~ r ~ O r l ~ r--1 _ S_l ~
v ~ o ~ a~
~ J ~ a~ J ~ a~
o ~ o ~ n 4~ a~ ~ ~4 a) 3 a~
~ ,C o ~
v ~ - ~ a~ ~ ~ JJ JJ
r~ ~ o r~

a~
r ' ~~ ~ ~ ~ '~ cd g ~ a~
~ O ~O r ~~ ~ ~r-l a~ r J ,~ O
o l O~ O td O r~ ~ ~ ~
E O r ~ O ~ bO O
u~ u~ ou~
a; ~ ~ o. ~ ~ o ~ o ~L ~ v rCv c~ - o v o ,u~ u~ ? V ~ ,~ V ~ O ~ laO ~ ~ laO
v a) E
~,~
~ ~ _ _ ~) o o c O ~ ~
~ ~ .
~ s o o '~ E ~D
~a~
b~
v 5 ~~
ct~

v v a) E
,1 .,~
vE~
,~ O u~
o vP. o ,~ _I
E
v o u~ O
vE~
3hC
u~ ~, J- U
,~ ~
~, u~ ~
a~
5~
.~ a~ -E - - ~ ~ ~
~ o (lJ
r o O
P. O O O U~
E u~
a~ o E~

v ,~
~L
E

X ~ C~ o ,_~
,~

Claims (9)

1. A method for the cleaning, washing, degreasing, deoiling, removal of swarf or of pigment, of an object which comprises: bringing the object into contact with a two-component system comprising a water-immiscible organic solvent, and water in the substantial absence of a surface tension lowering agent, and in the substantial absence of a substance increasing the alkalinity, and subsequently separating the object from the two-component system, and allowing the two-component system to separate in contaminated organic solvent and water.
2. A method as claimed in claim 1, wherein the system is a true two-component system comprising a water-immiscible hydrocarbon solvent and water unaccompanied by an added substance which destroys the nature of the true two-component system.
3. A method as claimed in claim 1 or 2, wherein the two-component system comprises a water immiscible hydrocarbon solvent and tap-water, distilled water or desalted water.
4. A method as claimed in claim 1 or 2, wherein the organic solvent comprises a non-aromatic hydrocarbon and a minor amount of an alkylated aromatic containing at least one alkyl group of from 8 to 18 C atoms.
5. A method as claimed in claim 1 or 2, wherein the two-component system is allowed to separate within one minute into organic solvent and water layers.
6. A method as claimed in claim 5, characterized by the absence of a metastable intermediate layer.
7. A method as claimed in claim 1, wherein the two-component system is maintained in the form of a dispersion of the one fluid in the other fluid.
8. A method as claimed in claim 7, wherein mechanical force is applied in order to maintain the dispersion.
9. A method as claimed in claim 1, 2, 6, 7 or 8, wherein the treated object is rinsed with water.
CA000597557A 1988-05-06 1989-04-24 Cleaning method Expired - Fee Related CA1339444C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB8810799.0 1988-05-06
GB888810799A GB8810799D0 (en) 1988-05-06 1988-05-06 Cleaning method

Publications (1)

Publication Number Publication Date
CA1339444C true CA1339444C (en) 1997-09-09

Family

ID=10636489

Family Applications (1)

Application Number Title Priority Date Filing Date
CA000597557A Expired - Fee Related CA1339444C (en) 1988-05-06 1989-04-24 Cleaning method

Country Status (7)

Country Link
EP (1) EP0340871B1 (en)
JP (1) JP2832454B2 (en)
KR (1) KR970000195B1 (en)
CA (1) CA1339444C (en)
DE (1) DE68913799T2 (en)
ES (1) ES2051984T3 (en)
GB (1) GB8810799D0 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3812454A1 (en) * 1988-04-14 1989-10-26 Shell Int Research Degreasing liquid
JPH06306394A (en) * 1993-02-24 1994-11-01 Zenken:Kk Cleaning solvent, its production and apparatus for washing therewith
SK281391B6 (en) * 1995-01-24 2001-03-12 Lor�Nt Voj�Ek Process for the cleaning and degreasing of solid surfaces
DE19609783B4 (en) * 1996-03-13 2005-08-25 Meissner, Werner Method for cleaning objects and apparatus for carrying out the method
DE19926728B4 (en) * 1999-06-11 2011-08-18 3M Espe Ag, 82229 Use of carrier materials and diagnostically useful additives in imaging methods for intraoral diagnostic purposes
DE102013203880C5 (en) 2013-03-07 2017-10-19 Koenig & Bauer Ag Method and apparatus for removing hardened grease from at least one channel of a progressive distributor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1927496A (en) * 1932-03-02 1933-09-19 Frank M Hilgerink Cleaning process
JPS5933443B2 (en) * 1981-04-30 1984-08-16 住友金属工業株式会社 Manufacturing method of clean cold rolled steel sheet

Also Published As

Publication number Publication date
EP0340871B1 (en) 1994-03-16
DE68913799T2 (en) 1994-07-28
KR900018417A (en) 1990-12-21
JP2832454B2 (en) 1998-12-09
GB8810799D0 (en) 1988-06-08
DE68913799D1 (en) 1994-04-21
JPH01318096A (en) 1989-12-22
KR970000195B1 (en) 1997-01-06
ES2051984T3 (en) 1994-07-01
EP0340871A1 (en) 1989-11-08

Similar Documents

Publication Publication Date Title
US4992213A (en) Cleaning composition, oil dispersant and use thereof
US3167514A (en) Compositions for cleaning machinery and electrical equipment
KR100210135B1 (en) A process and composition for cleaning contaminants with terpent and monobasic ester
US3634338A (en) Method and composition for cleaning aluminum magnesiumand alloys thereof
JP2523111B2 (en) Demulsifying detergent formulation
US6328816B1 (en) Composition and method for degreasing metal surfaces
CA1339444C (en) Cleaning method
DE69616293T2 (en) CLEANING METHOD AND DEVICE
US5762719A (en) Terpene based cleaning composition
JPH051840B2 (en)
JPS596901A (en) Use of solublizing agent
US5250230A (en) Composition and process for cleaning metals
EP1389231A1 (en) Bio-active de-inking or cleaning foam
DE2505252A1 (en) PROCEDURE FOR CLEANING AND DEGREASING OBJECTS
GB2026551A (en) Cleaning oily surfaces
US5817186A (en) Cleaning composition for metal objects
US5817187A (en) Composition for grease removal
US3078189A (en) Method for salvaging electrical equipment and machinery
RU2190011C2 (en) Detergent and degreasing agent for cleansing solid surfaces
JP2969421B2 (en) Cleaning composition for iron-based metals
WO1999047630A1 (en) Low-foaming composition and method for degreasing metal surfaces
JP2952749B2 (en) Recycling and reuse of water-soluble detergent deterioration liquid
Kresse Replacement of chlorinated hydrocarbons by waterbased cleaning systems
WO2000042163A1 (en) Detergent for spray
Schmerling “Emulsion” Cleaning of Metals

Legal Events

Date Code Title Description
MKLA Lapsed