CA1339327C - Charge dissipative floor tiles - Google Patents

Charge dissipative floor tiles

Info

Publication number
CA1339327C
CA1339327C CA 608951 CA608951A CA1339327C CA 1339327 C CA1339327 C CA 1339327C CA 608951 CA608951 CA 608951 CA 608951 A CA608951 A CA 608951A CA 1339327 C CA1339327 C CA 1339327C
Authority
CA
Canada
Prior art keywords
surface covering
antistatic agent
covering product
tile
percent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA 608951
Other languages
French (fr)
Inventor
Jesse Delbert Miller Jr.
Kenneth Koon-Ying Ko
Susan Marie Von Stetten
Wayne Raymond Shelly
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AWI Licensing LLC
Original Assignee
Armstrong World Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US07/301,595 external-priority patent/US4944998A/en
Application filed by Armstrong World Industries Inc filed Critical Armstrong World Industries Inc
Application granted granted Critical
Publication of CA1339327C publication Critical patent/CA1339327C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Floor Finish (AREA)
  • Elimination Of Static Electricity (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

A surface covering product having static dissipative electrical properties comprises a consolidated agglomeration of individual chips of polymeric material and wherein at least a portion of said individual chips contain an antistatic agent. A second portion of individual chips contain no antistatic agent or a reduced amount of antistatic agent.

Description

-CHARGE DISSIPATIVE FLOOR TILES

Fleld of the Invention The present invention relates to surface covering products. In particular, the present invention relates to surface covering products having static dissipative electrical properties.
Backqround of the Invention Static control problems have been recognized and routinely addressed for years in the electronic o manufacturing industries. As the miniaturization of electrical equipment progresses and the growth of the electronic industry continues, static control problems have become more and more a sub~ect of serious concern to the electronics industry. To put the problem into perspective, it is known that someone walking across a carpeted floor can accumulate more than 30,000 volts of static charge, while published literature has referred to 25 to 100 volts as critical static discharges which could cause immediate and catastrophic damage to a sen-sitive electronic chip. This demonstrates the need forprotecting the areas and enviro~ments where sophisti-cated electronics equipment are manufactured and stored.
- 2 - 1339~27 It has been generally recognized that the pre-vention of static discharge requires that the total manufacturing and storage environment be constructed of materials which are capable of dissipating static charges, and that these materials be connected to a common ground.
In such an environment, it is critically important that the flooring structure be protected against electro-static discharge.
It has long been known that polymeric materials, of the kinds typically employed in flooring structures, such as polyvinyl chloride, are normally insulative. They can be made conductive, however, by incorporating either a conductive filler or an anti-static agent in the polymer structure or by employing both methods at the same time. When conductive fillers, such as metallic materials or carbon blacks, are used, the filler concentrations required to impart conductivity to the polymer structure are usually relatively high, typically thirty to fifty percent by volume. At such concentrations, the appearance of the polymeric struc-ture is usually black, gray, or brown, depending upon the materials employed, and are not suitable for highly decorative floor tile applications.
To protect a floor structure from accumulating dirt and to improve the lustre or glossiness of a floor structure, a floor polish is often used as a maintenance aid. For most commercial conductive floor tiles or sheet materials, especially those made with carbon and other metallic materials, i.e., commercially available carbon veined tiles and the like, such maintenance aids are not recommended by the manufacturers. This is because most commercially available floor polish materials are insulative. They will interfere with the conducting path formed by the carbon particles, or other metallic materials therein, affecting the ab~lity of the conduc-tive flooring structure to dissipate static charges.
For similar reasons, even a conductive floor polish is often not recommended for use in the mainte-- 3 - 133932~

nance of conductive floors, such as those employing - carbon-veined tiles. This is typical because the con-ductive floor polish is not usually as conductive as the conductive floor itself. In addition, the residual polish worn away by traffic also interferes with the conducting path, further decreasing the charge dissipa-tive efficiency of the conductive floor structure.
Antistatic agents, such as those containing quaternary ammonium salt functionalities have been known iO to impart charge dissipative properties to flooring structures in the past. However, these antistatic materials are sensitive to moisture and, in previous uses, have affected the manufacturing processing charac-teristics and performance characteristics of the floor-ing structures in which they were employed. For example, a floor structure containing moisture absorptive materials might swell or grow in length where water is present. If the moisture growth is high, the floor structure might curl or buckle, causing what is commonly referred to as a peak-seam in an installed floor structure. High mois-ture growth is, therefore, generally considered to be a high risk with respect to the performance of floor coverings, particularly when installed on on-grade or below-grade concrete sub-floors.
Objects of the Invention It is an object of the present invention to provide a surface covering product having static dissi-pative electrical properties suitable for highly decora-tive floor tile applications.
-It is a further object of the present inven-tion to provide a surface covering product having static dissipative electrical properties which can be main-tained with commonly available commercial floor care products.
It is a still further object of the present invention to provide a surface covering product having static dissipative electrical properties without the moisture growth problems typical of antistatic agents.

' According to the present invention, there is provided a surface covering product having ~tatic dissipative electrical properties comprising a consolidated agglomeration of first and second portions of polymeric material, said first and second portions being in the form of individual chips, the first portion containing a substantial amount of an antistatic agent whereby the material of the first portion has a resistivity of less than 1011 ohms/square, and the second portion containing only an insubstantial amount of antistatic agent.
.0 Detailed Description of the Present Invention By far, the predominant form of resilient flooring used today is of the vinyl type, that is, flooring which has a binder system based on polyvinyl chloride, commonly referred to as PVC. This polymer by itself i8 a very hard, tough, virtually intractable, thermoplastic material that must be compounded with var-ious additives to produce economically useful products.
It is one of the most adaptable polymeric materials and is used for applications as widely divergent as rigid pipe to almost jelly-like fishing lures. Because of this adaptability it is well suited to the manufacture of both flexible and ~emi-rigid flooring materials.
Polyvinyl chloride's high molecular weight and chemical and physical nature allow it to accommodate relatively large amounts of inert filler and it can be plasticized effectively and permanently to create materials with a wide range of flexibilities. Polyvinyl chloride is inherently resistant to acids, alkali and many organic solvents. ~t does not hydrolyse even when in continuous contact with molsture. Because of its chlorine content, the polymer is also inherently fire resistant and as a plastic material is generally classi-fied as self-extinguishing. Plasticized material is less fire resistant than rigid PVC, but can usually be formulated for use as a floor covering to pass the flame spread and smoke generation limitations of most building codes.

.~, When properly compounded and processed, PVC
can be a clear, colorless material or pigmented to pro-duce the full range of colors in transparent or opaque forms.
Polymeric material, as used throughout this specification, is intended to include polyvinyl chloride in its various forms. The vinyl resins used in flooring may be homopolymers, i.e., polymers consisting of only vinyl chloride units, or copolymers, consisting of vinyl chloride and other structural units, such as vinyl ace-tate. The molecular weights of these resins typically range from about 40,000 to about 200,000 atomic mass units. The higher molecular weight polymers have greater ultimate tensile strength and abrasion resistance and are generally used in flooring wear layers, while the lower molecular weight polymers are most useful in pro-ducing foams for cushioned flooring. As a general rule, vinyl homopolymers are typically used in vinyl sheet goods and Type III solid vinyl tile, while Type IV vinyl composition tiles typically contain copolymers of vinyl chloride and vinyl acetate.
To protect the polymeric material from degra-dation during processing and during its use as flooring material, vinyl co~pounds must be stabilized against the effects of heat and ultraviolet radiation. The most common stabilizers used in flooring are soaps of barium, calcium and zinc; organo-tin compounds; epoxidized soy bean oils and tallate esters; and organic phosphites.
Polymeric materials for flooring uses, even for use in relat~ely r~gid Type IV viny~ composition tiles, contain plasticizers to provide flexibility and to facilitate processing. The most frequently used plasticizer ~s dioctyl phthalate (DOP). Others that may be found in flooring use include butylbenzyl phtha-late (BBP), al~ylaryl phosphates, other phthalate esters of both aliphatic and aromatic alcohols, chlorinated hydrocarbons, and various other high boiling esters.
~he selection of the proper type and amount of plasti-A~' - 6 _ 1339327 cizer is often cr1tical in the formulation of flooring compounds because of the interaction of flexibility requirements, resistance to staining, reaction with maintenance finishes, and processing requirements.
In most tile and sheet flooring, the stabi-lized and plasticized vinyl formulation is mixed with varying amounts of inorganic filler to provide mass and thickness at a reasonable cost. The most common filler typically found in flooring is crushed limestone (cal-cium carbonate). Others that may be employed include talcs, clays and feldspars. In addition to providing bulk at reasonable cost, the use of inorganic f illers in flooring structures provides increased dimensional sta-bility, resistance to cigarette burns, improved flame spread ratings and reduced smoke generation.
Pigments are used in f looring products to pro-vide both opacity and color to the f inished products.
The typically preferred white pigment is titanium dio-xide and colored pigments are preferably inorganic.
Certain colors only available as lakes, such as the phthalocyanine blues and greens, must be resistant to the effects of alkali and light fading.
Finally, in order to pass certain code requirements with regard to fire and~smoke properties various additives may be employed to reduce f lame spread and smoke generation ratings. These compounds include alumina trihydrate, antimony trioxide, phosphate or chlorinated hydrocarbon plasticizers, zinc oxide, and boron compounds. Cushioned flooring containing chemi-cally expanded foam is usually compounded with azobis~
formamide blowing agents. Various other processing aids and lubricants may also be employed.
Probably the most widely used resilient floor-ing product is vinyl composition tile, as described by Federal Specification SS-T-312b, Type IV, Composition I.
While the present invention is intended for use in such tile, as the specification and Examples describe, it will be-obvious to one skilled in the art that the prin-ciples will also be applicable to various other types of flooring, particularly sheet flooring formed from sten-cil lay-ups or fused particles.
A typical formulation for vinyl composition tile is:
Percent by Wei~ht Vinyl Resin 12.5 ~ydrocarbon Resin 2.5 Plasticizer 4.0 Stabilizer 1.0 Fillers and Pigments 80.0 Vinyl composition tile is highly filled and the primary filler is calcium carbonate, or crushed limestone. The ingredients are typically mixed in a high power, high shear, heated mixer, such as a "Banbury Mixer"to combine and fuse them together into a heavy dough-like mass. This mass is then banded on a two roll mill and in the manufacture of grained or ~aspe'd tile, accent colors, of the same or a similar composltion material, may be added to t~e mill nip.
For the purposes of the present invention, however, the material can be sheeted and cooled, then cut into individual chips of regular or irregular dimension, the term "chips", as used herein, including structures of any shape, including those in which all three dimensions are substantially equal (cubes) as well as those in which one dimension is substantially less than the other two.
An assortment of such chips prepared in suitable colors are then arranged in a metal frame and consolidated with heat and pressure into an aggomeration.
Alternatively, non-conductive chips and con-ductive chips, separately prepared, may be mechanically mixed, such as in a"Baker Perkin" mixer,and subsequently sheeted out as a mixed-chlp condùctive structure using a two-roll mill.

* Trademark -7a--A factory finish may be applled to the hot con-solidated agglomerationto enhance colors, provlde uni-form gloss, prevent blocking in storage and protect the product during installation. Such finishes, as weli as wax finishes applled to conductive flooring in use have in the past acted to insulate flooring material unless such finishes and waxes were formulated to be conductive.

~B

For reasons which are as yet unexplained, such conductive finishes and waxes do not appear to be necessary with the products of the present invention as the products of the present invention appear to maintain their conduc-tive properties even with the application of a limitedamount of conventional finishes and waxes.
Vinyl composition tile is typically offered in several gauges and sizes depending on intended end use.
For residential applications, vinyl composition tile is offered in so-called service gauge which is 1/16 inch (1.6 mm) thick.
For commercial markets, vinyl composition tile is typically offered in 3/32 inch (2.4 mm) and 1/8 inch (3.2 mm) gauges, the latter being most frequently specified for heavy traffic. The standard size of vinyl composition tile is 12 inches by 12 inches, (about 0.3 m square) although other sizes may be commercially available.
The performance re~uirements, outlined in Federal Specification SS-T-312b, include size, thickness, squareness, and dimensional stability tolerances. These factors are critically important in the finished appear-ance of the installed tile floor. Other characteristics contained in the specification are solvent resistance, indentation requirements, deflection, volatility, and impact resistance.
Vinyl composition tile is a fairly rigid material, and at room temperature will not bend acutely without breaking. However, if deflected very slowly, it will bend. This attribute is necessary to successfully install the material over normal subfloors that are not perfectly flat allowing it to conform to subfloor irre-gularities. Commercial installation of vinyl composi-tion tile is usual~y done with a full spread of asphalt adhesive and the tile is set into the adhesive after the solvent has evaporated. Solventless adhesives are also available containing emulsified asphalt and resins for areas where solvent vapors are undesirable. Rubber latex adhesives also are used where black asphalt adhe-B~

g sives would be undesirable and for use over preexisting tile floors. Such adhesives are often available in con-ductive forms for use with the tile of the present invent ion.
Vinyl composition tile is generally considered the standard or base grade commercial finish flooring.
It has the lowest relative installed cost and has per-formed satisfactorily in commercial environments for many years. The major market segment for such tile use today is the mercantile market, where vinyl composition tile has been used almost exclusively for the general floor area of grocery stores, supermarkets, and discount department stores. It is also used extensively in schools, health care facilities and to a lesser extent in offices, banks, and light industries.
There is no minimum binder level requirement for Type IV (vinyl composition) tile, and this is the primary difference between vinyl composition tile and Type III vinyl tile or "solid" vinyl tile. The Federal Specification SS-T-312b requires that the minimum binder level of Type III tile shall not be less than 34%, and defines binder to include vinyl resin(s), plasticizers and stabilizers. Vinyl tile is considerably more flexi-ble than vinyl composition tile, but it is also signifi-cantly more expensive, because of its higher binder level.
Until the present invention, static dissipa-tive flooring of the vinyl composition tile type has not been commercially successful, chiefly because of moisture growth problems. Type III vinyl tile alterna-tives containing conductive material, however, have remained expensive alternatives.
There are two general classes of materials available which will dissipate static charges. The first class of these i5 referred to as "conductive"
materials, and typically have resistivities in the range of 103 to 106 ohms/square. Charge dissipative materials, or static dissipative materials, the second class, typi--cally have resistivities in the range of 106 to 10 ohms/square.
Static dissipative electrical properties as referred to herein, means that the resistivity of a material should be less than 1011 ohms/square. In addi-tion, a material should have a charge decay rate, for SOOo volts to 0 volts, of no more than 2.0 seconds.
Type III vinyl flooring tiles are commercially available which incorporate carbon black or metallic materials. These tiles, because of the coloration of the high filler content, are not believed to be suitable for highly decorative floor tile applications. In addi-tion, because of the cost of the conductive filler material, and the high binder level, such tiles tend to i5 be expensive.
Vinyl composition flooring tiles have previ-ously been known which have employed antistatic agents containing quaternary ammonium salt functionalities.
However, these were flooring tiles of the kind known as "straight grain", in which the antistatic agent was sub-stantially uniformly distributed. Such products, while they met the static dissipative electrical property requirements, defined above, demonstrated serious mois-ture growth problems which may have limited their use-fulness in certain applications.
It has now been determined that a slightlymodified construction of flooring tile, employing a com-pressed agglomerationof individual chips, can achieve the same or similar electrical properties without the moisture growth problems known to the prior art.
This has been accomplished, quite surprisingly, by limiting the presence of the antistatic agent to only a portion of the individual chips or minimizing the amount of the antistatic agent in a portion of the indi-vidual chips. As the examples which follow will demon-strate, static dissipative electrical properties are affected only slightly, while moisture growth properties fall dramatically as the proportion of individual chips A~i ..

containing a charge dissipating amount of antistat is reduced. While even a small reduction in the proportion of chips containing the typical level of antistat will serve the purposes of the present invention, it has been demonstrated that better results are obtained lf the proportion of chips containing a charge dissipating amount of antistat represent between from about twenty-five (25X) to about eighty-five (85X) by weight of the overall composition. Still better results are obtained if the proportion of chips containing the charge dissi-pating amount of antistat represent between from about thirty-five percent (35%) and about seventy percent (70%) by weight of the overall composition.
Although it is assumed that other antistatic agents may be operable in the practice of the present invention, such agents containing quaternary ammonium saltfunctionalities have demonstrated static dissipative electrical properties in flooring tiles which meet other physical requirements. Such antistatic agents include "Larostat 264A",commercially available from the Jordan Chemical company; "Cyastat LS" , commercially available from American Cyanamid; and "Hexcel 106G, commercially available from the Hexcel Corporation. "Larostat 264A" is soya dimethyl ethyl ammonium ethyl sulphate.
As detailed in the Examples which follow, it has been found, surprisingly, that the charge dissipa-tive tiles of the present invention may be maintained with minimal applications of commonly available commer-cial floor care products without significant loss of their charge dissipative characteristics. In fact, some data generated seems to indicate that an increase in such characteristics may be measured. Applicants do not propose any explanation for the increased conductivity of the normally insulative floor finishing material.
Example 1 Vinyl composition tiles were prepared by mix-ing and consolidating vinyl composition material in chip form. Specifically, the vinyl composition material had the following formulation in parts by weight:
* Trademark ** Trademark B * * * Trademark Polyvinyl chloride resin 121.00 Hydrocarbon resin 10.00 Phthalic ester plastlclzer40.50 Stabilizer 6.00 Titanium dioxide (opacifier) ~.80 Crushed Limestone (40 mesh)815.00 To a portion of this material was added 1.5%
of an antistatic agent, "Larostat 264A", commercially available from the Jordan Chemical Company. After dicing lo both vinyl structures into chips with a dimension of about 1/4 inches, (about 6.25 mm) floor tiles were prepared by mixing the chips in the proportions shown in Table l and filling a metal frame. The chips were subsequently hot-pressed for ten (10) minutes at 310~F (about 154~C), at a pressure of lO00 pounds per square inch (7MPa). Electrical properties and moisture growth characteristics for the resulting tiles are also given in Table 1.

)EW-no67 TAB~E 1 Surface Resistivity Surface Resistivity at 50~ Relative Humidity at 15% Relative Humidity Xatio of Chips Sile Mounted 011 Tile Mounted On Charge Decay Containing Anti- a Plywood Board a Plywo~d ~oard Rate at 13X
Stat to Chips Not With a Conductive With a Conductive Relative Moisture Containing Antistat Tile Alone Adhesive Tile Alone Adhesive Humidity Growth 100/0 1.8xlO8ohm~sq 8.7xlO70hm/sq 8.7xlO9ohm/sq 3.7xlO8ohm/sq0.01 sec. 5.61%
60/40 2.0xlO8ohm/sq 8.5xlO70hm/sq 1.9xlO9ohm/sq 4.5xlO8ohm/sq0.02 sec. 1.25%
50/50 4.0xlO8ohm/sq l.OxlO8ohm/sq 8.9xlO30hm~sq 6.5xlO8ohm/sq0.02 sec. 0.84% .;~
45/55 5.3xlO8ohm/sq 4.2xlO8ohm/sq 3.4xlO9ohm/sq 1.7xlO9ohm/sq0.04 sec. 0.66%
40/60 5.7xlO8ohm/sq 3.2xlO8ohm/sq 3.OxlO9ohm/sq 6.5xlO8ohm~sq0.03 sec. 0.32%
35/65 1.6xlO9ohm/sq 5.4xlO8ohm/sq 1.5xlOlOohm/sq 2.4xlO9ohm/sq0.48 sec. 0.16%
0/100 5.0xlOl30hm/sq 1.5xlOl30hm/sq 6.0xlOl30hm/sq 3.0xlOl30hm/sq> 6 sec. 0.14%

C~
C~
.

-Example 2 1339327 Vinyl composition tiles were prepared from theconductive and non-conductive chips prepared in Example 1. Such chips were combined in the proportions set out in Table II, mechanically mixed in a "Baker Perkin" mixer, and subsequently sheeted out using a two-roll mill and cut into tiles. As shown in Table II, the vinyl compo-sition tiles prepared in this manner possessed electri-cal dissipative properties and mechanical properties similar to the tiles of Example 1.

* Trademark 33932r7 3 c~ ~p o 0 V' O ~

_ E o ~ C~J ~D O O
~ ooooO
C~

C ~ ~, ~_1 b E - E E
~C ~ o ~ rO ~0 ~ ~0 ~
~ o 0 ~ O 0 ~
0 ~ OOOOO
O X K X X X

5 ~ a) 0 u~
~ ~ - E - - .C
~. S . . O
'~: E ~ O
~ ~ SO ~ C o _I
L~ ~ ~--I ~ X ~ X X X
~ ~ ~ oa~a) ~ o u~
a~ .,. . . .
O~
i-.- ~ ._, O ~ ~ CJ' ~ C~
5 ~ ~ ~ '' '~ '' E _ - E
~ S . . . S
~~ ~ O ~ O o ::' ~ O C~ S .r-O' O' ~OD
V~_~O~ OOOOO
~~ E: 3 t~5 ~: c~ _ ~ ~ ~1 ~, '~ S ~ ~ .C OIr) Xi X N X

U~ ~~
C~ ~

- - E è
E

~ o _ oo o o o~ a o o o o o oX s~ X ~ X
--~ ~o o C~
. ~ . . . .
E-~ ~ N ~ It~
y I o tn ~ 0 ~ u~ u~
0 ~~ ~ ~,~ 0 0 0 ~ s:~.
~ JJ Y ~ ~ ~ ~~ ~~
-- C ~ 5 C~ ~
0 0 0 ~ O O
oU~ ~ ~ ~ C~
o ~-- ._ ,_, ~ ~ ~
r O C: ~ O 0 1~ 0 0 I' I iJ ' ;~ C ~ C
~: O ~ O
~) U) ExamPle 3 ~ 7 A volume of vinyl composition tilesl~e3re9 pre-pared by separately mixing batches of materials having the compositions listed by welghts in Table 3A in a "Baker-Perkin" mixer. Each batch had a temperature of between 280~F (138~C) to 285~~ (140~C) at the end of about fifteen ~15) minutes of mixing. Mottle chips or accent colors prepared of the same compositions beforehand were added and mixing continued for approximately one minute at the same temperature.
Each mixed vinyl composition was then sheeted off in a mill to make a jaspe blanket. The front mill roll was ad~usted to approximately 210~F. (99~C) wh~e the back roll was m~int~ined between 250~F. and 270~F (121~C and 132~C). The blaIl-ket was then die-cut into cubes or furnish.
After batches A through F were converted into cubes in this manner, they were blended and mixed in an equal ratio and transferred to a metal screen carrier.
The mixed vinyl cubes were then carried through a cham-ber heated to between 330~F. and 350~F (166~C and 177~C), to partially soften the vinyl cubes. The mixed and temperature con-ditioned cubes were then fed through a set of calender rolls equipped with an oscillating blade to consolidate the structure. The temperature of the top roll was 2s m~int~ined behveen 220~F. and 225~~ (104~C and 107~C), while the bottom roll was m~int~ined at between 330~F. and 350~F (166~C aIld 177~C).
After this consolidation step, the blanket was reheated and fed into a consolidator to effect the final gauge reduction and facing operation before being punched into twelve inch by twelve inch (12" x 12") (about 0.3 m square) one-- eighth inch (1/8") (about 3.2 mm) thick tiles.
The tile produced in this manner met the indentation, impact resistance, deflection and volatil-ity requirements of Federal Specification SS-T-312B for Type IV vinyl composition tile. Dimensional properties did not meet specification requirements, but it was believed that processing ad~ustments would overcome this problem. The tiles also demonstrated excellent electri-cal charge dissipating characteristics, as shown in Table 3B.

~B

:

Table 3A 1339327 Product Formulations (%) A B C D E F

Limestone 80.3581.05 80.75 ~8.60 79.25 78.93 Pigments 2.00 1.30 1.60 1.95 1.30 1.62 Antistat 0.00 0.00 0.00 1.60 1.60 1.60 (Larostat 264-A) Vinyl Resin11.4511.4511.45 12.65 12.65 12.65 Hydrocarbon iO Resin 1.15 1.15 1.15 1.15 1.15 1.15 Plasticizer4.40 4.40 4.40 3.40 3.40 3.40 Stabilizer 0.65 0.65 0.65 0.65 0.65 0.65 Table 3B

Surface Resistivity Relative Humidity Tile Alone Tile with Conductive (%) (ohms/sq.) Adhesive (ohms/sq.) 6 to 9 x 108 2 to 4 x 108 4 to 7 x 109 5 to 8 x 108 NFPA 99 Resistance 2 to 10 x 1o6 ohms (measured with Meggameter) Static Decay Rate (5000 Volts to 0 Volts at 15%
Relative Humidity) Tile Alone 0.06 to 0.08 seconds Tile with Condutive Adhesive 0.01 to 0.02 seconds Triboelectric Char~in~ Measured at 50% Relative Humidity with a NASA Rubbing Wheel Tribocharge Test Apparatus) 2000 to 4000 Volts Example 4 This example compares the use of commercial conductive floor polish in maintaining commercially available carbon-veined conductive floor tile and the charge dissipative tile of this invention as prepared in Example 3. In this example, nine (9) 12" x 12" (about 0.3 m square) tiles selected from each of commercial carbon-veined tiles, charge dissipative tiles of Example 3 and commercially-available vinyl composition tiles were installed in a iO contiguous side by side array in a hallway over a cement substrate floor base. A commercially-available carbon filled latex-base conductive adhesive, measured to have a surface resistivity of 4 x 105 ohms/square, was used for the installation. After cleaning the tiles with deter-gent and clean water to clear dirt from the tile sur-face, four coats of a commercially-available conductive floor polish were applied to the tiles following ordi-nary and typical floor polish application procedures.
The surface resistivities of the coated floor tiles were monitored periodically after the conductive floor wax was applied and the results of these measurements are reported in Table 4. The resistivity measurements were done in accordance with the ASTM D-257 method using a concentric ring electrode, the Ike Probe from the Electro-tech System Inc., and a Dr. Thiedig Milli-T0 multi range resistivity meter for registering the read out. As shown in the table, the initial conductivity, which is the inverse of the resistivity, of the coated carbon-veined conductive tile is about the same in mag-nitude as the non-conductive vinyl composition tile.
For the charge dissipative tiles, however, the conduc-tive floor polish shows a synergistic effect in conduc-tivity yielding a conductivity higher than that of the untreated charge dissipative tiles or the vinyl tile with conductive floor wax. It should be noted further that the conductivity of the treated charge dissipative tiles was measured to be higher than the conductivity measured for either treated or non-treated carbon-veined tiles. -B

After one week with traffic, the conductive floor wax appeared to partially wear off, as indicated by the loss in conductivity of the treated vinyl tiles, but the treated charge dissipative tiles still showed higher conductivity then the non-treated charge dissi-pative tile samples. The treated carbon-veined tiles, on the other hand, shows a much greater loss in conduc-tivity. In this case, the conductivity of the conduc-tive polish treated carbon-veined tiles was measured to be about one order of magnitude lower than the conduc-tivity of non-treated carbon-veined tiles.
After two weeks of traffic and wear, the con-ductive polish appeared to wear off further, and the conductivity of the treated vinyl tile was further reduced. While the conductivity of the treated carbon-veined tiles were still lower than the conductivity of the untreated carbon-veined tiles, no loss in conductiv-ities were measured in the non-treated and treated charge dissipative tiles of the present invention.
Example 5 - This example demonstrates the effects of using a non-conductive floor polish in the maintenance of charge dissipative floor tiles. The charge dissipative tile samples installed on a cement base substrate described in Example 4 were stripped and cleaned follow-ing ordinary floor maintenance procedures. One coat of a floor finish coating (a commercial acrylic base floor polish material) was applied to a portion of the charge dissipative tile samples. The surface resistivities of treated and non-treated charge dissipative tiles were monitored in a similar fashion as described in Example 4.
No loss in conductivity was found between the treated and non-treated charge dissipative tile samples as shown in Table~5. The treated charge dissipative tiles, however, demonstrated superior resistance to dirt pick-up when compared to the non-treated charge dissipative tiles.

Example 6 When a floor polish i5 used in maintaining conductive floor tiles in an ESD protected area, it requires that the polish should not ~nterfere with the charge dissipating efficiency of the tile and that the triboelectric charge generation should be no greater than the generation of the tile alone. In this example, the triboelectric charging of untreated charge dissipa-tive tile and charge dissipative tile coated with a com-iO mercial acrylic floor polish were compared. The measure-ment of triboelectric charging was done in accordance with the AATCC Test Method 134-1979 (Electrostatic Propensity of Carpets, AATCC Test Method 134-19~9, American Association of Textile Chemist and Colorists, Research Triangle Park, NC, revised 19~9), commonly known as the "step test". Four different types of shoe sole materials were used in this test, they include neo-prene A, neoprene 8, leather and~Neolite" -Table 6 sum-marizes the charge generation measured at different humidities. As shown, the triboelectric charges generated from the untreated charge dissipative tile and the charge dissipative tile treated with one coat of a com-merc~al acrylic floor polish are about the same.

* Trademark 133932P~
-c~ -.

CD ~
~ o o o o o ~: ~ ~
~ x x x x ~ x .q ~ ~ O
~ ~ as o u~
as ~ _ , a ~ ~ ~ _, ~ A ~1 ~J O N
::S
o S t~S ~_1 .~ 1) ~. 1 3 ~ ~ ~
O O o o ~1 rn ~
t~ X
~: ~ ~ X X X X
u~ c2 as 1~ o ~ ~
_1 . . . .
~IS ~ C~ 00 C~ A N
E X
~r "~ o ~
N --1 ; d' C'J D
nS

~ _ E~ ~S ~~
~;S
as ~ ~
E
:~ O o o o o X X X X ~ X
1 o Ir~ It) ~D N ~ N
d Q, nS
~ ) ~ A
t~s E cC
s o o O ~ ~ o ~ 3 s ~~ ~~ - ~ ~ , ~~ o ._, d ~d d +J ~ ~ -- a aa C~
~ ~ S ~ ~
~5 3 E c~ , 3 ~ .

- 133~32~
o 5 ~ ~
n5 ~5 5 5 t- t_ o o u~ ~ ~ X X
:~. 0 ~5 o ~o as a ~.c --o E
ns as .,, E~ ~
o o ~: X X
~, n~ o a E ~r:
"~ o E~ c~

C

-5 ~ ~
3: o o ~, v. ~
X X
~ C~l E ~

o 3e 0-- u~
C If) 0 ~
_ I
Z s .,, .~ ~ _ ~ ~ ~, o .~ ~~ 0 u~ u~ :~
u ul _I
., - ~~ ~
a a ~3 ~
s ~
+J C
C~

- 24 - Dl'h'-80fi7 Table 6 - Triboelectric Charge (Volts at 33% Relative Humidity) Neoprene A Neoprene B Leather Neolite Commercial PVC Tile 2010 870 3100 5050 Commercial PVC Tile with Commercial Non-Conductive Polish . 600 340 980 2030 Charge Dissipative Tile30 141 64 298 Charge Dissipative Tile with Commercial Non-Conductive Polish 32 -100 50 -194 Triboelectric Char~e tVolts at 50% Relative Humidity) Neoprene A Neoprene B Leather Neolite Commercial PVC Tile 460 - 949 2060 Charge Dissipative Tile 3 -24 6 -7 Charge Dissipative Tile C~
with Commercial Non-Conductive Polish -10 -36 -15 -72 Example 7 To avoid waste, improve consolidation and improve processing in the manufacture of floor tiles, it is standard practice to recycle the punch frame scrap into the vinyl composition tile batch in the form of a remix. Of course, since the punch frame scrap includes some antistatic agent, this recycling of the remix introduces a low level of antistatic agent throughout any composition in which the remix is added.
In this example, the remix was added to both of the fresh or virgin compositions, the first including antistatic agent and the second including no antistatic agent. Note that since the mottle which contains no antistatic agent is added at the end of the mixing step to break up the base batch of mixed virgin and remix compositions to improve feeding of the tile composition through the mill chute, the mottle composition is not intimately mixed and the tile compositions includes mottle areas which do not contain an antistatic agent.
The tile sample was made by preparing chips 50% of which contained antistatic agent and 50% of which did not contain antistatic agent. The formulations are set forth below in parts by weight.
With Without Antistat Antistat Base Material Virgin Formulation Polyvinyl chloride resin336.0 303.0 Alpha methyl styrene tackifier 24.0 24.0 Phthalic ester plasticizer 49.4 99.0 Stabilizer 14.4 14.4 Titanium dioxide opacifier 130.7 98.8 Crushed limestone 1~90.2 1860.8 Antistat-Larostat 264A 55.3 ----2400.0 2400.0 Remix 600.0 600.0 Mottle 780.0 780.0 3780.0 3780.0 - 26 - 1339327 .

Two mottles were prepared at a thickness of 100 mils with two different pigmentations. The formula-tion in parts by weight for the mottles were:
Polyvinyl chloride resin 83.6 S Alpha methyl styrene tackifier 14.2 Phthalic ester plasticizer 30.2 Stabilizer 6.6 Titanium dioxide opacifier 22.4 Crushed limestone 623.0 :o 780.0 Each mottle was premixed in an "Eirich" mixer for about three minutes, brought to a.temperature of about 340~F to about 370~F (about 171~C to about 188~C) in a "FalTel" mixer in about 30 seconds, and sheeted off a two roll mill to a thickness of about 100mils (25.4 ,um). The sheet was ground into chips having a minimllm dimension of about 1/4 inch to about 3/4 inch (about 6.4 mm to about 19.1 mm).
The virgin formulation was charged into a Type F mixer with remix. The remix was formed by grinding punch frame scrap and reject tiles into about 1/4 inch (about 6.4 mm) chips. The virgin formulation and remix were ~ixed in the presence of heat in a Type F mixer for about 17 minutes. The mottle was then added and the mixing con-tinued for about two minutes. The antistatic and non-2s antistatic vinyl composition of mottle and base material were sheeted off a mill and diced into chips. The chips were then blended in a 50/50 ratio and reconsolidated under heat and pressure in a tile line calendar to make the finished static dissipative tile.
The moisture growth of the finished tile was 0.6X with acceptable electrical properties. See Table 7 following Example 8. At equilibrium the percent antistatic agent is as follows:
With Without AntistatAntistat Virgin 2.3% 0%
Remix 0.87% 0.8~%
Base 2.02% 0.17%
Mottle 0% 0%
B
* Trademark ** Trademark - 27 ~ 1339~7 Since the mottle is not homogeneously distrib-uted within the tile chips, there are regions (approx-imately 20%) of the tile chips without any a~lisla~ic agent.
About 40% of the tile chips has 2.0% antistatic agent and 5 about 40% of the tile chips has 0.17% antistatic agent.
Example 8 To simplify the manufacturing process and reduce the chance of errors, the above described process was modified to introduce the antistatic agent only in the mottle. Since the base material of intimately mixed virgin and remix formulations include antistatic agent from the remix, some antistatic agent is distributed throughout the t$1e composition. However, the concen-tration of antistatic agent in the base material is not high enough to contrlbute substantially to the moisture growth problem or have the desired static dissipative properties. Such a level of antistatic agent is deemed to be an insubstantial amount. Preferably the amount of antistatic agent in the base material is less than 0.25%
and less than one tenth of the antistatic composition in the mottle.
The antistatic mottle composition was prepared by premixing the following formulation (ln parts by weight) in an "Eirich" rnixer for about six minutes, Antistatic Mottle Polyvinyl chloride resin 242.0 Alpha methyl styrene tackifier 20.0 Phthalic ester plasticizer 48.0 Stabilizer 17.2 Titanium dioxide opacifier 21.4 Crushed limestone 1612.4 Larostat 264A antistatic agent 39.0 2000.0 ~ ~ .

- -The mottle composit~on was then brought up to about 340~F to 370~F (about 171~C to about 188~C) in a Farrel mixer in about 30 seconds. The mixed composition was then sheeted o~ a ~vo roll mill to a thickness of about 100 mils (25.4 ,um) and ground into chips.

It is surprising and unexpected that the antistatic agent cont~inin~ mottle composition can be fused in a Farrel mixer. One would expect the antistatic agent to be destroyed at the temperatures reached in the high .0 intensity Farrel mixer. However, the antistatic agent is subjected to the high intensity mixing for only a brief time.
! The fresh or virgin composition had the fol-lowing formulation in parts by weight:
Virqin Composition Polyvinyl chloride resin 70.0 Alpha methyl styrene tackifier 5.6 Phthalic ester plasticizer 23.5 Stabilizer 3.4 Titanium dioxide opacifier 6.0 Crushed limestone 451.5 560.0 The virgin composition and remix were processed in a manner similar to Example ~. Two tests were run, the first with 40X mottle and the second with 33.3%
mottle. The following pounds of the components were charged into Type F mixers. The percent of the tile composition is indicated in the parenthesis.
Test 1 ~ Test 2 Remix 160 (11.9%) 240 (20%~
Virgin 640 (4~.4%) 560 (46.7%) After mixing for about 17 minutes 550 lbs. (about 250 kg) (40.7%) mottle was added in Test 1 and 400 lb. (about 182 kg) (33.3~o) mot-tle was added in Test 2. After addition of the mottle, mixing was continued for about two minutes. The tile composition was then sheeted, diced into about 1/4 inch (about 6.4 mm) cubes, and reconsolidated under heat and pressure using an oscillating blade in a calendar nip.

If the mottle and base material are different colors or shades, a straight grain or, mottled or jaspe sheet is produced. By blending cubes of different col-ors before the reconsolidation, a wide variety of pat--tern coloration and design can be achieved.
The surface resistivity of tiles made by the processes of Examples 7 and 8 were as follows:
Table 7 Surface Resistivity iORelative Example 8 Example 8 Humidity Example 7(40% mottle) (33.3% mottle) (%) (ohms/sq)(ohms/sq) (ohms/sq) 1.6 x 1091.6 x 109 1.3 x 109 8.5 x 101~ 4.9 x 101~ 5.6 x 101~

Claims (18)

1. A surface covering product having static dissipative electrical properties comprising a consolidated agglomeration of first and second portions of polymeric material said first and second portions being in the form of individual chips, the first portion containing a substantial amount of an antistatic agent whereby the material of the first portion has a resistivity of less than 10 11 ohms/square, and the second portion containing only an insubstantial amount of antistatic agent.
2. The surface covering product of claim 1 wherein the first portion represents between about twenty-five percent (25%) and about eighty-five percent (85%) by weight of the overall composition.
3. The surface covering product of claim 1 wherein the first portion contains between about one quarter of one percent and about five percent by weight of the antistatic agent.
4. The surface covering product of claim 3 wherein the first portion contains between about one percent and about two percent by weight of the antistatic agent.
5. The surface covering product of claim 1 wherein the antistatic agent has quaternary ammonium salt functionalities.
6. The surface covering product of claim 5, wherein the antistatic agent is mixed in the first portion with a high intensity mixer.
7. The surface covering product of claim 1 wherein the second portion contains less than one quarter of one percent by weight of antistatic agent.
8. The surface covering product of claim 1 wherein the percentage of antistatic agent in the second portion is no more than one tenth the percentage of antistatic agent in the first portion.
9. The surface covering product of claim 1 wherein the antistatic agent in the second portion is the result of introducing scrap material from a previous manufacturing run into the starting material of the second portion, said starting material containing substantially no antistatic agent.
10. The surface covering product of claim 1 wherein the antistatic agent in the second portion is substantially uniformly distributed within each individual chip of the second portion.
11. The surface covering product of claim 1 wherein the upper exposed layer of the surface covering comprises the first and second portions.
12. The surface covering product of claim 11 wherein the individual chips of the first and second portions are substantially uniformly distributed within the upper layer.
13. The surface covering product of claim 1 wherein the wear layer of the surface covering comprises the first and second portions.
14. The surface covering product of claim 13 wherein the individual chips of the first and second portions are substantially uniformly distributed within the wear layer.
15. The surface covering product of claim 1 further comprising a third portion of individual chips which contain no antistatic agent.
16. The surface covering product of claim 1 wherein the first portion represents between about thirty-five percent (35%) and about seventy percent (70%) by weight of the overall composition.
17. A process for the manufacture of a surface covering product having electrical charge dissipative properties, which comprises forming a first composition comprising a polymeric material and a substantial amount of an antistatic agent into a shaped structure, forming a second composition comprising a polymeric material and an insubstantial amount of an antistatic agent into a shaped structure, breaking each of the shaped structures into chips, and forming a first portion of chips, derived from the first composition, and a second portion of chips, derived from the second composition, into a surface covering product.
18. A process as claimed in claim 17 wherein the product is as defined in any one of claims 1 to 16.
CA 608951 1989-01-26 1989-08-22 Charge dissipative floor tiles Expired - Fee Related CA1339327C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US301,595 1989-01-26
US07/301,595 US4944998A (en) 1987-07-29 1989-01-26 Charge dissipative floor tiles

Publications (1)

Publication Number Publication Date
CA1339327C true CA1339327C (en) 1997-08-19

Family

ID=23164045

Family Applications (1)

Application Number Title Priority Date Filing Date
CA 608951 Expired - Fee Related CA1339327C (en) 1989-01-26 1989-08-22 Charge dissipative floor tiles

Country Status (3)

Country Link
JP (1) JPH02207492A (en)
AU (1) AU618165B2 (en)
CA (1) CA1339327C (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2533978B2 (en) * 1991-03-22 1996-09-11 ロンシール工業株式会社 Thermoplastic floor material with a grain pattern

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2729770A (en) * 1954-04-13 1956-01-03 Robbins Edward Stanley Electrically conductive plastic panels

Also Published As

Publication number Publication date
AU4881990A (en) 1990-08-02
AU618165B2 (en) 1991-12-12
JPH02207492A (en) 1990-08-17

Similar Documents

Publication Publication Date Title
US4944998A (en) Charge dissipative floor tiles
US5284705A (en) Antistatic coating comprising tin-oxide-rich pigments and process and coated substrate
GB2262940A (en) Floor coverings
US5077330A (en) Conductive polyurethane-urea/polyethylene oxide
US3991006A (en) Plastic molding formulation reinforced with organic fibers
US4250064A (en) Plastic formulation reinforced with organic fibers
US5066422A (en) Static dissipative vinyl surface covering materials, methods for them, and composition for static dissipation
CA1339327C (en) Charge dissipative floor tiles
US5348784A (en) Antistatic and conductive carpet tile system
US5307233A (en) Electrically conductive material
KR19990067044A (en) Film composite for electrostatic recording
US5091452A (en) Charge dissipative surface coverings
US7811476B2 (en) Electrically conductive floor coverings
US20040146708A1 (en) Linoleum-based floor covering with improved flame-retardant properties and a method for producing the same
GB2229444A (en) Surface covering materials
US5391612A (en) Halogen-free resilient flooring
JPS61142248A (en) Conductive floor material
EP0525004B1 (en) Floor covering with bitumen backing layer
JPH0592521A (en) Inlaid sheet material having decorative adhesive matrix selectively applied thereto
US3188263A (en) Heat stabilized vinyl plastic compositions, floor tiles made therefrom, and methods for preparing same
US20050115180A1 (en) Fire behavior of a floor covering based on linoleum and cork
JPS62160363A (en) Method for preventing accumulation of static electricity in laminated cork floor tile and antistatic cork floor tile
EP0951392B1 (en) Semiconducting floor covering
GB2303374A (en) Surface coating composition
CA2282572A1 (en) A surface covering backing containing polymeric microspheres and processes of making the same

Legal Events

Date Code Title Description
MKLA Lapsed