CA1339281C - Nebulizer device - Google Patents

Nebulizer device

Info

Publication number
CA1339281C
CA1339281C CA000612251A CA612251A CA1339281C CA 1339281 C CA1339281 C CA 1339281C CA 000612251 A CA000612251 A CA 000612251A CA 612251 A CA612251 A CA 612251A CA 1339281 C CA1339281 C CA 1339281C
Authority
CA
Canada
Prior art keywords
crystal
nebulizer
projection
voltage
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA000612251A
Other languages
French (fr)
Inventor
Bernard J. Greenspan
Owen R. Moss
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pacific Northwest National Laboratory
Original Assignee
Pacific Northwest National Laboratory
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=22939651&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CA1339281(C) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Pacific Northwest National Laboratory filed Critical Pacific Northwest National Laboratory
Application granted granted Critical
Publication of CA1339281C publication Critical patent/CA1339281C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B5/00Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
    • B05B5/025Discharge apparatus, e.g. electrostatic spray guns
    • B05B5/0255Discharge apparatus, e.g. electrostatic spray guns spraying and depositing by electrostatic forces only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B5/00Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
    • B05B5/025Discharge apparatus, e.g. electrostatic spray guns
    • B05B5/053Arrangements for supplying power, e.g. charging power
    • B05B5/0531Power generators

Abstract

The present invention constituents a portable nebulizer capable of producing a finely divided aerosol having uniformly sized droplets. The nebulizer includes a source of fluid such as a capillary tube coupled to a fluid reservoir to which a high voltage is applied in order to generate the aerosol by electrical atomization. The nebulizer further includes a piezoelectric crystal and a mechanism for deforming the crystal so as to generate the required voltage. By using electrical atomization to generate the aerosol and by piezoelectrically generating the voltage required for atomization, a nebulizer is provided which may be of small size so as to be suitable for hand held operations yet is capable of producing measured amounts of finely divided aerosols which are substantially monodispersed.

Description

NEBULIZER DEVICE

Background of the Invention The present invention relates to devices for atomizing liquids and more particularly to devices for producing finely divided aerosols having uniformly sized droplets.
Finely divided aerosols have generally been produced by nebulizers employing compressed air to atomize fluids.
These devices operate by allowing compressed air to escape from a small orifice at the end of a tube at high velocity.
The low pressure created in the exit region as a result of the bernoulli effect causes the fluid to be atomized to be drawn out of a second tube as a thin filament which is broken up into droplets of various small sizes as it is accelerated in the airstream. This spray is then directed around an impaction surface on which the large droplets are preferentially deposited and whereby some uniformity is provided with respect to droplet size. However, most nebulizers operating with compressed air having difficulty producing aerosols having particle sizes approaching one micron and cannot ordinarily generate aerosols which are sufficiently uniform in size so as to be ~monodispersed".
Finely divided aerosols are highly useful in many applications and particularly in administering medications which are pneumonically delivered to the patient by inhalation. Most "inhalators" used in dispensing medications are compressed air nebulizers of sufficiently small size to be suitable for hand-held use. However, in view of the characteristic limitations of such nebulizers and the further limitations inherent in the small size of most inhalators, users of these devices have had great difficulty in providing aerosols having uniform particle size and in the related problem of providing consistent measured amounts of medication.
It is therefore an object of the present invention to provide a portable nebulizer capable of generating finely divided aerosols which are substantially monodispersed.
It is another object of the present invention to provide a nebulizer which may be small enough for hand-held use and yet provides aerosols of substantially uniform particle size while being capable of supplying medication in consistently measured dosages.
It is a further object of the present invention to provide a nebulizer which may be powered by the hand gripping pressure of a user of the device and which is sufficiently economical to construct so as to be disposable.

Summary of the Invention The present invention comprises a portable hand-held nebulizer capable of generating aerosols characterized by uniformly-sized droplets of very small dimensions by electrical atomization. A piezoelectric crystal is constructed and arranged for being mechanically deformed in accordance with pressure applied to a trigger mechanism. The crystal is adapted for generating high voltages in response to such deformations. The crystal is electrically coupled to a capillary tube and a grid element which is spaced apart from the tip of the tube. The capillary tube is connected to a reservoir of fluid to be atomized so as to allow the fluid to be supplied up to the tip of the tube. The preferred embodiment of the present invention also includes a control circuit which regulates the output of this piezoelectric crystal in order to cut off the output below and above prescribed voltage limits.
In operation, the deformation of the piezoelectric crystal produces a high voltage which is transmitted to and applied across the capillary tube and grid element. The electric field existing between the tip of the tube and the grid encourages the discharge of fluid from the tube. This fluld ls broken lnto a very large number of slmllarly slzed droplets by the effects of the electric charges carrled by the fluld and a "fan spray" aerosol ls thereby formed. Thls process of electrlcal atomlzatlon furnlshes an aerosol conslstlng of large numbers of very flne partlcles havlng a hlgh degree of unlformlty. Such aerosols are hlghly useful ln pneumonlcally admlnlsterlng medlcatlons and ln many other appllcatlons.
In summary, the lnventlon provldes a nebullzer whlch ls adapted for produclng flnely dlvlded aerosols havlng unlformly slzed droplets yet whlch ls manually powered by hand grlpplng pressure, sald nebullzer comprlslng: a plezoelectrlc crystal; means for manually deformlng sald crystal so as to generate a hlgh voltage; a pro~ectlon constructed and arranged for belng supplled wlth a flow of liquld to be atomlzed; means for applylng voltage generated by sald crystal to sald pro~ectlon; and means for regulatlng the value of the voltage as applled to sald pro~ectlon as well as for automatlcally controlllng the duratlon of sald appllcatlon of sald voltage ln order to provlde a predetermlned dose of sald llquld.
The lnventlon wlll now be descrlbed ln greater detall wlth reference to the accompanylng drawlngs whereln llke reference characters refer to llke elements.
Brlef Descrlptlon of the Drawlnq The drawlng ls a dlagrammatlc vlew lllustratlng the overall system of the present lnventlon.
Descrlptlon of the Preferred Embodlment Referrlng now to the drawlng, the present lnventlon i 1339281 comprlses a nebullzer devlce 5 lncludlng a plezoelectrlc ceramlc crystal 10 of a conventlonal type such as a lead tltanate-zlrconate crystal. An lmpact element 20 ls posltloned for engaglng the surface 12 of the crystal 10 so that force F
exerted on the element 20 can bend and deform the crystal 10.
The electrlcal contacts 24 and 26 are attached to opposlte faces on the longltudlnal ends of the crystal 10 for plcklng up electrlcal potentlals generated across the crystal 10 by the deformatlon prevlously referred to. The conductlve leads 28 and 30 transmlt the voltage from the contacts 24 and 26 to the control clrcult 32.

The impact element 20 is connected by a mechanical linkage to a trigger mechanism 18 which may be conveniently depressed by hand gripping pressure exerted by a user of the device 5. The force applied by the user to the trigger mechanism 18 is multiplied by the mechanical linkage and brought to bear on the crystal 10 by the impact element 20.
The linkage suitably comprises a rigid lever arm with its fulcrum at 16 positioned more closely to element 20 than to trigger 18 (i.e., with arm 17 being substantially shorter than arm 19). Alternatively, the mechanical linkage may comprise a rack and pinion system with the impact element 20 being driven by a cam from the pinion. Such means for multiplying force are readily understood by those skilled in the art.
The control circuit 32 is operative for regulating the voltage generated by the piezoelectric crystal 10 so that the electrical potential applied between the capillary tube and neutralization grid 42 over the electrically conductive leads 46 and 48 is maintained within the range of 6-10 Kv. In particular, the voltage is preferably not applied between the tube 40 and grid 42 when it is less than about 6 Kv since this may detrimentally affect the uniformity of the aerosol. The control circuit 32 also provides a capacitive or storing function for storing and releasing electrical charge in a well known manner so that the voltage supplied to tube 40 and grid 42 may be sustained beyond the actual period of depression of the trigger mechanism 18. The leads 46 and 48 transmit the electrical potential from the control circuit 32 to the tube 40 and grid 42, respectively, with the positive potential being applied to the tube 40 ~ (and/or the fluid within the tube 40).
The reservoir 50 contains a fluid (and more particularly a liquid) capable of being dispersed by electrical atomization techniques, such as water or ethyl alcohol, and is hydraulically connected to the capillary tube 40 so that the fluid from the reservoir 50 can flow up to the tip 44 of the tube 40. The inside diameter of the capillary tube 40 is preferably in the range of 100-500 microns with its outside dimensions being as thin as possible consistent with maint~ining sufficient strength and rigidity. The capillary tube 40 preferably comprises a stainless steel tube such as a No. 25 hypodermic needle although the tube 40 may be constructed of glass or of a plastic such as tetrafluoroethylene. The fluid level in reservoir 50 should be high enough to allow the fluid to reach the tip of tube 40 by fluid flow or capillary action. Neutralization grid 42 is spaced apart by approximately 1.5 cm from the tip 44 of the capillary tube 40.
In operation, the user slowly presses the trigger mechanism 18 which results in the crystal 10 being progressively deformed as more and more force is applied to the crystal 10 by impact element 20. The piezoelectric crystal 10 generates a voltage which may ordinarily range upward to 20 Kv and may be sustained in the range of 6-10 Kv for a period of several seconds. The exact levels of voltage generated are a function of the force applied to the trigger, and the characteristics of the mechanical linkage 16, impact element 20, and the piezoelectric crystal 10 itself. These components may be adjusted to assist in achieving the desired raw voltage output to the control circuit 32.
As previously described, the control circuit desirably regulates the output of the crystal 10 so as to limit it within the range of 6-10 Kv and "lengthen" the period of time during which voltage is provided. The voltage provided by the control circuit 32 is applied between the capillary tube 40 and neutralization grid 42. The resultant electric field existing between the pointed projection formed by the tip 44 of the tube 40 and grid 42 causes the generation of a fan spray aerosol composed of substantially monodispersed droplets capable of exhibiting higher order 133~281 Tyndall spectra. Droplets with sizes in the range of 0.2 to 5 microns can be readily produced with droplet concentration levels approaching 108 particles per cubic centimeter.
The ability of the device S to produce a satisfactory aerosol can, however, be dependent on the type of fluid which is desired to be dispersed. Fluids having either very low (e.g. benzene) or high (e.g. inorganic acids, salts) conductivities are difficult to disperse by electrical atomization. Furthermore, other characteristics of fluids such as their dielectric constants, dipole moments and surface tensions may affect their ability to be electrically atomized. Consequently, when medications which are dissolved in solution are desired to be dispersed, appropriate vehicles should be chosen for solvating such medications for allowing efficient atomization.
The nature of the aerosol produced by the device 5 is a complex function of the applied voltage, the size and structure of the capillary tube 40, the spacing between the tube 40 and the grid 42, the hydrostatic pressure of liquid at the tip 44 of the tube 40, and the characteristics of the liquid as previously discussed. These factors may be adjusted either individually or in combination to achieve the aerosol particle size and volume desired. In particular, the control circuit 32 is suitably used to insure that voltage applied between the tube and grid is of consistent level and duration for aerosol generation, thereby resulting in measured dosages of medical products atomized by the device 5.
While a preferred embodiment of the present invention has been shown and described, it will be apparent to those skilled in the art that many changes and modifications may be made without departing from the invention in its broader aspects. For example, more than one capillary tube may be employed in the same nebulizer device so as to increase the volume of the aerosol produced as compared with a single tube 13~Z81 nebulizer device. By way of further example, the capillary tube may, under suitable conditions, be replaced by another type of pointed projection such as a short needle constructed and arranged so as to allow the liquid to be atomized as otherwise supplied to its tip. The appended claims are therefore intended to cover such changes and modifications as fall within the true spirit and scope of the invention.

Claims (5)

1. A nebulizer which is adapted for producing finely divided aerosols having uniformly sized droplets yet which is manually powered by hand gripping pressure, said nebulizer comprising: a piezoelectric crystal; means for manually deforming said crystal so as to generate a high voltage; a projection constructed and arranged for being supplied with a flow of liquid to be atomized; means for applying voltage generated by said crystal to said projection; and means for regulating the value of the voltage as applied to said projection as well as for automatically controlling the duration of said application of said voltage in order to provide a predetermined dose of said liquid.
2. The nebulizer of claim 1, wherein said projection includes: a capillary tube coupled to a fluid reservoir operative for supplying the liquid to be atomized to the tube.
3. The nebulizer of claim 1, wherein means for manually deforming said crystal includes: a lever arm attached to a trigger mechanism.
4. The nebulizer of claim 1, wherein said means for applying voltage to said crystal includes: a pair of electrical conductors coupled to opposing faces of said crystal, one of which is connected to said projection and the other of which is connected to a grid means spaced apart from said projection, said projection being substantially pointed.
5. The nebulizer of claim 1, wherein the means for regulating the value of the voltage as applied to said projection ensures that voltage generated by said crystal when less than approximately 6Kv is not applied to said projection.
CA000612251A 1988-09-23 1989-09-21 Nebulizer device Expired - Fee Related CA1339281C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US248,558 1988-09-23
US07/248,558 US5115971A (en) 1988-09-23 1988-09-23 Nebulizer device

Publications (1)

Publication Number Publication Date
CA1339281C true CA1339281C (en) 1997-08-12

Family

ID=22939651

Family Applications (1)

Application Number Title Priority Date Filing Date
CA000612251A Expired - Fee Related CA1339281C (en) 1988-09-23 1989-09-21 Nebulizer device

Country Status (10)

Country Link
US (1) US5115971A (en)
EP (1) EP0435921B1 (en)
JP (1) JPH04500926A (en)
AU (1) AU635902B2 (en)
CA (1) CA1339281C (en)
DE (1) DE68912133T2 (en)
NZ (1) NZ230752A (en)
PT (1) PT91786B (en)
WO (1) WO1990003224A1 (en)
ZA (1) ZA897238B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11110000B2 (en) 2012-04-10 2021-09-07 Eyenovia, Inc. Spray ejector mechanisms and devices providing charge isolation and controllable droplet charge, and low dosage volume ophthalmic administration
US11260416B2 (en) 2012-05-15 2022-03-01 Eyenovia, Inc. Ejector devices, methods, drivers, and circuits therefor

Families Citing this family (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5511726A (en) * 1988-09-23 1996-04-30 Battelle Memorial Institute Nebulizer device
US5144962A (en) * 1989-12-01 1992-09-08 Philip Morris Incorporated Flavor-delivery article
ES2154259T3 (en) * 1990-11-12 2001-04-01 Procter & Gamble SPRAY DEVICE.
EP0501725B1 (en) * 1991-03-01 2001-06-13 The Procter & Gamble Company Spraying of liquids
GB9115279D0 (en) * 1991-07-15 1991-08-28 Unilever Plc Hair and scalp treatment system
GB9115278D0 (en) * 1991-07-15 1991-08-28 Unilever Plc Liquid spraying apparatus and method
GB9115276D0 (en) * 1991-07-15 1991-08-28 Unilever Plc Skin treatment system
GB9115275D0 (en) * 1991-07-15 1991-08-28 Unilever Plc Colour cosmetic spray system
GB9115277D0 (en) * 1991-07-15 1991-08-28 Unilever Plc Spraying system
WO1994006568A1 (en) * 1992-09-22 1994-03-31 Battelle Memorial Institute Nebulizer device
GB9225098D0 (en) * 1992-12-01 1993-01-20 Coffee Ronald A Charged droplet spray mixer
US6105571A (en) 1992-12-22 2000-08-22 Electrosols, Ltd. Dispensing device
US6880554B1 (en) 1992-12-22 2005-04-19 Battelle Memorial Institute Dispensing device
GB9226717D0 (en) * 1992-12-22 1993-02-17 Coffee Ronald A Induction-operated electro-hydrodynamic spray device with means of modifying droplet trajectories
GB9303335D0 (en) * 1993-02-19 1993-04-07 Bespak Plc Inhalation apparatus
US5400975A (en) * 1993-11-04 1995-03-28 S. C. Johnson & Son, Inc. Actuators for electrostatically charged aerosol spray systems
DE4408032A1 (en) * 1994-03-10 1995-09-14 Bruker Franzen Analytik Gmbh Process for the ionization of dissolved atoms or molecules from liquids by electrical spraying
GB9406171D0 (en) * 1994-03-29 1994-05-18 Electrosols Ltd Dispensing device
US6729334B1 (en) 1994-06-17 2004-05-04 Trudell Medical Limited Nebulizing catheter system and methods of use and manufacture
US5642730A (en) * 1994-06-17 1997-07-01 Trudell Medical Limited Catheter system for delivery of aerosolized medicine for use with pressurized propellant canister
IL114154A0 (en) * 1994-06-17 1995-10-31 Trudell Medical Ltd Nebulizing catheter system and methods of use and manufacture
US5758637A (en) 1995-08-31 1998-06-02 Aerogen, Inc. Liquid dispensing apparatus and methods
US5873523A (en) * 1996-02-29 1999-02-23 Yale University Electrospray employing corona-assisted cone-jet mode
US7193124B2 (en) 1997-07-22 2007-03-20 Battelle Memorial Institute Method for forming material
US6252129B1 (en) 1996-07-23 2001-06-26 Electrosols, Ltd. Dispensing device and method for forming material
AU741439B2 (en) 1996-12-30 2001-11-29 Battelle Memorial Institute Formulation and method for treating neoplasms by inhalation
US5948483A (en) * 1997-03-25 1999-09-07 The Board Of Trustees Of The University Of Illinois Method and apparatus for producing thin film and nanoparticle deposits
GB2327895B (en) 1997-08-08 2001-08-08 Electrosols Ltd A dispensing device
SE512386C2 (en) * 1998-07-30 2000-03-06 Microdrug Ag Method and apparatus for classifying electrostatically charged powdery material
US6235177B1 (en) 1999-09-09 2001-05-22 Aerogen, Inc. Method for the construction of an aperture plate for dispensing liquid droplets
AU4439101A (en) * 2000-04-03 2001-10-15 Electrosols Ltd Devices and formulations
WO2001083101A1 (en) * 2000-04-18 2001-11-08 Kang, Seog, Joo Apparatus for manufacturing ultra-fine particles using electrospray device and method thereof
US8336545B2 (en) 2000-05-05 2012-12-25 Novartis Pharma Ag Methods and systems for operating an aerosol generator
US7971588B2 (en) 2000-05-05 2011-07-05 Novartis Ag Methods and systems for operating an aerosol generator
AU3664102A (en) * 2000-12-01 2002-06-11 Battelle Memorial Institute Method for stabilizing biomolecules in liquid formulations
US6546927B2 (en) * 2001-03-13 2003-04-15 Aerogen, Inc. Methods and apparatus for controlling piezoelectric vibration
JP4667678B2 (en) * 2001-09-20 2011-04-13 中央精機株式会社 Arc welding quality evaluation system
US7677467B2 (en) 2002-01-07 2010-03-16 Novartis Pharma Ag Methods and devices for aerosolizing medicament
CA2472644C (en) 2002-01-07 2013-11-05 Aerogen, Inc. Devices and methods for nebulizing fluids for inhalation
ES2603067T3 (en) 2002-01-15 2017-02-23 Novartis Ag Methods and systems for operating an aerosol generator
RU2190482C1 (en) * 2002-02-07 2002-10-10 Брежнев Вячеслав Николаевич Method of production of aerosol
EP1509259B1 (en) 2002-05-20 2016-04-20 Novartis AG Apparatus for providing aerosol for medical treatment and methods
US20040055595A1 (en) * 2002-09-19 2004-03-25 Noymer Peter D. Aerosol drug delivery system employing formulation pre-heating
MXPA05007154A (en) * 2002-12-30 2005-09-21 Nektar Therapeutics Prefilming atomizer.
US8616195B2 (en) 2003-07-18 2013-12-31 Novartis Ag Nebuliser for the production of aerosolized medication
EP1680173B1 (en) * 2003-10-31 2011-01-12 Trudell Medical International System for manipulating a catheter for delivering a substance to a body cavity
US7946291B2 (en) 2004-04-20 2011-05-24 Novartis Ag Ventilation systems and methods employing aerosol generators
EP1685775B1 (en) * 2005-01-28 2009-10-28 Panasonic Electric Works Co., Ltd. Hair dryer with electrostatic atomizing device
JP5064383B2 (en) 2005-05-25 2012-10-31 エアロジェン,インコーポレイテッド Vibration system and method
EP2113178A1 (en) 2008-04-30 2009-11-04 Philip Morris Products S.A. An electrically heated smoking system having a liquid storage portion
US20100071687A1 (en) * 2008-09-25 2010-03-25 Micro Base Technology Corporation Nebulization Apparatus
EP2319334A1 (en) 2009-10-27 2011-05-11 Philip Morris Products S.A. A smoking system having a liquid storage portion
JP5342464B2 (en) * 2010-01-20 2013-11-13 パナソニック株式会社 Electric appliance
US9282772B2 (en) 2012-01-31 2016-03-15 Altria Client Services Llc Electronic vaping device
WO2013126777A2 (en) 2012-02-22 2013-08-29 Altria Client Services Inc. Electronic smoking article and improved heater element
EP2817051B1 (en) 2012-02-22 2017-07-26 Altria Client Services LLC Electronic smoking article
CN103611206A (en) * 2013-11-20 2014-03-05 龙云泽 Airflow-guide-type directional in-situ electrostatic spraying device
US10433580B2 (en) 2016-03-03 2019-10-08 Altria Client Services Llc Methods to add menthol, botanic materials, and/or non-botanic materials to a cartridge, and/or an electronic vaping device including the cartridge
US10455863B2 (en) 2016-03-03 2019-10-29 Altria Client Services Llc Cartridge for electronic vaping device
US10368580B2 (en) 2016-03-08 2019-08-06 Altria Client Services Llc Combined cartridge for electronic vaping device
US10357060B2 (en) 2016-03-11 2019-07-23 Altria Client Services Llc E-vaping device cartridge holder
US10368581B2 (en) 2016-03-11 2019-08-06 Altria Client Services Llc Multiple dispersion generator e-vaping device
RU167914U1 (en) * 2016-06-16 2017-01-12 Александр Сергеевич Гульпа AEROFITOTHERAPY DEVICE
CN112806341B (en) * 2021-02-25 2023-05-09 吉林大学 Orchard targeting spraying control system and method based on laminar layer

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US705691A (en) * 1900-02-20 1902-07-29 William James Morton Method of dispersing fluids.
NL255983A (en) * 1959-12-14
DE1224075B (en) * 1963-09-25 1966-09-01 Heinrich Maltner G M B H Hand-operated piezoelectric ignition device
US3558903A (en) * 1966-06-25 1971-01-26 Rion Co Mechanically activated piezoelectric voltage source
US3579245A (en) * 1967-12-07 1971-05-18 Teletype Corp Method of transferring liquid
US3802625A (en) * 1973-01-08 1974-04-09 Us Army Device for electrostatic charging or discharging
FR2243740B1 (en) * 1973-09-14 1978-10-27 Voith Gmbh
US3997817A (en) * 1975-05-21 1976-12-14 Philip Edward Secker Device for neutralizing the charge on statically-charged surfaces
IE45426B1 (en) * 1976-07-15 1982-08-25 Ici Ltd Atomisation of liquids
US4106697A (en) * 1976-08-30 1978-08-15 Ppg Industries, Inc. Spraying device with gas shroud and electrostatic charging means having a porous electrode
US4113809A (en) * 1977-04-04 1978-09-12 Champion Spark Plug Company Hand held ultrasonic nebulizer
DE7917568U1 (en) * 1979-06-19 1979-09-20 Bosch-Siemens Hausgeraete Gmbh, 7000 Stuttgart INHALATION DEVICE
US4341347A (en) * 1980-05-05 1982-07-27 S. C. Johnson & Son, Inc. Electrostatic spraying of liquids
GB2126431B (en) * 1982-08-25 1986-12-03 Ici Plc Pump and pump components
GB2128900B (en) * 1982-10-29 1985-11-20 Theoktiste Christofidis Ionising spray
DE3475598D1 (en) * 1983-03-25 1989-01-19 Ici Plc Spraying apparatus
US4545525A (en) * 1983-07-11 1985-10-08 Micropure, Incorporated Producing liquid droplets bearing electrical charges
US4630169A (en) * 1984-09-04 1986-12-16 Exxon Research And Engineering Company Charge injection device
US4702418A (en) * 1985-09-09 1987-10-27 Piezo Electric Products, Inc. Aerosol dispenser
GB8528032D0 (en) * 1985-11-13 1985-12-18 Ici Plc Ocular treatment
GB8604328D0 (en) * 1986-02-21 1986-03-26 Ici Plc Producing spray of droplets of liquid
GB8614566D0 (en) * 1986-06-16 1986-07-23 Ici Plc Spraying
US4776515A (en) * 1986-08-08 1988-10-11 Froughieh Michalchik Electrodynamic aerosol generator
US4749125A (en) * 1987-01-16 1988-06-07 Terronics Development Corp. Nozzle method and apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11110000B2 (en) 2012-04-10 2021-09-07 Eyenovia, Inc. Spray ejector mechanisms and devices providing charge isolation and controllable droplet charge, and low dosage volume ophthalmic administration
US11260416B2 (en) 2012-05-15 2022-03-01 Eyenovia, Inc. Ejector devices, methods, drivers, and circuits therefor

Also Published As

Publication number Publication date
JPH04500926A (en) 1992-02-20
DE68912133T2 (en) 1994-04-28
NZ230752A (en) 1992-04-28
EP0435921A1 (en) 1991-07-10
US5115971A (en) 1992-05-26
PT91786A (en) 1990-03-30
WO1990003224A1 (en) 1990-04-05
EP0435921B1 (en) 1994-01-05
PT91786B (en) 1995-07-18
AU4302589A (en) 1990-04-18
AU635902B2 (en) 1993-04-08
DE68912133D1 (en) 1994-02-17
ZA897238B (en) 1990-06-27

Similar Documents

Publication Publication Date Title
CA1339281C (en) Nebulizer device
US5511726A (en) Nebulizer device
US6601581B1 (en) Method and device for ultrasound drug delivery
US6629646B1 (en) Droplet ejector with oscillating tapered aperture
US5490633A (en) Apparatus for ligament made electrostatic spraying
US4004733A (en) Electrostatic spray nozzle system
JP3320090B2 (en) Electrostatic spraying device
US7891580B2 (en) High volume atomizer for common consumer spray products
AU685411B2 (en) Dispensing device
US5322684A (en) Cosmetic delivery system
JP2004530552A (en) Electric spray device
US20070017505A1 (en) Dispensing device and method
DK0482814T3 (en) Fluid dispenser with uniform delivery rate
WO1994006568A1 (en) Nebulizer device

Legal Events

Date Code Title Description
MKLA Lapsed