CA1335084C - Nuclease enzyme preparation having high resistance to heat - Google Patents

Nuclease enzyme preparation having high resistance to heat

Info

Publication number
CA1335084C
CA1335084C CA 604181 CA604181A CA1335084C CA 1335084 C CA1335084 C CA 1335084C CA 604181 CA604181 CA 604181 CA 604181 A CA604181 A CA 604181A CA 1335084 C CA1335084 C CA 1335084C
Authority
CA
Canada
Prior art keywords
nuclease
heat
dna
cellulase
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA 604181
Other languages
French (fr)
Inventor
Shuichi Aoi
Kunio Oishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kibun KK
Kikkoman Soyfoods Co
Original Assignee
Kibun Food Chemifa KK
Kibun KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP1021866A external-priority patent/JP2522538B2/en
Application filed by Kibun Food Chemifa KK, Kibun KK filed Critical Kibun Food Chemifa KK
Application granted granted Critical
Publication of CA1335084C publication Critical patent/CA1335084C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Enzymes And Modification Thereof (AREA)

Abstract

An enzyme preparation comprised of nuclease that is produced by a fungus such as Trichoderma, Aspergillus and Fusarium and which remains active even after heating at 100°C
for 30 minutes. This enzyme preparation may be effectively used when it is necessary to decompose nucleic acids at elevated temperature over a prolonged period.

Description

NUCLEASE ENZYME PREPARATION HAVING HIGH RESISTANCE TO HEAT
BACKGROUND OF THE INVENTION:
The present inventlon relates to an enzyme preparation comprised of highly heat-resistant nuclease active fractions present in the product of fungi. More specifically, the present invention relates to an enzyme preparation comprised of nuclease active fractions that will not lose their activ-ity even after heating at 100C for 30 minutes.
Various enzyme preparations comprised of cellulase produced by fungi are commercially available, among which are Cellulase Onozuka~ (derived from Trichoderma and manufactured by Kinki Yakult Co., Ltd.), Cellulase AP (derived from Aspergillus and manufactured by Amano Seiyaku Co., Ltd.) and Toyo Cellulase~ (derived from Fusarium and manufactured by Toyo Jozo Co., Ltd.). These cellulose preparations are known to contain various enzymes that decompose polysaccharides or proteins. Some of these enzymes have already been isolated and their properties have been reviewed. Because of their nature, these cellulose preparations are used extensively for decomposing polysaccharides and proteins. However, no attempt has been made to review the action these cellulase preparations and the products of fungi will exert on DNA. No knowledge has been obtained as to whether they have nuclease activity.
While a great number of enzymes have been known, most of them are labile to heat and their activity will decrease so greatly upon heating as to suffer a substantial loss in practical value. In particular, those enzymes which are .'' ~

capable of maintaining their activity even if they are heated at 100C for 30 minutes and longer are almost nil. A need has, therefore, arisen for the development of enzyme prepara-tions that are capable of maintaining their activity even if they are exposed to prolonged heating at elevated temperatures.
SUMMARY OF THE INVENTION:
One object of the present invention is to provide an enzyme preparation comprised of highly heat-resistant nuclease active fractions that occur in the products of fungi.
Another ob~ect of the present invention is to provide a nuclease enzyme preparation that has such high heat resis-tance that its enzymatic activity will not be lost upon heating at 100C for 30 minutes and longer.
The present invention has been accomplished on the basis of the finding by the present inventors of the fact that nuclease activity occurred in the products of fungi.
~tated more specifically, the present invention has been accomplished on the basis of the first discovery by the present inventors of the fact that fungal products such as Cellulase Onozuka~ derived from Trichoderma, Cellulase AP
derived from Aspergillus and Toyo Cellulase~ derived from Fusarium have nuclease activity (see Example 1 to be described hereinafter). In accordance with the present invention, nuclease active fractions are isolated from the product of fungi and used as the active ingredient of a nuclease enzyme preparation.

1 33S0~4 To this end, in one of its aspects, the invention provides an enzyme composition for decomposing proteins containing a heat-stable nuclease produced from fungus which continues to exhibit nuclease activity following heating at 100C for 30 minutes.
In yet another of its aspects, the invention provides a process for preparing a heat-stable nuclease comprising the steps of culturing a fungus of the genus Trichoderma, Aspergillus or Fusarium in a culture medium to produce a nuclease-containing solution, heating the solution produced in step (a) to a temperature of 80C, removing the insoluble products of heat denaturation, and recovering the heat-stable nuclease.
In another of its aspects, the invention provides a process of producing a heat-stable nuclease comprising heating a cellulase and nuclease-containing composition produced by culturing Trichoderma, Aspergillus, or Fusarium at about 80C to inactivate the cellulase present to produce an enzymatically active, heat-stable nuclease.
In yet another aspect, the present invention provides an enzyme composition for decomposing proteins containing a heat-stable nuclease which continues to exhibit nuclease activity following heating at 100C for 30 minutes, said heat-stable nuclease being prepared by the steps of (a) culturing a fungus of the genus Trichoderma, Aspergillus or Fusarium in a culture medium to produce a - 2a -,, 1 335~$4 nuclease-containing solution; (b) heating the solution produced in step (a) to a temperature of about 80C; (c) removing the insoluble products of heat denaturation; and (d) recovering the heat-stable nuclease.
In yet another aspect, the present invention provides a method of decomposing nucleic acids comprising subjecting a nucleic acid to a heat stable nuclease which remains active after heating at 100C for 30 minutes, produced by Trichoderma or Fusarium.

BRIEF DESCRIPTION OF THE DRAWINGS:
Fig. 1 shows the DNA decomposing activity of a cellulase enzyme preparation;

- 2b -1 335~8~

Fig. 2 shows the relationship between fractions in a DEAE-Sephadex column chromatogram and optical density at 280 nm;
Fig. 3 shows the ~DNA decomposing activities of various nuclease active fractions;
Fig. 4 shows the changes in nuclease activity that accompany treatments at elevated temperatures;
Fig. 5 shows the heat resistance of nuclease active fractions and the profile of change in their activity with temperature;
Fig. 6 shows the profile of change in the activity of nuclease active fractions with temperature;
Fig. 7 shows the relationship between time and the decomposition of ~DNA by nuclease active fractions; and Fig. 8 shows the substrate specificity of nuclease active fractions.
DETAILED DESCRIPTION OF THE INVENTION:
The nuclease active fractions of the present invention may be obtained from the products of fungi by the following methods but it should be understood that the nuclease active fractions that can be used in the present invention are not limited to those which are obtained by these methods.
According to one method for obtaining the nuclease active fractions of the present invention, a solution (pH 7.0) of a cellulase preparation derived from fungi such as Cellulase Onozuka~, Cellulase AP~ or Toyo Cellulase~ is heated at 80C
for 10 minutes and after removing the resulting insoluble product of heat denaturation, the solution is charged in a DEAE-Sephadex chromatographic column, which is then eluted with 0.5 M NaCl (see Examples 2 - 4). Alternatively, a solution of cellulase preparation not heated to 80C may be directly subjected to DEAE-Sephadex column chromatography and the fractions not adsorbed at pH of 7.0 are recovered (see Examples 5 - 7). If desired, a fungus of a genus such as Trichoderma, Aspergillus or Fusarium is cultured in a medium such as a potato dextrose medium or Sabouraud's agar medium, ethanol is added to the culture obtained, the super-natant is separated, and the separated supernatant is treatedby one of the methods described above to obtain nuclease active fractions.
Investigations of nuclease activity against ~DNA
showed that the activity was detected in the fractions of the present invention obtained by the methods described above, but not at all in other fractions (see Example 8). This made it clear that the nuclease activity found in the product of fungi was due solely to the fractions of the present inven-tion. It is therefore anticipated that the concentrate of such active fractions that are selectively recovered from the product of fungi or cellulase enzyme preparations derived therefrom will have higher levels of nuclease activity than that inherently present in the products of fungi or enzyme preparations derived therefrom. Furthermore, said concen-trate has the potential to exhibit higher selectivity.
The active fractions of the present invention have avery high level of heat resistance (see Examples 9 and lO).
The active fractions of the present invention exhibit nuclease activity in a high temperature range of 60 - 100C
and particularly high activities are exhibited by active fractions derived from Aspergillus or Fusarium. The active fractions of the present invention have a marked advantage over the conventional enzymes in that they will not lose their activity even if they are heated at 100C for 30 minutes. Active fractions derived from Trichoderma retained their activity even after heating at 100C for 45 minutes (see Example lO). The enzyme preparation of the present invention which is comprised of such highly heat-resistant fractions will be effectively used in various applications such as where it is necessary to decompose nucleic acids at high temperatures. An optimum temperature for the decomposi-tion of ~DNA is 45C for active fractions derived from Trichorderma (see Example ll).
The nuclease active fractions of the present invention have another characteristic feature in that they are capable of yielding DNA decomposition products of uniform length.
When DNA is decomposed with an enzyme, decomposition products of various lengths will normally result. However, if one uses the nuclease active fractions of the present invention, he can obtain decomposition products of a fairly uniform length. For instance, if active fractions of the present invention are allowed to act on ~DNA, the lengths of decompo-sition products will become substantially uniform in 30 - 45 minutes after the reaction is started (see Example 12).
Another advantage of the nuclease active fractions of the present invention is that they have a sufficiently low level of substrate specificity to be used extensively in decomposing various kinds of nucleic acids. For example, these fractions exhibit satisfactory activity against a broad spectrum of substrates including ~DNA, heat-denatured ~DNA, bovine thymus DNA, heat-denatured bovine thymus DNA, herring sperm DNA, heat-denatured herring sperm DNA, Ml3 DNA, yeast RNA and calf liver DNA (see Example 13).
The processes for preparing the nuclease active frac-tions of the present invention, as well as their activities are described below in greater detail.
Example l The nuclease activities of cellulase enzyme prepara-tions were investigated by the following methods.
Solutions having an enzyme concentration of 20 mg/ml (0.05 M phosphate buffer, pH 7.0) were prepared from each of the following five cellulase preparations: Cellulase Onozuka~ (product of Kinki Yakult Co., Ltd.; sample l), Dorimelase (product of Kyowa Hakko Kogyo Co., Ltd.; sample 2), Nagase (product of Nagase & Company, Ltd.; sample 3), Toyo Cellulase (product of Toyo Jozo Co., Ltd.; sample 4), and Cellulase AP (product of Amano Seiyaku Co., Ltd.; sample 5). These solutions were allowed to act on ~DNA for l hour at 35C, 45C or 55C, and the mixture were subjected to electrophoresis through agarose gel at a current of 38 mA for l hour. The resulting profiles are shown in Fig. l, in which (a), (b) and (c) refer to the profiles obtained at 35C, 45C
and 55C, respectively. Symbols A to G respectively corre-spond to the following: ~DNA, sample l, sample 2, sample 3, sample 4, sample 5 and the marker prepared by treating ~DNA
with HindIII.
Example 2 Nuclease active fractions of the present invention were obtained by the following method.
A 2% solution of Cellulase Onozuka 3S (product of Kinki Yakult Co., Ltd.) whose pH was held at 7.0 with 0.05 M
phosphate buffer was heated at 80C for lO minutes. The insoluble product of heat denaturation that formed upon heating was removed by centrifugation and the supernatant was charged into a DEAE-Sephadex A-50 chromatographic column and fractions obtained by elution with 0.5 M NaCl were recovered.
Example 3 Nuclease active fractions were obtained by repeating the procedures of Example 2 except that Cellulase Onozuka (product of Kinki Yakult Co., Ltd.) was replaced by Cellulase AP (product of Amano Seiyaku Co., Ltd.) Example 4 Nuclease active fractions were obtained by repeating the procedures of Example 2 except that Cellulase Onozuka~
(product of Kinki Yakult Co., Ltd.) was replaced by Toyo Cellulase (product of Toyo Jozo Co., Ltd.) Example 5 Nuclease active fractions of the present invention were obtained by the following method.
A 2% solution of Cellulase Onozuka 3S (product of Kinki Yakult Co., Ltd.) having its pll held at 7.0 with 0.05 M
phosphate buffer was prepared. This solution was loaded on a DEAE-Sephadex A-50 column and unabsorbed fractions were recovered.
Example 6 Nuclease active fractions were obtained by repeating the procedures of Example 5 except that Cellulase Onozuka (product of Kinki Yakult Co., Ltd.) was replaced by Cellulase AP (product of Amano Seiyaku Co., Ltd.) Example 7 Nuclease active fractions were obtained by repeating the procedures of Example 5 except that Cellulase Onozuka (product of Kinki Yakult Co., Ltd.) was replaced by Toyo Cellulase (product of Toyo Jozo Co., Ltd.) Example 8 The nuclease activities of fractions prepared in accordance with the present invention were compared with those of other fractions.
A 2% solution of Cellulase Onozuka 3S~ (product of Kinki Yakult Co., Ltd.) having its pH held at 7.0 with 0.05 M
phosphate buffer was prepared. This solution was loaded on a DEAE-Sephadex A-50 column and fractions unabsorbed at pH of 7.0 (the first group of fractions) were obtained.
Thereafter, with the concentration of NaCl being gradually increased from O to 2 moles, the second, third and fourth group of fractions were eluted. The individual fractions were separated by observing the optical density at 280 nm (see Fig. 2).
The activity for decomposition of ~DNA was investi-gated by observing the profiles of electrophoresis through agarose gel. The results were as shown in Fig. 3 for the first group of fractions, and in the upper part of Fig. 2 for the second, third and fourth group of fractions. The profile of ~DNA per se was as shown at the left end of Fig. 3.
As is clear from Figs. 2 and 3, a peak of decomposi-tion activity centering at fraction No. 31 was observed for the first group of fractions. However, no decomposition activity was observed for the second, third and fourth group of fractions.
Example 9 The heat resistance of active fractions prepared in accordance with the present invention was examined by the following method.
The active fractions obtained in Examples 5, 6 and 7 were allowed to act on ~DNA after their enzyme concentration was adjusted to 20 mg/ml.
Condition 1 : reaction temperature, 60C; reaction time, 10 minutes Condition 2 : reaction temperature, 70C; reaction time, 10 minutes Condition 3 : reaction temperature, 80C; reaction time, 10 minutes Condition 4 : reaction temperature, 100C; reaction time, 10 minutes Condition 5 : reaction temperature, 100C; reaction time, 30 minutes Condition 6 : reaction temperature, 100C; reaction time, 60 minutes.

The mixtures were subjected to electrophoresis at a current of 38 mA through agarose gel for 1 hour. The result-ing profiles are shown in Fig. 4, in which (a), (b) and (c) refer to the profiles for the active fractions obtained in Example 5, 6 and 7, respectively. Symbols A - I denote the following: ~DNA left intact (A); ~DNA treated with the reaction solution from which active fractions were yet to be isolated (B); ~DNA treated with active fractions under condition 1 (C); ~DNA treated with active fractions under condition 2 (D); ~DNA treated with active fractions under condition 3 (E); ~DNA treated with active fractions under condition 4 (F); ~DNA treated with active fractions under condition 5 (G); ~DNA treated with active fractions under condition 6 (H); and ~DNA treated with HindIII (I).
Example 10 The heat resistance of active fractions prepared in accordance with the present invention was investigated by the following method.
The first group of fractions obtained in Example 5 in accordance with the present invention were heated at 100C
for different periods of time, i.e. 0, 10, 20, 30, 45 and 60 minutes, and their activities in decomposing ~DNA were inves-tigated in terms of profiles of electrophoresis through agarose gel (see the upper part of Fig. 5). Compared to 0-minute heating, 10-, 20- and 30-minùte heatings caused a gradual decrease in activity but the fractions yet retained substantially high levels of activity. They were consider-ably attenuated by heating for 45 minutes but they still had detectable levels of activity.
Example 11 The relationship between temperature and the activity of active fractions prepared in accordance with the present invention was investigated.
The active fractions were heated for 10 minutes at varying temperatures of 0, 40, 50, 60, 70, 80, 90 and 100C
and their activities in decomposing ~DNA were investigated in terms of profiles of electrophoresis through agarose gel (see the lower portion of Fig. 5). Between 0 and 50C, no substantial difference in activity was observed, but the activities of the fractions decreased at 60C and were not detectable at all at 70C. Nevertheless, uniform activities were observed again at 80 - 100C.
Detailed activity investigations conducted at respec-tive temperatures of 20, 30, 40, 45, 50, 60 and 70C showed that an optimal temperature for the first group of fractions was 45C (Fig. 6).
Example 12 The relationship between time and the decomposition of ~DNA by active fractions prepared in accordance with the present invention was investigated.
To the first group of fractions obtained in Example 5, ~DNA was added and the mixtures were subjected to electro-phoresis through agarose gel for 0, 3, 5, 10, 15, 30, 45 and 60 minutes. The resulting electrophoretic profiles are shown in Fig. 7, from which one can see that the lengths of decom-position products became uniform 30 - 45 minutes after the addition of ~DNA. Their length was calculated to be 500 bp for 0.6% agarose and 400 bp for 1.2% agarose.
Example 13 The substrate specificity of active fractions prepared in accordance with the present invention was investigated.
The second group of fractions obtained in Example 5 were reacted with ~DNA (A), heat-denatured ~DNA (B), bovine thymus DNA (C), heat-denatured bovine thymus DNA (D), herring sperm DNA (E), heat-denatured herring sperm DNA (F), Ml3 DNA
(G), yeast RNA (H), and calf liver DNA (I) and the mixtures were subjected to electrophoresis through agarose gel. The resulting electrophoretic profiles are shown in Fig. 8, from which one can see that each of the substrates tested decomposed, indicating the low substrate specificity of the active fractions prepared in accordance with the present invention.

Claims (11)

1. An enzyme composition for decomposing proteins containing a heat-stable nuclease which continues to exhibit nuclease activity following heating at 100°C for 30 minutes, said heat-stable nuclease being prepared by the steps of (a) culturing a fungus of the genus Trichoderma, Aspergillus or Fusarium in a culture medium to produce a nuclease-containing solution;
(b) heating the solution produced in step (a) to a temperature of about 80°C;
(c) removing the insoluble products of heat denaturation; and (d) recovering the heat-stable nuclease.
2. The enzyme composition of claim 1 wherein the nuclease is produced by Trichoderma, Aspergillus or Fusarium fungi.
3. The enzyme composition of claim 1 prepared by heating a composition containing cellulase and nuclease enzymes produced by culturing Trichoderma, Aspergillus or Fusarium at about 80°C to inactivate the cellulase and produce an enzymatically active heat-stable nuclease.
4. A process of producing a heat-stable nuclease comprising heating a cellulase and nuclease-containing composition produced by culturing Trichoderma, Aspergillus or Fusarium at about 80°C to inactivate the cellulase present to produce an enzymatically active, heat-stable nuclease.
5. A process of decomposing DNA into decomposition products of substantially uniform length comprising subjecting DNA to the enzyme composition of claim 1 at a temperature in the range of about 35°C to about 100°C for a time sufficient to produce DNA decomposition products of substantially uniform length.
6. The process of claim 5 wherein the DNA is decomposed at a temperature in the range of about 45°C to about 100°C.
7. The process of claim 6 wherein the DNA is decomposed at a temperature in the range of about 60°C to about 100°C.
8. A method of decomposing nucleic acids comprising subjecting a nucleic acid to a heat stable nuclease which remains active after heating at 100°C for 30 minutes, produced by Trichoderma or Fusarium.
9. The method of claim 8 wherein the nucleic acid is decomposed at a temperature in the range of about 35°C to about 100°C.
10. The method of claim 9 wherein the nucleic acid is decomposed at a temperature in the range of about 45°C to about 100°C.
11. The method of claim 10 wherein the nucleic acid is decomposed at a temperature in the range of about 60°C to about 100°C.
CA 604181 1989-01-31 1989-06-28 Nuclease enzyme preparation having high resistance to heat Expired - Fee Related CA1335084C (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2186589 1989-01-31
JP21865/1989 1989-01-31
JP21866/1989 1989-01-31
JP1021866A JP2522538B2 (en) 1989-01-31 1989-01-31 A method for producing a highly heat-resistant nucleasease fraction

Publications (1)

Publication Number Publication Date
CA1335084C true CA1335084C (en) 1995-04-04

Family

ID=26358992

Family Applications (1)

Application Number Title Priority Date Filing Date
CA 604181 Expired - Fee Related CA1335084C (en) 1989-01-31 1989-06-28 Nuclease enzyme preparation having high resistance to heat

Country Status (1)

Country Link
CA (1) CA1335084C (en)

Similar Documents

Publication Publication Date Title
Verly et al. Purification of Escherichia coli endonuclease specific for apurinic sites in DNA.
Sato et al. Studies on ribonucleases in takadiastase. I
CN110643583B (en) Laccase from trichoderma unicolor as well as gene and application thereof
Fincham Genetically determined multiple forms of glutamic dehydrogenase in Neurospora crassa
Soltis et al. Isolation and characterization of two mutant forms of T4 polynucleotide kinase.
Gorkin Partial separation of rat liver mitochondrial amine oxidases
PL181397B1 (en) Vanadium chloroperoxidase coding dna sequence, expression vector and method of obtaining vanadiun chloroperoxidase
Manachini et al. Purification and properties of an endopolygalacturonase produced by Rhizopus stolonifer
Nakagawa et al. Spinach nitrate reductase: purification, molecular weight, and subunit composition
CN110218709B (en) Heat-resistant laccase as well as gene and application thereof
Liu et al. Purification and some properties of cholesterol oxidases produced by an inducible and a constitutive mutant of Arthrobacter simplex
Hachmann et al. High‐Molecular‐Weight DNA Polymerases from Mouse Myeloma: Purification and Properties of Three Enzymes
Lázaro et al. Fructose-1, 6-diphosphatase from spinach leaf chloroplasts: purification and heterogeneity
Kawamura et al. Purification and some properties of cycloinulo-oligosaccharide fructanotransferase from Bacillus circulans OKUMZ 31B
CA1335084C (en) Nuclease enzyme preparation having high resistance to heat
US5145780A (en) Method of decomposing nucleic acids with a heat stable nuclease from Trichoderma or Fusarium
MacGregor Isolation, purification and electrophoretic properties of an α‐amylase from malted barley
Wani et al. Partial purification and properties of an endonuclease from germinating pea seeds specific for single-stranded DNA
US5856165A (en) Alkaline cellulase and method of producing same
Guerrero et al. The stereospecificity of nitrate reductase for hydrogen removal from reduced pyridine nucleotides
Carfantan Preliminary study of tulip proteins during senescence
Pegg Chitinase from Verticillium albo-atrum
EP0248401B1 (en) Enzyme and process for its preparation
DE2733273C3 (en) Endonucleases and processes for their preparation
JP2522538B2 (en) A method for producing a highly heat-resistant nucleasease fraction

Legal Events

Date Code Title Description
MKLA Lapsed