CA1323348C - Roller mill grain preheating - Google Patents

Roller mill grain preheating

Info

Publication number
CA1323348C
CA1323348C CA 585337 CA585337A CA1323348C CA 1323348 C CA1323348 C CA 1323348C CA 585337 CA585337 CA 585337 CA 585337 A CA585337 A CA 585337A CA 1323348 C CA1323348 C CA 1323348C
Authority
CA
Canada
Prior art keywords
grain
heat
cooling
chamber
preheating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CA 585337
Other languages
French (fr)
Inventor
Henry A. Pierik
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
California Pellet Mill Co
Original Assignee
California Pellet Mill Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by California Pellet Mill Co filed Critical California Pellet Mill Co
Application granted granted Critical
Publication of CA1323348C publication Critical patent/CA1323348C/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Drying Of Solid Materials (AREA)

Abstract

Docket No. 0382-CL-NO

ABSTRACT

An energy efficient steam rolled grain mill includes a preheater chamber, a steam chest, a roller mill and a cooler and dryer chamber. The cooler and dryer chamber is in direct heat exchange relationship with the pre-heater chamber.

Description

Docket No. 0382-CL-NO

ROLLER_MILL GRAIN PREHEATING

Backqround of the Invention This invention relates to steam rolled grain. More par-ticularly, this invention is a new system and method for preheating unprocessed grain before it is steamed and flaked in a roller mill.

There are several advantages to feeding livestock steam rolled grain versus the same formula of unprocessed grain. In certain feeds, the steam conditioning process creates chemical changes in the feed, making it possible for animals to more rapidly digest and convert the feed to weight. Rolling the grain or ~laking also makes the feed more readily digestible by the animal. Addition-ally, the steaming process also reduces the bacteria that may be present in animal feeds, thus reducing disease such as salmonellosis in the animals.

It is very desirable to reduced the amount of energy used in the steaming process. Fuel costs for heating can be a large proportion of the operating costs. The cost bene-fit of feeding steam rolled grain to animals may be more than offset by inefficient operation of the heating sys-tem in the steam roller mill. Energy costs can be re-duced by extracting and recovering heat from the process and limiting waste heat.

one method for preheating is to divert hot air from the exhaust stack to the steam generator. While this does reduce energy consumption, the overall system efficiency is raised very slight. Also, complicated heat exchange e~uipment is required. .

The present invention is a more energy efficient system for producing steam rolled grain and a new method of making steam rolled grain or flakes. The system uses a more direct heat exchange relationship, that is transferring heat from the processed flakes through air to the unprocessed grain, and thus a more energy efficient process. Thus, there is a large saving in energy which increases the cost benefit of steam rolled grain.

According to a further broad aspect of the present invention there is provided a method of producing steam rolled grain by preheating the grain and steaming the preheated grain. The steamed grain is then rolled, cooled and dried. The improvement in the method consists essentially of utilizing the heat and moisture produced by the cooling and drying step for the preheating step.

According to a still further broad aspect of the present invention there is provided a mill for steaming and rolling grain. The mill comprises in operating sequence a preheater chamber having means for conveying grain such that the grain is exposed to a recovered preheating and moisturizing air flow. A steam chest is also provided for further heating and steaming the preheated and moisturized grain. A roller mill rolls the steamed grain. A cooling and dryer chamber is provided for cooling and drying the rolled grain.
There is further provided means for recovering in counterflow exchange heat and moisture from the grain in the cooling and dryer chamber. Air flow means is further provided for conducting the recovered heat and moisture to the preheating and moisturizing air flow in the preheater chamber whereby the cooler and dryer chamber is in direct heat exchange relationship with the preheater chamber.

.~

- 2a -Summarv of the Invention It is accordingly an object of this invention to provide a preheating system which is capable of reducing the energy consumption of a steam roller grain processing unit.

It is another object of the invention to provide a system that will operate efficiently without excess energy consumption and extra processing equipment and steps.

It is a further object of the invention to provide a system that can be retrofit onto existing steam roller grain systems.

In general, the foregoing objects are obtained in a steam rolled grain processing unit including a grain preheater, a steam chest, a roller or flaking chamber, and a cooler-dryer for cooling and drying the flaked grain.

Brief Description of the Drawinqs Figure 1 is a plan view of a steam rolled grain processing system according to a first embodiment of the present invention.

Docket No. 0382-CL-N0 Figure 2 is a plan view of a second embodiment of the present invention.

Detailed pescription of the Invention Referring now to the drawings, wherein like referenced numerals designate identical or corresponding parts throughout the system used, and more particularly to Figure 1, a pre~erred embodiment of the steam rolled grain processing system will now be described. In gen-eral, the system includes four main components: a pre-heater cham~er 12, a steam chest 14, a roller chamber 16, and a cooler-dryer chamber 18.

Raw, unprocessed grain is fed into the preheater through grain inlet 20. The grain falls on a belt conveyor 22 and is conveyed through the preheater chamber. Typical-ly, the preheating cha~ber i5 arranged horizontally andthe belt conveyor is configured to allow heat exchange between the heated air in the preheater chamber and the grain on the conveyor belt. The conveyor may be of the louvered or perforated type.

After passing completely through the preheater, the now preheated grain exits through grain exit 24. The pre-heated grain is fed by gravity through the conduit 26 to a vertical extending pipe 28 which contains a bucket ele-vator. The hucket elevator lifts the warmed grain up and drops it into gravity conduit 30.

The preheated grain is fed into the steam chest 14 by means of gravity conduit 30. The grain moves slowly down through the steam chest where it is exposed to a 212F
steam atmosphere. The grain is heated to release certain enzymes and also retains some moisture absorbed during Docket No. 0382-CL-NO

the heating process. Steam is provided to the steam chest 14 by steam inlets 32 from a steam generator. The amount of steam supplied depends on the type of grain and processing.

Once the steamed grain has moved completely through the steam chest, it is fed to the roller mill 16 by a feeder.
The feeder controls the retention time the grain is main-tained in the steam chest. In the roller mill, the grain passes through rollers 34 and is flattened. Some heat by pressure is added at this point. From the rolling mill, the steam rolled or flaked grain falls into cooler con-duit 36.

The air cooler and dryer 18 is used to remove some of the moisture and heat from the warm flakes. The removal of the moisture and heat is necessary to prevent mold or spoilage and to harden the flakes for conveying and handling with minimum breakage and minimum creation of fines.

Good drying and cooling requires adequate airflow and flake retention time in the cooler-dryer 18. To provide adequate retention time, the warm flakes are fed on to a belt conveyor 38 and are conveyed through the dryer. The conveyor may be louvered or perforated. The warm flakes on the belt are partially cooled and some of the moisture removed by the ambient air flow passing through the con-veyor. The a~bient air is introduced through the cooler-dryer by 2 plurality of ambient air inlets 40. As the ambient air enters the cooler-dryer, it flows past the warmed flakes to convection cool and dry the flakes. The airflow is heated by the heat and moisture taken from the warmed flakes. In the preferred embodiment, as shown in Figure 1, this heat is used to preheat the raw, unproces-1 3233~

Docket No. 0382-CL-NO

sed grain that is moving in an opposite direction in the preheater chamber. The preheater chamber is immediately above and open to the cooler-dryer chamber.

In other embodiments such as shown in Figure 2, the heated air in the cooler-dryer may be collected and piped to a remote preheater for heating the unprocessed grain.
Figure 2 shows a counterflow preheater 13 and a counter-flow cooler and dryer 19. Additionally, an air lock 46 is provided between the roller mill 16 and the cooler-dryer 19, and a heat conduit 48 is provided to transferthe heat to the remote preheater unit.

Referring again to Figure 1, by the time the cooled flakes reach the end of the conveyor 38, they are fully co~ditioned. The flakes are dumped into chute 42 which takes them to a suitable storage area or to other processing steps such as bagging.

In the preferred embodiment of Figure 1, the airflow path is provided from the ambient air inlets 40 at about 70F, through the cooler-dryer chamber 18 and its con-veyor belt 38. The air removes heat and moisture fromthe warm flakes which may initially be at 200+F and lB% moisture content. The heated air is at an average temperature of between 120 to 140F when it passes into the preheater chamber 12 and through the preheater con-veyor 22 to preheat the unprocessed grain. The actualtemperatures range across the preheater chamber in a tem-perature gradient from about 210F to about 70.

When the grain reaches the elevators 28, it has been pre-heated to an average temperature of about 120 to 140F.
Thus, when the grain ent~rs the steam chest, it only needs to be heated another 80 to 100F to reach the Docket No. 0382-CL-N0 212F steam atmosphere. Heat that normally would be exhausted provides a sizable energy savings over heating the grain from ambient temperature at the grain inlet.

Processed grain leaves the mill at about 70 F and 14%
moisture content. About 60% of the heat from the cooler-dryer can be recovered to preheat the new grain. The remaining air in the preheater is collected in chimney 44 and exhausted to the atmosphere.

Numerous modifications and variations of the present in-vention are possible in light of the above teachings. It is, therefore, to be understood that the invention may be practiced other than as specifically described herein and it is intended that the invention be limited only by the language of the following claims.

Claims (4)

1. In a method of producing steam rolled grain by:
preheating grain;
steaming the preheated grain;
rolling the steamed grain;
cooling and drying the rolled grain the improvement consisting essentially of utilizing the heat and moisture produced by the cooling and drying step for the preheating step.
2. The method of claim 1 wherein the heat produced by cooling and drying includes the heat produced by condensation as the moisture content of the rolled grain is reduced.
3. A mill for steaming and rolling grain, comprising in operating sequence: a preheater chamber having means for conveying grain such that the grain is exposed to a recovered preheating and moisturizing air flow; a steam chest for further heating and steaming the preheated and moisturized grain; a roller mill for rolling the steamed grain; a cooling and dryer chamber for cooling and drying the rolled grain; means for recovering in counterflow exchange heat and moisture from the grain in the cooling and dryer chamber; air flow means for conducting the recovered heat and moisture to the preheating and moisturizing air flow in the preheater camber whereby the cooler and dryer chamber is in direct heat exchange relationship with the preheater chamber.
4. The mill of claim 3 wherein the heat recovering means includes means for recovering and moisturizing heat produced by condensation as the moisture content of the rolled grain is reduced.
CA 585337 1987-12-28 1988-12-08 Roller mill grain preheating Expired - Lifetime CA1323348C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13863487A 1987-12-28 1987-12-28
US138,634 1987-12-28

Publications (1)

Publication Number Publication Date
CA1323348C true CA1323348C (en) 1993-10-19

Family

ID=22482919

Family Applications (1)

Application Number Title Priority Date Filing Date
CA 585337 Expired - Lifetime CA1323348C (en) 1987-12-28 1988-12-08 Roller mill grain preheating

Country Status (1)

Country Link
CA (1) CA1323348C (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117696174A (en) * 2024-02-04 2024-03-15 哈尔滨商业大学 Rice milling device for rice flour processing and using method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117696174A (en) * 2024-02-04 2024-03-15 哈尔滨商业大学 Rice milling device for rice flour processing and using method thereof
CN117696174B (en) * 2024-02-04 2024-05-07 哈尔滨商业大学 Rice milling device for rice flour processing and using method thereof

Similar Documents

Publication Publication Date Title
CN103229829B (en) Process method for rapidly drying grains through countercurrent gas flow
CA1079962A (en) Method of sintering and apparatus for carrying out the method
CA1194831A (en) Method and apparatus for the operation of a carbonization plant
EP2032508A1 (en) Process and plant for processing wet material
US4973484A (en) Roller mill grain preheating
US20120233913A1 (en) Method and system for producing pellets from biomass in a pellet press for use as fuel in fireplaces
EP3741729B1 (en) Sludge treatment method and cement production system
CA2175803C (en) Heat treatment of lime sludge
CA1323348C (en) Roller mill grain preheating
WO2010062359A1 (en) High efficiency drier
US4445976A (en) Method of entrained flow drying
CN103438678B (en) Efficient energy-saving pulp dewatering and drying equipment
CN205002561U (en) Energy -conserving drying equipment of air current
GB2181988A (en) Mash pelleting apparatus and method
CN111218855B (en) Pulp molding and drying production line and drying process
US4646447A (en) Process and plant for continuous drying using heat pumps
SE515426C2 (en) Methods for drying lignocellulosic fibrous material
CN216918988U (en) Serial-type high low temperature sludge drying device
CN216918989U (en) Parallel high low temperature sludge drying device
US2137347A (en) Method of drying various materials and means for carrying out such method
Florin et al. Processing of oilseeds using fluidbed technology
US6931757B2 (en) Method for conditioning fibrous substances
US4600594A (en) Process for the conditioning of crushed oil-containing seeds prior to flaking
CN109355079A (en) Pyrolysis of coal device
CN111762989A (en) Sludge drying pyrolysis system and method

Legal Events

Date Code Title Description
MKEX Expiry

Effective date: 20101019