CA1318635C - Chromate treatment of a metal coated steel sheet - Google Patents

Chromate treatment of a metal coated steel sheet

Info

Publication number
CA1318635C
CA1318635C CA000537100A CA537100A CA1318635C CA 1318635 C CA1318635 C CA 1318635C CA 000537100 A CA000537100 A CA 000537100A CA 537100 A CA537100 A CA 537100A CA 1318635 C CA1318635 C CA 1318635C
Authority
CA
Canada
Prior art keywords
ions
coated steel
treatment
chromate
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA000537100A
Other languages
French (fr)
Inventor
Seijun Higuchi
Kenichi Asakawa
Akimitsu Fukuda
Akinori Maruta
Haruyoshi Terada
Youji Ono
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Application granted granted Critical
Publication of CA1318635C publication Critical patent/CA1318635C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Chemical Treatment Of Metals (AREA)

Abstract

Abstract of the Disclosure:
A chromate treatment of metal coated steel sheets comprising subjecting the sheets to a cathodic electrolytic treatment to form a chromate film thereon and subjecting the sheet to an anodic electrolytic treatment to form an anodic electrolytic film on the chromate film and to convert the chromate film. The treatment is applicable to various metal coated steel sheets, such as coated with zinc, zinc alloy, aluminium, aluminium alloy, lead and lead alloy, and is effective to improve the corrosion resistance of the sheets, the quality of paint coating applied on the sheets and the adaptability of the sheets to a cation electro-deposition paint coating.

Description

131863~
Background of the Invention:
Field of the Invention:
The present invention relates to chromate treat-ment of surface treated steel sheets and strips (herein called steel sheets), which chromate treatment comprises forming a complex chromate film or layer composed of a cathodic electrolytic film and an anodic electrolytic film, excellent in corrosion resistance, paintability and, in particular, adaptability to cation electro-deposition paint coating, on the surface of galvanized or zinc alloy coated steel sheets, aluminium or alumi-nium alloy coated steel sheets and lead or lead alloy coated steel sheets.
Description of the Related Art: `
As for the electrolytic chromate treatment of galvanized steel sheets, it is known to perform a cath-odic treatment in a treatment solution of CrO3-H2SO4, as disclosed in Japanese Patent Publication Sho 47-44417 published on November 9, 1972, and to perform a cathodic treatment in a treatment solution of CrO3-SiO2 as dis-closed in Japanese Laid-Open Patent Application Sho 60-110896 which was laid open for inspection on June 15, 1985. As for similar treatments for steel sheets coated with Zn, Al and Sn and their alloys, a cathodic electro-lytic treatment in a treatment solution, composed of CrO3, various metal ions, and fluorine or chlorine is disclosed in Japanese Patent Publication Sho 49-14457 published on April 8, 1974, and so on. All of these prior arts are to form a chromate film on metal or alloy 13~ ~63~

coated steel sheets by a cathodic treatment. Generally speaking, the cathodic electrolytic film is insufficient in corrosion resistance despite its good paintability.
Therefore, in order to compensate the insufficient corrosion resistance of the conventional cathodic electrolytic chromate film, trials have been made to form an increased amount of film (specifically to increase the amount of chromium deposition). However, the chromate film, when applied in a greater amount, will be colored, thus damaging the surface appearance of the coated steel sheets, and will degrade the paintability of the sheets.
Therefore, it has hitherto been difficult to form a film excellent in all of the surface appearance, corrosion resistance, and paintability. Moreover, when galvanized steel sheets or the like are continuously treated by the prior art cathodic electrolytic treatment, zn2 ions will accumulate in the treating solution to cause problems such that the corrosion resistance of the coated steel sheets is markedly lowered.
Referring to the anodic electrolytic treatment, it is also possible to form a chromate film on metal or alloy coated steel sheets by an anodic electrolytic treatment, but the resultant film is very poor in corrosion resistance and paintability. Further, in the case of galvanized steel sheets in particular, disadvantages of the anodic electrolytic treatment are that the metal of the steel sheets being treated will dissolve into the treeting solution according to the 13i863~

law of Faraday, thus causing inconsister.cy in the solution, resulting in prohibition of a consistent commercial operation.

Summary of the Invention:
Therefore, the object of the present invention is to solve the problems of the prior art treatments and to provide a process which can form consistently on the surface of galvanized or zinc alloy coated steel sheets, aluminium or aluminium alloy coated steel sheets, and lead or lead alloy coated steel sheets a chromate film which is excellent in various properties, particularLy the uniformity of film, corrosion resistance, and adaptability to a cation electro-deposition paint coating~
In order to solve the problems of the prior art treatments, the present inventors conducted extensive various studies and investigations and found that remarkable technical advantages can be obtained when the coated steel sheets are subjected to a complex chromate treatmerit in a chromate treatment bath containing cations as illustrated below, in which a chromate film is formed on the sheets and then immediately an anodic electrolytic film is formed by an anodic electrolytic treatment in the same bath to modify the previously formed cathodic electrolytic film.
According to the present invention, a chromate film containing metal ions is formed by the cathodic 131~63~

electrolytic treatment and then immediately the chromate film is converted into a hardly soluble film by the anodic electrolytic treatment, resulting in a complex chromate film containing metal cations.
As the result, remar~able improvements in the corrosion resistance, and the paint coating qualities of the coated steel sheets can be obtained. Particularly the adaptability to the paint coating is markedly improved by the effect of metals contained in the chromate film which cause the chromate film to function as an anode better than a conventional chromate film during the cation electro-deposition paint coating.

Brief Description of the Accompanying Drawing:
The accompanying drawing shows the relation between the corrosion resistance and the zn2 ion concentration in the treating solution.

Detailed Description of the Invention:
In the present invention, the cathodic electrolytic treatment is performed by using a metal ~ coated steel sheet as a cathode to form a chromate film containing metal ions on the surface of the metal coated steel sheets, and the amount of the chromate film (chromium deposition amount) is controlled by selecting the current density and electrolysis time. The current density and electrolysis time are not specifically limited in the present invention, but it is desirable for better 13~6~

results to control the amount of the chromate film with a current density ranging from 3 to 50 A/dm2 by selecting the electxolysis time..
The anodic treatment which follows the cathodic treatment is performed by using the cathodically treated sheet on which the cathodic electrolytic film has been formed as an anode to form thereon an anodic film and also to convert the cathodic film. It is preferable to perform the anodic treatment with a current density ranging from 1 to 50 A/dm , more preferably from 5 to 40 A/dm , and a coulomb ranging from 0.1 to 30, more preferably from 2 to 20 C/dm2.
When the current density is less than 1 A/dm2, the desired cathodic film is hardly obtained and the resultant corrosion resistance is not satisfactory.
On the other hand when the density is larger than 50 A/dm , no substantial improvement can be obtained.
When the amount of electricity is less than 0.1 C/dm2, the conversion effect on the film quality is lowered due to the smaller amount of film formed, and in excess of 30 C/dm2, the improvement effect on the film quality will saturate. Further, with the increased amount of electricity in excess of 30 C/dm2, a larger amount of the metal coated on the steel sheets;
Zn in the case of galvanized steel sheets, dissolves into the bath, thus hindering the desired consistency of the bath composition. Therefore, 30 C/dm2 is an upper limit for a commercial operation.

" ~ 31g63~

The chromate treating bath used in the present invention may have the following bath compositions.
(1) A chromate bath containing Cr ions, PO43 ions, andJor fluorine compound and one or more of the group consisting of Zn ions, Ni ions, Co ions, Al ions, Mg ions, Sn ions, Mn ions and Pb ions.
(2) A chromate bath containing Cr6 ions, silica and/or silicate, and one or more selected from the group consisting of Zn ions, Ni ions, Co ions, Al ions, Mg ions, Sn ions, Mn ions, and Pb ions.
(3) A chromate bath containing Cr6 ions, PO43 ions, and/or a fluorine compound, silica and/or silicate and one or more selected from the group consisting of Zn ions, Ni ions, Co ions, Al ions, Mg ions, Sn ions, Mn ions and Pb ions.
The cathodic electrolysis and the anodic electrolysis may be done in the same chromate bath or the cathode electrolysis and the anodic electrolysis may be separately done in d.ifferent baths.
As for the Cr6 ions contained in the bath, any of chromic acid, bichromic acid, and their alkali metal salts and ammonium salts may be used in single or in combination as desired, and it is preferable that the range cf the Cr6 ions concentration is from S to 70 g/l, more preferably from 7.5 to 50 g/l.
When the Cr6 ion-concentration is less than 5 g/l, the improvement effect on the corrosion resistance by the treatment of the present invention is not tangible, ~3186~
while when the concentration is in excess of 70 g/l, the effect will saturate and such problems are caused that the amount of the chromate bath taken out with the steel sheets beiny treated increases and the working environment is worsened by fumes and mists generated from the bath.
As for PO43 ions, phosphoric acid, alkali metal salts of phosphoric acid and ammonium phosphate may be used, and as the fluorine compound, any of hydrofluoric acid, hydrofluorosilicic acid, borofluoric acid, hydrofluoric titanic acid, and their salts may be used in single or incombination. When the PO4 ions and the fluorine compound are contained in the solution in an amount of 1 to 100 g/l in total, more desirable results can be obtained. When the amount of these components is less than 1 g/l, the chromate bath can have only a very low electric conductivity and the solubility of the metal ions into the bath becomes too low so that the desired improvement effect on the chromate film may often not be obtained.
On the other hand, when the amount of the components is more than 100 g/l, the resultant chromate film suffers irregularities in the surface appearance, possibly due to the fact that the chromate film, in some cases, is partially dissolved before the film washed or dried.
The silica and/or silicate are added for the purpose of forming a colloidal silica in the bath, and 13~8~3~

any one or more of anion types of colloidal silica, cation types of colloidal silica and silicates of alkaline metals can be used for the purpose. A preferable concentration of these silica and silicate, as expressed in term of SiO2, is from 1 to 100 g/l.
With the SiO2 concentrations less than 1 g/l, the improvement effects on the corrosion resistance and paintability as desired by the present invention are not substantial. On the other hand, with the SiO2 concentration more than 100g g/l, the improvement effects will saturate and also the electrie conductivity of the chromate bath lowers so that the amount of electricity required for forming the desired amount of chromate film is inevitably increased.
The metal ions may be added in any form of metal powder, chromates, phosphates, fluorides, carbonates, hydroxides and so on. A better result ean be obtained when the metal ions are present in the bath in an amount ranging from 0.5 to 50 g/l. With the metal ions in a amount less than 0.5 g/l, it cannot be assured that the metal ions are introdueed into the ehromate film during the formation of the film by the eathodie eleetrolytie treatment to improve the corrosion resistance and to afford the chromate film the desired electric conductivity whieh enhanees the anodie functions during the cation electro-deposition paint eoating process.
On the other hand, when the concentration e~ceeds 50 g/l, the desired effeets will saturate and the resultant ~3186~

chromate film has a poor workability which leads to deterioration of the corrosion resistance at worked portions.
Regarding the Ph value of the bath, it should be not higher than 6, preferably not higher than 4.
When the Ph value is higher than 6, there is a large tendency that precipitates and floating matters are very often produced in the bath and these precipitates and floating matters cause arcspots on the steel materials being treated during the electrolytic treatment, resulting in undesirable deterioration of the corrosion resistance and surface appearance.
For controlling the Ph value of the bath, any of sulphates, ammonium hydroxides, hydroxides of aikaline metals and carbonates of alkaline metals may be added to the bath. Further, as for the source of the Cr ions which are generated by the reduction reaction during the cathodic electrolytic treatment according to the present invention hydroxides such as Cr(OH~3 and carbonates may be added to the bath. Alternately the bath component, CrO3, may be reduced by addition of organic compounds such as alcohols, starches, tannic acids to generate Cr3 .
The treating bath is normally maintained in a temperature range from ordinary temperatures to 70C.
The bath temperature may be raised higher than 70C
without causing changes in the film quality, but it is uneconomical. Therefore the upper limit for the bath ~3~863~

temperature from the economical point for a commercial operation is 70C.
The metal coated steel sheet treated by the electrolytic treatments (cathodic and anodic treatment) according to present invention is washed and dried for final use as an anti-corrosive material or as a substrate for paint coating. The treated sheet may be passed through a squeezing rolls without washing, and dried for final use. Further if necessary, the treated sheet may be subjected to after-treatments as commonly performed with the ehromate solution and anti-corrosive water-soluble organic compounds.
The metal eoated steel sheets applieable to the present invention may be prepared by eleetrolytie plating, hot-dip eoating, vaeuum deposition eoating and so on, and includes the following metal coated sheets, for example.
(1) The galvanic or Zn eoated steel sheets and zine-alloy eoated steel sheets: speeifically sheets coated with zine and sheets eoated with zine alloy eontaining not more than 0.5% aluminium. The zine eoating or zine-aluminium alloy coating may further eontain small amounts of impurities sueh as Sb, Pb and Cd. The zinc eoating may contain 3 to 60% aluminium and one or more of Si, Mg, and miseh metals in an amount not more than 2%, or may eontain one or both of Ni and Co in an amount ranging from 5 to 25%, with or without addition of one or both of SiO2 and Cr in an amount not more than 10~.

~318~3~

Further the zinc alloy coating may be Zn-Fe alloy coating containing 8 to 90~ Fe.
(2) Aluminium coated steel sheets and aluminium alloy coated steel sheets: The aluminium coating may contain unavoidable impurities, and the aluminium alloy coating may contain unavoidable impurities, may contain 1 to 15% Si and unavoidable impurities, or may contain 1 to 15% Si and not more than 3% Mg.
(3) Lead coating steel sheets and lead-alloy coated sheets: the lead coating may contain unavoidable impurities, and the lead alloy coating may contain 1 to 30~ Sn, with or without one or more of Sb, Zn and Cd in an amount not more than 5%.and unavoidable impurities.
As mentioned hereinbefore, the chromate film formed by a cathodic electrolysis will be colored when the film amount is increased for the purpose of obtaining an improved corrosion resistance, thus deteriorating the surface appearance of resultant sheets and lowering the qualities of paint coating applied thereon. Also in the case of zinc coated steel sheets, a continuous chromate treatment of such sheets will cause accumulation of zn2 ions in the treating solution, which leads to markedly lowered corrosion resistance of the resultant sheets.
According to the present invention, as shown in Table 1, the corrosion resistance can be greatly improved without suffering from deterioration of the 13~8~3~

surface appearance by the anodic electrolytic treatment following the cathodic treatment.
Further according to the present invention, as shown in Fig. 1 for example, a satisfactory corrosion resistance can be assured by virtue of the anodic treatment despite the possible accumulation of zn2 ions in the treating solution during the chromate treatment of zinc coated steel sheets, the above problems of the cathodic treatment can be well overcome, and a film excellent in the surface appearance, corrosion resistance and qualities of paint coating applied thereon can be consistently formed in commercial operations. Also the present invention is effective for eliminating the problems caused by the transfer and accumulation into the bath of the coating metals from coated materials as encountered in conventional surface treatments as mentioned hereinbefore.
In the present invention, a preferable range of the chromate film in term of the content of Cr in the film is from 5 to 300 mg/m2, more preferably from 10 to 100 mg/m2.

Detailed Description of the Preferred Embodiments:
The present invention will be better understood from the following description of preferred embodiments in comparison with similar steel sheets not treated according to the present invention.
Steel strips were subjected to conventional ~31~
pre-treatments for metal coating and then subjected to chromate treatments as shown in Table 1. After the chromate treatments, the strips were washed, roll squee~.ed, and heated and dried at an ambient temperature of 150C for 5 seconds. Evaluation results of various properties of the chromate treated materials are shown in Table Z in comparison with the similar materials not treated according to the present invention. For the comparison, the same surface treated steel sheets as shown in the table were subjected to the chromate treatments according to the present invention and to the comparative treatments outside the present invention, and the properties obtained by these treatments were compared.
Evaluation tests and evaluation criteria are as set forth below.
1) Corrosion Resistance Test samples were subjected to salt spray testings according to JIS Z-2371, and the rust formation (white rust and black pots due to partial dissolution of the coating layer) after a specific time was observed and evaluated according to the following criteria.
... less than 1% rust formation o ... more than 1% up to 5% rust formation ... more than 5% up to 15% rust formation X ... more than 15% rust formation 2) Quality of Paint Coating Commercially available melamine alkyd white ~3~3~

paint was applied in an amount of 25~ on the test samples treated as shown in Table 1 and the qualities of the paint coatings were evaluated.
a. Check Pattern Erichsen Test A check pattern comprising one hundred squares of 1 mm was scratched on the paint coatings applied on the test samples and then the samples were drawn 7 mm by an Erichsen testing machine and subjected to the peel-off tests using a vinyl tape to observe the peel-off of the coatings with eyes for four-grade evaluation as shown in Table.
b. Dupon Impact Test A weight of 500 g was dropped from 50 cm height onto the paint coated test samples using a Dupon impact testing machine to give impact on the paint coatings.
The peeling-off of the coatings were judged with eyes for four-grade evaluation as shown in Table 2.
c. Corrosion Resistance after Paint Coating Scraches were made through the paint coatings to the surface of the metal coatings of the test samples, and the corrosion resistance was evaluated by observing the width of the swelling of the coatings after 240 hours salt spray tests. Evaluations was made as below.
... not more than 2 mm of average swelling width from the scratched portion o more than 2 mm to 4 mm of average swelling width ... more than 4 mm to 7 mm of the average -131~

swelling width X - more than 7 mm of average swelling width 3) Quality of Cation Electro-Deposition Paint coating The test pieces treated as shown in Table 1 were applied with paint coatings by electro-deposition at 200 V for 3 minutes.
a. Amount of Coating The amounts of coating on the sheets surface-treated but not chromate-treated and the amounts of coating on the sheets both surface-treated and chromate-treated were measured to evaluate the paintability. The evaluation was made with the coating amount on the sheet withGut chromate treatment being scored as 1.
~ ... 0.95 or more O ... less than 0.95 to 0.85 ... less than 0.85 to 0.70 X -- less than 0.75 b. Corrosion Resistance after Cation Electro-Deposition Paint Coating After the cation electro-coating, the coatings were baked at 180C for 20 minutes, and scratched to the surface of the metal coating, subjected to 240 hours salt spray test, followed by a vinyl tape peeling-off test to evaluate the corrosion resistance on the basis of the peeling-off width of the coating.
... very little peeling-off of the coating from the scratched portion and other 13~3~

portions and the corrosion resistance is very good relatively large peeling-off of the coating from the scratched portion, but very little from other portions, and the corrosion resistance is relatively good considerably large peeling-off of the coating from the scratched portion and other portions and the corrosion resistance is inferior very large peeling-off of the coa-ting from the scratched portion and other portions and the corrosion resistance is very poor 13~3~
~ "E E E ~ E ~ E E E E
~ C ~ ~ ~ ~ bO ~ ~ ~ bO
g O ~D U~ _ ~ ~ ~r r- ~ ~_ c~
~ 0 ~ o~ C~ C~ CO C~ C~ Ln C~
~ ..' ~ 'b ~ ~ . . 'b __ .~rn 2~ ~ 2.~,~ 2~ _ o ', o o , I _ ~ ._ l I
_ ~ C I _ ~q ~ _~ ~ C I _l _ u~ B: C`~
_ ._ ~ I ._ ._ ,~ I I ._ O~, D ~) ~)0 _I _ O ~, D ~ b~ C~ C~ _ O O
~:1 _ ~ ~ ~ .~a ~0 ~ _ ~ ~ . ~.~ .u~
bO ~ ~ ~ ~ _ ~ ~ ~ ~ ~ ~ _ _ ~ ~ I_ .C ~ O ~'~3 ~ O C~ ~ ~ El C~ O ~ C~
__ ._ X C> O O ~ O ~ L. X X q~ O O O
~_ ~ ~-.1 ~ ~ C~ ~ ~ ~ ~ t:~C-~ ~.7 ~ C~ C~
E-- .--~_ O ~ ~._ ~ bO ~._ ~ O ~a u~ ~ ._ ~ co ~ ~
~C ~ ~ ~ 3 ~ C ~ ~ ~ ~ ~ ~ ~o .,.' ~
c c~ c~ Cc~ C c~ c~ C ~ c~ _C ~ C ~a~
3 ~ C~19 ~ U~ ~ c E~ n ~ ~ c~
V~ C~C~ ~ ~ V~ V~ ~ ~ ~ V~V~
~_ Co t_ I ~o I _ ~o ~ ~ C _ ~ o '~ ~ ~
C ~ eJI o ~ ~ ~ o C.~ ~
._ 0~ obO ~
_~ ~ u~ rl ~ ~ ~ ~ ~ O ~
Vl ._ ~ ~ C~ C~
0 ~ ~ , ~ ~ o ~ ~ C
~ ~ ~_ ~ ~ C
_~ ~ ~ 1 3 _~ ~_~ ~ O I ~ C~ _~ _~ _~ _1 _~
~c ~ l l l ~ l l l I
t~ ~ _O ~,~ _~ _4_~ _ 04~,0 ooU~ C C`l ~ C~ C`~ C~
I_Cl:l ~21 0 ~ `iiaO . v~ c c~
~ bO ~:J L +~ _ _ _ o D X ~ 2 bo _ _ _ _ _ c ~ ~a ._ g i~3 ~3 ~3 ~ ~ I i3 El ~ E~ i3 ~
~ ._ ~_ ~ca ~ ~a ,v ca -- ~ c~ ~a ~ ~
~a ~ _ _ <~1 x x x c~ o co ~4 bO ~ X X X X X
~. L. ~ ~ X ~ ._ _ e_ ~ c bo _ ~ ~ ~ ~ C C ~o Co ~ u~ u~ ~ u~
~0 ~ ~ ~ ~> O ~ ~ ~ ~ ~q~ ~ a~
c c Z ~ la ~ 13 c c _ g _C.~ ~ 13 13 ~ i3 E~
c~c~ lC v~ c~ v~ c~v~z~ cq u~ u~ v~ v~
_~ ~ ~ ~ ~ C~
u~ I I a~ I ~'b I l I
~C ~ ,_ _ _1 _1 C 'U~ L~ ~ _ ~ ~0 C~ C~ C~
._ a~ ~ O ~ ~ o ~n a~ ~ G~
~ ~ ~ _ _ ~ ~~ ~ ~ ~ ~_ _ _ _ L ~_ t: El ~3 ._ ~ ~: O ~3E~ 13 E-- C ~ ¦ bO X X I L ~ C +~ 1~0 I _ ~ X X X
c~ ~_ t~ ~ c~lc~ ~ ~ ~ r~ ~ ~ l ~ ~ ~) C~ ~-~
~3 LO g ~' ~ el t~ ~ ~ g ~-- 2 t'~
~ + _ ~0 ~ :~ ~ ~ O ~0~ :>, :~ ~ ~ o c~ O a~a~ ~> ~ o ~ o ~ I ~ c~ ~ ~ ~
v~ a~ ~ , a~ = C ~ E~ ~ er ~ _ _C O ~ ~ El 13 e ~ ~~ ~u ~n v~ V~ :~ ~ ~ ~ ~ 3: o u~ c~ c~ ~
_ . .~ _ _~ C~ _l ~ _~ C~ c~ _~ C~
l l l l l l l l l I
_~ _ Co o C`l ~ C`~ Co~ Co~ Co~
fi X X ~3 E3 X ~ X 1 _ --3 ~
c: ~ E E .. ~ E E r.E ~ ,.~
~C ~4 ~ ~ ~ ~ ~ ~ ~ ~
o ~ U~ ~.~ CJ7 C~ ~ oo ~ ~ _ ~: ~ ~ C ~ c~ _ L~ O _ _ b .. b _ _ b ~, c c~l c C~J ~ . l ~r ~ .
o ~_ ~ o ~_ ~ l l _, o o _ ~1 _, _, .47" ~ ~ ~C I
~o ~ 2 - ~ tt~ ~ o o ~ oo , O ~ ~ ~n o ~ 2 ._ o~ ~ o o c, ~ c, o .~ ._ O ,-C C~ o U~ ' ~ ~ ~ o ~ ~ " ~ pe ~
_ ~ ._ ~ x x _ ~ o o c~ o ~ ~ x x ~ ,_ ~ _ ~ ~ _~ c~ ~ ~ ~ c~
E- ~ 0 0 ~ C~.~ ~ bO C~ ~ ~ O ~I
~ c~ ~ ~ ~I t~~a ~ c ~a ~ ~ . R t~
_C U~ ~ C ~ ~ C ~q C ~ ~ ,C ~ ~ C G~ 10 u~ ~ _C E~ ~ ~ In u~ la~ ~ ~ ~ c ~ E~
C~ _ ~ ~ ~ V~ C~ _~ ~ U~ C~ ~ ~ U~ C~
~ _ C_9= .
O _~
.... oo q~ ~ _ ~o ~ ~
~ ~ o~ O U~ ~ ~0 ~ ~- C
~ U~ t-- O C`~ ~ ~
_ o~ ~ o ~ ~ ~ C C ~ ~ .
.1~3 ~ 1 CL O ~ V~ O O -~
~_ I O '~ ~ _l _ _~ _~ o I ._ _~
c ~ I I I ~ l I ~ ~a ~ I
~ ~ia C ~ ~ c~ ~ t~ ~ +~ I bO ~ ~ .~ ~r ~r ~I) bO _ ~-- C ~ O _ ~ _ _ _ 2 _ _ ~ ~ ~n _ _ _. c~ ~ ~ ~ ~ ~ ~ ~ ~ c ~ ~ ,c ,.
_~ C X X X X X ~ b I ~ ~ ._ R X
~ ~~ ~0 0 ' 13~ ~0 ~
E--E3 ~ _ C ~ ~ t,q ~ ._ ~ ~ ~ ~ L.
O ~ ~ ~ ~ ~ ~ ~ ~ ~ O ~ ~ o L~
C --~ ~3 E~ ~3 ElE~ ~ CLl. ~ ~3 _ _._ U~ _~ ~ C~ ~ ~
~ _ ~ l ll I ~ ~ C~
a~ ~-- ~ ~0 c ~ ~ t~t~ 2'1' ~0 C ._ ~
El ~ ~ ~ Il~ V:~ ~V O O O V:l _ ~ ~ +~ ~ ~ ~ ~_ ~ ~ ~ ~ ~ ._ _ ;~
o 1:: O ~ ~ ~ c~ c~. _ ~_ I ~ ~0 ~ ¦ ~ hO la i3 El I O 1~ ~ I ~ bO
~ c t-' o .,a .a ~ oo t~ ~.~ ~X ~ ~ _ ~ ~
~ o _~ C O '' ~ ~ ~ ~ O ~' a~ .~ ~ ~0 ~1 .o. ~ ~ t~ ~ ~ o ~ ~ ~ ~ .c~
~ 0~ ~ ~ _ I O c~ ~~> ~ ~ _ _ g ~O~ bO ~ O~
C~ ~ -- ~ ~ ~ ~-- ~ El Ei E3 ~ ~ ~ c~ ~ _ 50-- C _ ~ ~0--~ v~ v~ c~ _ ;~ ~ ~ _ ~_ ~ _ _C
_ _ _ _~ C`~ ~ _~ C~ ~ _l C~
.
t~) ~ ~ ~ ~ d' d' OC CO OC
~ ~ ~ ._ ._ ._ ~ ~ ~
~ ~ ~ ~ E3 Q. ~3 ~3 E3 X L~ ~ c, O O ~X ~

~318~r3 . ~ E h~ ~ _ ~ b _ b h,_ E
C~C ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
O O ~D ~_ U~CO ~ _ Ir~ ~ ~ ~
,5: ~r ~ ~ ~ ~ ~ o ~ r~
_ ~ _ _ _ _ I I ,_ I I ,_ 1- ~ ~ ~ ~ c~
v, 2 _ _ o O ~ o ~ _~ B 2 c, O ~ ,~ I l Ln c u~ ~ l O _ _, O O
_ ~ ~ ~ ~ ~ ~ I ~ ~ ~~ O ~ I
_ ._ ._ .~, ~3 I ._ ~ ~ ~ ~ ~
C ~ C C ~ ~ ~ bO U' ~ ~C _~ ~ ~ ~ ~ ~0 ~.
O ~e .v, ., 0 2.' O~ 0~ .v, c O~.c G~
C ~ O c~ ~ t~ U Cb ~ _ t~ b4 ~ O-- ~ Cl.
~ ~_ E~ ~3 ~ O.U~ ~ ~ ~ O ~3 C`~ C ~ c~
~ ~ ~O~ cO, ~ X ~ ~ ~ O ~ C~ O X
E- __~ 00 ~V~ - ~ ~ B I" - ~ hcO ~ ._ a~-- ~~` a ~q O c~ ._ O ~ ~ O ~q ._ ~ ~ ~ O ~ ~
_C~JC ~ E~ ,C ~ C Z3 C ~C IEI ~ ~ ~ c ~ ~ ~~ ~ . _ ,C ~ ~ . ~ ~ ~ V ~ C
C~ ~ ~# V~ U~ C~ O C~ ~ C~ C~ O ~ V~ ~ q ~ ~ ~ ~ U~
. _ _ _ a c . I o~ ,~
~ _ ~ ~ ~
O ._ . ~ U~+, ~ C
_ C~ _ ~ ~ _ _ _1 _1 _1 _1 ~ ~ C ~ _1 _~ c I I I ~ ~ o C~ l l I I ~.~
~ ~ 'r d' -- ~ ~ n +~ o11~ Ir~ 1~ 1~ _ ~, O t, ~ c~ ~O
a) ~ ~ ~ ~ g ~ c ~ ::: ~ ~ ~ a~ o~ _ _1 bo _ _ _ _4 _ ~ C~, _ _ _ _ ~ o ~ oC,c ._13 13 ~ ~ ~ E~ la ~a ~ ~ ~ <~ o --~
t~ ~ X X X _ ~ X X X X ~ ~ X
CL~ ~ ~ ~ ~ ~ L~ ~ ~ ~o ~ O
U~ ~ ~ ~ ~ O ~ ~ C
~a ._ ._ :~, ~ ~ C ~ c~ ~ ~ ._ ~ c O El O ~a C~ O = bO ~ ~ C~ q~ ~ O = C~ ~ ~ ~ c~
r3 13 ~c 0 ~ a ~C ~3 ~ E~ 13 El ,C ~ C Oe ,c c~ v~ c~ ~ c~C~ cq v~ c~ v~
_ .
_ C~ ~ ,_ ~ C~ ~ ,_ ~C ~ ~ ~ ~ b4 _ _ ~ U~ U~ ~ ~ 04 ~ _ ~3 G~ C)~ ~ e~ ~ ~r_ ~ ~ ~ ~ ~ ~~~
~ _ c_ O ~ ; _ _ _ o ~_ _ E- E3 13~3 ~ ~ I ~ ~ E~ El E~ I O
X xX C ~ c ~ o X X X C-- c~ c ~ u~
c ~ O ~ ~ ~ ~ c~ ~, ~ O
v~ ~ ,0 u~ ~ ~u~ ~a ~ ~ -~>~ ~ _ ~ o~c~ ~> ~> ~ _ ~ o~
V~ 13 E3E3 ~ q~ ~ _ ~> E~ ~3 ~ ~ ~ ~ +~-- ~
v~ v~v~ _ ~ _ _ c v~ ~ v~ ~ 3 - c _l C`l ~ ~ C~ _ C~ ~ _ C`i I I I I I I I I l d' ~r d' Ir~ 11~ U7 11~ 10 ~D tD
o o ~o ~ ~o o ._ ._._ ~ c~ ._ ._ ., ~ c~
~ ~c~ ~ c~ ~ c~
a ~E3 13 E~ El 13 E3 E! El O O O X X O O O X X
_ ~ ~ ~ ~ ~ ~ ~ ~ ~ CL~

131~635 .' ~ P E E E E E E E E E
~ C ~ ~ ~ ~ ~ ~ ~ ~ ~ ~o O O ~f~ ~ ~Ir~ Ir~ ~ ~ ~ ~
C~ E3 . . . . . . . . .
~ ~ _ ~roo ~ _ u~ O t-- u~
C~ _ _ ~
___ _ . .
I I ,_ I I_~ I
~ 'b ~, ~i ~ ~ ~i 2 _, 2~,~ ~ ~ ~c~ _ ~ o ~ Lr~ ~ ~ _ U~ l o ~ _ i~
cO ' l ~ ~ I ~_ o o , o o .~ u~ ~ ~D cq ~ I ~ ~ ~ ~ ~ C l ~ ~, ~ - o _ ._ ._ ~; l ._ ._ ~ ~ 1~ ._ ~
C :~ 8 C :~. 8 ~ 0 ~_ ~ 8 C ;~ J~ ~ bO ~ ~ :-~ ~
c~ ~ ~n ~ ~ C ' ~ ~ ~ ~ '~ 1~ o bc4 ~
I_ <I~ ._~_ ~ O.C C~ ~ G~ ._ L. ~ ~ O ~ ._ ~
C~ ~ o ~ o ~ ~ _ ~7 o ~ o `- C~ ~_ ~ ~ V~ ~o _ c~._ e3 ~ ~G~_ El ~ lle G~ O ~ ~._ c~ ~ O O C~ O ~ Xc~ O O ~ O ~7 ~ ~ G~ cr ~
C~ C~ ~ ~ ~ ~C~ ~ ~ ~ ~r_ ~ ~ O
E- _ ~_ bO _ ~ ~0 ~ ~ a~ ~ ~~ ~ B ~ C - --- v~
O ~ ._ O ~ ~. O ~ ._ O ~ ~ O U~._ O O --1:: c .C ~ C R C a.~ C ~ u~ a~ ~ .C C c ~ ~ _ ~ cq _c v~ ~ Ic c~ c~ ~ c, :>, _~
~ g g ,_ I I _ I ~r bO
~ ~- - l ~ ~- ~ c ~o v~ - ~ ~ ~ oo - . - . -o ~ - o ~ ~ .
o a~ ~ ~
.- --~ ~ ~ . ~ ~ ~ .
O æ ,~ ~0~ ~ _ ~, V ~ ~ I o~o ~ 10 1 _~ _C _~ _1 ~ OL~ _~ _1 _1 1___ ~ _ 8 _ ~OtD _ cn ~ ~ ~ t~ t- t~ ~ ~ ca _ C~
O ~ ~ ~ ~ ~ ~ ~ U~ O C 0 _ C __ ~ C :~ _ _ _ _~ - O ~._._ _ _ ~ ._ El1~ ~ ._ ~ ,~ li~ El ~ ~ ~ ~ ~ C~l O E3E!l _ ~ XX ._ C~ ~ X X X ._ ~ ._ ~ X ~ X ~q ~a ~ ~ ~ ~ _ _ ~ ~ ~ ~ ~ ~ o a~ ._ ~ ~ C ~ C
f~ ~_ Ul ~ ~ +~ ~ C~ C~ C~ ~ o ~o ~ ._ ~._ ~ ~.~ n ~ C ~ ~ c~ ._ ~ _ ._ C O ~ ~
o _ o L. ~ ~ ~ ~ e~ a O ~ o~ _ E~~ _ .~_. ~ E~ ~ )~ ~ O ~e c o oo C ~ ~ ~ ~ ~::._ o c ~ O C~ C~
cqv~ e~ _ V~ V~ _ V~ C~ V~ _ C~ ~ ~ U~ ~ V~ ~_ ~ C~ _ II ~ - ~ 'b I I ~ ~ I ~
~3 ~D~ ~ o~ ~e O ~Oa t- t- ~ ob ~ ~ ~ ob4 ~ ~
c~ _ ~ ~ ~ ~ ~ ~ a~ ~ ~ ~ ~
~ C~.C-. O O :~ C~. CL O _ O ~D ~
E- ~3~3 ~ I O ~ ~a E~ ~ I ~ ~ I O ~
XX C ~ C-- ~ X X C ~ C ~ C ~ C-- C~
G~ ~~ ~ IC ~ c~ c ~ ~ ~_C ~ o ~ C ~ ~ C
u~ ~.a ~ ~q ~n o~ u~ ~0 ~ ~0 ~ a ~q ~_ ~ _ ~ C~ ~_ ~ o` C~ ~ _ ~
C~ E~E~ ~ ~ ~ c~ ~ ~ 13 ~ ~ ~ _ c~ ~ ~ ~ ~
V~C~ ~ ~ '~ o ~ v~ v~ ~ c" _ _ ,c _ ~ -r o u~
_ _ _ . _ .
_~ C~ _ C~ _, C~ _, C~
I I I I I I I I I
~D ~D t- t- ~ t- 00 03 a~ oo o o o' o o o o o ~ ~q ~ U~ U~ U~ ~ ~
._ ._ ~ a~ ._ ._ ._ ._ ._. ._ C~. O. ~3 E3 c~ ~ ~a c~ ~
O O x x a O g O O O
. ~ C~ ~, ~ C~ C~ C~ ~ C~ C~

,c~ cc C~ .Uu~
o 2a~ ~ ) a X a ~ x x ~ ~ ~, ., O 0~
C~ O
_ ~c ..
~ .C
C~ CU
_ C~
,u~O
0~ ~ a O C~
.C ~
~ ~ o o o o, .
_. O ., o o ~ I o ~ o o o _ e ~ E ~
,, ~ C O O O O O O
Y O O ~ I O I I ~ ~ ~ O O O
C.

C o O
~ _ o ~ x <I O O I x x ~ x x x ~ ~ ~
_ ~
o' _ ._ ~' O ~ ~ a X ~ x o o _ .

I i I I I I I I I I I I I I I I I I I
O OC cOq O O O ~n ~
_ _ -- -- ~ ~ _ -- _ _ ~ ~ -- -- _ _ _ X X O O X ~ X O O O X X X ~ O E!l X X
_ _ , _ - - - - -b4 C ~ ~3~63~
J .r~
g C~.~J X
O C ~ X X X ~ ~ X ~ X X ~ ~ X X X ~ X X
._ O 03 ._ O L <~
C~ 0 ~ O _ ~ , _ ~
_ ~: X X X ~ X X
C
C~7 C~
_ 1~
~0 0-0 ~ X X ~ ~ X X ~ ~ ~ X
~ U~C~
_ O +0~
C +l ._ _ U .~ C" ~ ~
O ~ I 'I O O ~ ~ ~ O O ~ ~ O O O ~ ~ ~ X X
0 ~V .Q O O
_~ ~ ~

$ c O O O ~ ~ ~ o o a a o o o ~3 ~ x x x ., _ l C~ C
_ ~ a a ~ ~ x a a ~ o x x ~ ~ x x a ~0 ~

O ~ O O O ~ o ~ g~ o o x ~ ~ q X ~ a _ V~
_ l l l l l l l l l l l l l l l l l l l l d' d' d' u) u~ ~ ~ U) tD ~ ~D ~D ~ ~ ~ ~ ~ a~ 0 ~
~ O C O O O O O C O O O O
.-- .-- ~ --13 ~ 0 X O O O ' X X O O X X O O O O O O

Claims (5)

1. A method for treating a metal coated steel sheet, comprising:
. subjecting a metal coated steel sheet to a cathodic electrolytic treatment to form a cathodically electrolytic chromate film thereon, in a bath of a com-position containing (1) Cr6+ ions, (2) ions of at least one element selected from the group consisting of Zn, Ni, Co, Al, Mg, Sn, Mn and Pb, and (3) at least one additive selected from the group consisting of PO43-ions, a fluorine compound, silica and a silicate, and . immediately subjecting the resultant steel sheet to an anodic electrolytic treatment in a bath of said composition to convert said cathodically elec-trolytic chromate film and further to form an anodically electrolytic chromate film thereon.
2. A method according to claim 1, wherein said additive comprises PO43- ions, at least one fluorine compound, or both PO43- ions and at least one fluorine compound.
3. A method according to claim 1, wherein said additive comprises at least one of silica and a silicate.
4. A method according to claim 1, wherein said additive comprises components (a) and (b) wherein com-ponent (a) is PO43- ions, at least one fluorine compound, or both PO43- ions and at least one fluorine compound, and component (b) is at least one of silica and a silicate.
5. A method according to claim 1, wherein said metal coated steel sheet is a zinc coated steel sheet, zinc alloy coated steel sheet, aluminum coated steel sheet, aluminum alloy coated steel sheet, lead coated steel sheet or lead alloy coated steel sheet.

5. A method according to claim 1, 2 or 3, wherein said cathodic electrolytic treatment and said anodic electrolytic treatment are performed in the same chromate treatment bath.

7. A method according to claim 4 or 5, wherein said cathodic electrolytic treatment and said anodic electrolytic treatment are performed in the same chromate treatment bath.

8. A method according to claim 1, 2 or 3, wherein said cathodic electrolytic treatment and said anodic electrolytic treatment are performed in dif-ferent chromate treatment baths.

9. A method according to claim 4 or 5, wherein said cathodic electrolytic treatment and said anodic electrolytic treatment are performed in different chromate treatment baths.
CA000537100A 1986-05-24 1987-05-12 Chromate treatment of a metal coated steel sheet Expired - Fee Related CA1318635C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP61-118393 1986-05-24
JP11839386A JPS62278297A (en) 1986-05-24 1986-05-24 Method for chromating metal-surface-treated steel sheet

Publications (1)

Publication Number Publication Date
CA1318635C true CA1318635C (en) 1993-06-01

Family

ID=14735568

Family Applications (1)

Application Number Title Priority Date Filing Date
CA000537100A Expired - Fee Related CA1318635C (en) 1986-05-24 1987-05-12 Chromate treatment of a metal coated steel sheet

Country Status (2)

Country Link
JP (1) JPS62278297A (en)
CA (1) CA1318635C (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63250497A (en) * 1987-04-06 1988-10-18 Nisshin Steel Co Ltd Post-treatment of alloyed hot dipped steel sheet
JPH0288799A (en) * 1988-09-22 1990-03-28 Nkk Corp Zinc or zinc alloy-plated steel sheet having excellent corrosion resistance, coating property, and fingerprinting resistance and its production
JP2569993B2 (en) * 1991-03-29 1997-01-08 日本鋼管株式会社 Method for producing chromate-treated galvanized steel sheet with excellent corrosion resistance, fingerprint resistance and paintability
KR100554146B1 (en) * 2001-11-14 2006-02-20 주식회사 포스코 Chromate treatment method for the zinc plated steel

Also Published As

Publication number Publication date
JPH0214436B2 (en) 1990-04-09
JPS62278297A (en) 1987-12-03

Similar Documents

Publication Publication Date Title
CA2396514C (en) Surface-treated tin-plated steel sheet and surface treatment solution
US4470897A (en) Method of electroplating a corrosion-resistant zinc-containing deposit
US6607844B1 (en) Zn-Mg electroplated metal sheet and fabrication process therefor
EP0250792B1 (en) A chromate treatment of a metal coated steel sheet
US4637838A (en) Process for phosphating metals
US5178690A (en) Process for sealing chromate conversion coatings on electrodeposited zinc
US4290860A (en) Process for manufacturing electro-galvanized steel sheet excellent in paint adherence
US3816082A (en) Method of improving the corrosion resistance of zinc coated ferrous metal substrates and the corrosion resistant substrates thus produced
CA1318635C (en) Chromate treatment of a metal coated steel sheet
US5503733A (en) Process for phosphating galvanized steel surfaces
KR100311062B1 (en) Manufacturing method of zinc-containing metal plated steel sheet with excellent black resistance and whiteness
JPH04381A (en) Surface-treated steel sheet having superior corrosion resistance and weldability and production thereof
US20050175848A1 (en) Surface-treated steel plate for bearing seal and bearing seal and bearing using the same
JPH0340117B2 (en)
KR20140097466A (en) Dry-in-place corrosion-resistant coating for zinc or zinc-alloy coated substrates
JPH02282485A (en) Production of black zinc plated steel sheet
US20210032757A1 (en) Method for passivating metallic substances
JP3183630B2 (en) Electrogalvanized steel sheet
JP2701145B2 (en) Chromate conversion treatment method for steel plate
JPH0125393B2 (en)
KR0143485B1 (en) Chromate solution for zn coated steel sheet
JP3329241B2 (en) Method for producing chromate-treated galvanized steel sheet with excellent black spot resistance, blackening resistance and corrosion resistance
JPH0340116B2 (en)
KR0136187B1 (en) Chromate solution and manufacturing method therewith
EP3771748A1 (en) Chromium (vi) and cobalt-free black passivation for zinc nickel surfaces

Legal Events

Date Code Title Description
MKLA Lapsed