CA1290068C - Computer system having programmable dma control - Google Patents

Computer system having programmable dma control

Info

Publication number
CA1290068C
CA1290068C CA000558111A CA558111A CA1290068C CA 1290068 C CA1290068 C CA 1290068C CA 000558111 A CA000558111 A CA 000558111A CA 558111 A CA558111 A CA 558111A CA 1290068 C CA1290068 C CA 1290068C
Authority
CA
Canada
Prior art keywords
dma
channel
access
computer system
values
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA000558111A
Other languages
French (fr)
Inventor
Chester Asbury Heath
Jorge Eduardo Lenta
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lenovo Singapore Pte Ltd
Original Assignee
International Business Machines Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Business Machines Corp filed Critical International Business Machines Corp
Application granted granted Critical
Publication of CA1290068C publication Critical patent/CA1290068C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Bus Control (AREA)

Abstract

IBM Docket No. BC9-86-010 COMPUTER SYSTEM HAVING PROGRAMMABLE DMA CONTROL

ABSTRACT OF THE DISCLOSURE

A computer system in which peripherals greater in number than the number of DMA channels provided in the system can all have DMA access. Some of the DMA
channels are dedicated to certain ones of the peripher-als, while others, termed "programmable" DMA channels, are shared by remaining ones of the peripherals. Each peripheral having DMA access has a channel priority value. When a peripheral wants DMA access, it trans-mits its channel priority value onto an arbitration bus. The winning channel priority value is then compared with prestored DMA channel assignment values.
If the comparison is successful, the corresponding peripheral is given a DMA channel corresponding to the DMA channel assignment value with which the comparison was successful.

Description

IBM Docket No. BC9-86-010 COMPUTER SYSTEM HAVING PROGRAMMABLE DMA CONTROL

DESCRIPTION

Technical Field The present invention relates to a DMA (Direct Memory Access) controller for use in a microcomputer or minicomputer system. More particularly, the invention provides a DMA controller with which peripheral devices in a number greater than the number of physical DMA
channels provided in the system can perform DMA data transfers.

Prior Art Many present-day computer systems employ DMA channels to allow peripheral devices to transfer data, primarily to and from the main memory, without going through the CPU (Central Processing Unit~. Bypassing the CPU of course has the advantage of increased data transfer rates and improved overall system efficiency because the CPU is free to perform other tasks during the data transfer.

The most common practice to date has been to provide one physical DMA channel for every peripheral unit that is allowed DMA access. An example of a computer system which employs such an arrangement is the IBM PC comput-er.
.

However, the number of peripheral devices which a user may attach to his or her computer system have been ~29~{3i8 IBM Docket No. BC9-86-010 increasing and is expected to CGntinUe to do so. For instance, lately there have become available optical disk readers, additional communications devices, hard files, tape backup devices, high speed printers, etc., all of which can make advantageous use of DMA access.

On the other hand, adding further physical DMA channels is costly of system hardware, including IC count, board space, and bus space. It has been considered to share DMA channels among peripheral devices with the restric-tion of mutually exclusive operation. Sharing of Dr~A
channels is employed in, for instance, the IBM XT and AT computer systems. These schemes though require extensive modifications to the operating system as additional subroutines are required to prevent the peripheral devices associated with each DMA channel from operating simultaneously. A significant perfor-mance burden is also created when file controllers are not sufficiently "intelligent" to allow overlapped seek operations. The problem is compounded in certain situations, for example ~hen a LAN (Local Area Network) feature and a file controller share the same DMA level and a LAN file server routine must trade back and forth between the two devices.

U.S. Pat. No. 3,925,766 to Bardotti et al. discloses a computer system wherein peripheral devices are assigned priori~y levels, and requests for access to communicate with a memory are selected according to the priority levels. The priority level assignments can be changed according to the causes for which the reg~lest signals are generated or the particular load conditions of the - l?~900S~3 IBM Docket No. BC9-86-010 central processor. No DMA paths are provided, howe~-er.

In U.S. Pat. No. 4,400,771 to Suzuki et al. there is shown a multi-processor system in which each of the multiple processors can access a single memory. A
programmable ~egister circuit stores priority informa-tion designating a memory access grade priority for each of the processors. The priority information can be changed manually, by an external circuit, or by at least one of the processors. The Suzuki et al. patent does not though employ DMA access to a memory from plural peripheral devices.

U.S. Pat. No. 4,257,095 to Nadir is of interes'c in its teachings regarding bus arbitration techniques.
-; 15 The following United States patents-are mentioned for `generĂ l background teachings related to computer ~systems employing DMA controllers: 4,371,932 to Dinwiddie, Jr., et al., 4,419,728 to Larson, 4,538,224 to Peterson, 4,556,962 to Brewer et al., and 4,584,703 to ~allberg.

Objects of the Invention Accordingly, it is an object of the present invention to provide a computer system employing a DMA controller wherein peripheral devices in a number greater than the number of physical DMA channels provided in the system can share the DMA channels without encountering the problems of the prior art approaches discussed above.

lZg~8 IBM Docket No. BC9-86-010 ,, It is a further object of the invention to provide such a computer system in which each peripheral device allowed DMA access is assigned its own DMA access arbitration lavel.

It is yet a further object o~ the invention to provide such a-computer system in which the assignment of DM~.
channels to peripheral devices can readily be con-trolled in software without making extensive modifica-tions to the operating system.

Summary of the Invention In accordance with the above and other objects of the present invention there is provided a computer system including a plurality of peripherals requiring DMA
access, the number of peripherals being greater than the number of DMA channels provided in the system.
Some of the peripherals are allotted fixed, dedicated ones of the DMA channels, while others of the peripher-als share the remaining DMA channels. The shared remaining channels are herein called "programmable" DMA
channels. These additional DMA channels are nonphysi-cal, and hence may be term "virtual" DMA channels to distinguish them from the physical or "real" DMA
channels.
.
Each of the peripherals is given a channel priority assignment. An arbitration circuit stores DMA channel assignment values, one for each of the DMA channels provided in the system. For each peripheral having a dedicated DMA channel, a fixed DMA channel assignment lZ~G~3 IBM Docket No. BC9-86-010 .
value is stored, while for the remaining peripherals, which share the proyrammable DMA channels, a programma-ble DMA channel assignment value is stored.

When a psripheral wants DMA access, it transmits its channel priority value onto an arbitration bus. The highest channel priority value "wins" on the arbitra-tion bus. The winning channel priority value is compared with the fixed and programmable DMA channel assignment values. If the channel priority value successfully compares with one of the stored fixed or programmable DMA channel assignment values, it is granted access to the corresponding DMA channel.

Brief Description of the Drawings j FIG. 1 is a block diagram showing a computer system employing the invention.

FIG. 2 is a conceptual diagram used to explain the operation of the present invention.

FIG. 3 is a logic diagram depicting in detail an - arbitration circuit provided in peripheral devices of the computer system o FIG. 1.

FIG. 4 is a diagram showing details of one of the buses in the computer system of FIG. 1.

FIG. 5 is a detailed logic diagram of a central arbi-tration control circuit employed in the computer system of the invention.

lZ~
IBM Docket No. BC9-86-010 FIG. 6 is a detailed logic diagram of a DMA control circuit used in the invention.
,~
Detailed Description of the Preferred Embodiment of the ~nvention Referring first to FIG. 1 of the accompanying drawings, there is shown a block diagram of a computer system in which the present invention is used to advantage.

A CPU communicates with a main memory 15, bus control-~ ler 16 and math co-processor 14 via a system bus 26.
Communication between the CPU and its associated peripheral devices is through a bus controller 16, the latter being coupled tb the peripheral devices through a family bus 25. In the present example, the peripher-al devices include an auxiliary memory 17, two communi-cations devices 18 and 19, a hard file 20, an optical disk 21, and two floppy disks 23. Other peripherals can of course be used as well as system needs dictate.
The peripheral devices are represented generically by DMA slave 24.

A ~MA controller 12 is provided to allow at least - selected ones of the peripheral devices direct memory access. For this purpose, as ~ill be explained in more detail below, the family bus, or at least a portion thereof, is branched to the DMA controller 12. Each ~5 peripheral allowed DMA access is provided with an arbitration circuit 24, and each peripheral having an arbitration circuit is assigned an arbitration (priori-ty) level. Again as will be explained in more detail IBM Docket No. BC9-86-010 later, a central arbitration control circuit 11 is associated with the DMA controller to arbitrate among peripheral devices concurrently requesting DMA access and to inform the DMA controller of which peripheral is to have access.

In the computer system embodying the invention, the number of peripheral devices to be allowed DMA access is greater than the number of physical DMA channels provided in the system. In accordance with the present invention, some of these devices are allotted their own dedicated DMA channel, while others share the remaining DMA channels. On the shared (programmable) channels, access is in order of preassigned priority.

In the present example, it is assumed that there are eiyht physical DMA channels, designated O through 7.
It is further assumed that channels O and 4 are shared, and that remaining channels 1-3 and 5-7 are dedicated to individual peripherals.

Referring now to FIG. 2, which is a conceptual drawing used to explain the principles of the present inven-tion, a comparator is provided with two sets of inputs.
One set is composed of four lines from a bus ARB~S
(ARbitration Bus). The value on the ARBUS is indica-tive of the peripheral currentl~ requesting a DMA
channel having the highest arbitration (priority) level. If that peripheral is one of those having one of the dedicated channels 1-3 or ~-7, access is granted directly to that channel. On the other hand, if the peripheral is one of those having to share a IBM Docket No. BC9-86-010 programmable ~MA channel (channels O and 4), access is - granted only if its priority level corresponds to one of the values preset in registers 6 and 7. This operation will be explained in more detail below with reference to Figs. 3-6.

FIG. 3 is a logic diagram of one of the arbitration circuits 28 used in each of the peripherals allowed D~A
access. I'he arbitration level assigned to the periph-eral is set in a register 70, hereinafter referred to as the channel priority assignment register. This may be done using any of a number of well-known techniques.
Preferably, the CPU addresses the peripheral through a preassigned port so that the arbitration level can be set through software. This may be done through the BIOS (Basic Input-Output Syste~l), POST (Power-On Self Test) at reset, the operating system, or the applica-tion program as desired. Other~ise, it is possible to input the channel priority assignment value with hardware switches.

The actual arbitration circuitry is implemented with of an arbiter 72. This circuit, including the various signals indicated in FIG. 3, is disclosed and discussed in de~ail in American National Standard/IEEE Standard No. ANSI/IEEE Std 696-1983, published by the Institute of Electrical and Electronics Engineers, Inc., June 13, 1983. In general, each device incorporated in the arbitration scheme is provided with such a circuit, and the circuits are connected together via an ARBUS. The ARBUS in the example shown has four data lines TMAO -TMA3, allowing for 16 different arbitration levels.

IBM Docket No. BC9-86-010 Any desired number though can be used. During an arbitration time period designated by the control signals pHLDA and HOLD, all devices desiring to gain control over the bus (those having the IWANT signal set S to the high ("1") state) transmit their arbitration (priority) levels onto the ARBUS. This occurs in the example of FIG. 3 when the signal /APRIO ("/" indicat-ing a "low-truth" signal) goes to the low ("O") state.
The value then held in the register 70 is gated through the AND gates 71 to the arbiter 72 and thence onto the ARBUS lines TMAO - TMA3. At the end of the arbitration period, the value on the ARBUS lines TMAO - TMA3 will be the value o~ the arbitration level of the device having the highest level. The waveforms of the various signals mentioned here are shown in detail in the referenced ANSI/IEEE standard.

In the preferred embodiment under discussion, the ARBUS
forms a part of the family bus 25 coupling the periph-erals to the bus controller 16 and thence to the CPU
10. The relationship of the ARBUS to the overall family bus 25 is depicted in FIG. 4.

The details of the central arbitration control circuit 11 and the DMA controller 12 are shown in Figs. 5 and 6, respectively, to which reference is now made.

As indicated in FIG. 5, the signals HOLD and pHLDA from the ARBUS are used to generate a signal ~ARBTIME.
/ARBTIME is in the "O" state during the time when arbitration is to take place among the peripheral devices competing for a DMA channel. It remains in the ~29~68 IBM Docket No. BCg-86-010 "O" state long enough for the signals on the ARBUS to have reached steady-state conditions, that is, suffi-ciently long for the arbitration to be completed. To generate /ARBTIME, pHLDA is inverted by an inverter 61, then applied together with HOLD to respective inputs of an EXCLUSIVE-OR gate 62. A one-shot multivibrator 63, having an output pulse period longer than the arbitra-tion time on the ARBUS, is triggered by the leading edge of the output pulse from the EXCLUSIVE-OR gate 62.
The output of the one-shot multivibrator is ORed with the output of the EXCLUSIVE-OR gate 62 by an OR gate 64 to thu~ produce /ARBrIME. Other arrangements are of course possible for generating /ARBTIME. In one approach, DMA request signa~s from each device are ORed together and the ORed output applied to generate a pulse signal of appropriate length. The basic require-ment in any case is to set /ARBTIME to the "O" state to define the time periods when arbitration is taking place on the ARBUS.

One compare logic 40 is provided for each ~f the programmable physical DMA channels in the system, and one compare logic 49 is provided for each of the fixed channels. Each compare logic 40 for the programmable DMA channels (channels O and 4 in the present example) includes a register 41, referred to as a DMA channel assignment register, which is loaded by the CPU with a DMA channel assignment. The compare logics 49, namely, those for the fixed channels, are identical to the compare logics 40, except that the register ~0 is replaced by a set of switches with which the channel assignment is manually set. Only one each of the IBM Docket No. BC9-86-010 compare logics 40 and 49 are shown in detail since the others ones of the compare logics 40 and 49 are identi-cal and their input signals are the same.

The outputs from the registers 41 for the programmable channels (compare logics 40) and the outputs of the switches for the fixed channels (compare logics 49) are compared with the signals TMAO - TMA3 by a set of exclusive-OR gates 42, the outputs o which are applied to inputs of a NOR gate 43. If a match is present between the channel assignment and the value represent-ed by TMAO - TMA3 at the end of the arbitration period, that is, if the corresponding signals are then in the identical states, the output from the NOR gate 43 (COMPARE O - COMPARE 7) will be-in the "1" state. Of course, only one NOR gate 43 at a time can have an active output.

With reference now to FIG. 6, at the end of the arbi-tration time when /ARBTIME goes back to the "1" level, a "1" from the one of the signals COMPARE O - COMPARE 7 in the "l" state will be set in one of the two latches 51 of the DMA contro]ler 12. The other ones of COMPARE
O - COMPARE 7 will be in the "O" state, and hence a "O"
will be set in the corresponding positions in the latches 51.

The outputs of the latches 51 are applied to corre-sponding DMA request inputs (DREQO - DREQ3) of two cascade-connected DMA controller IC s 52. In the embodiment under discussion, the IC s 52 are each a type 8237 programmable DMA controller manufactured by 1~9~6~3 ~C9-86-010 12 Intel~ Corporation. The DMA controller IC's 52 are cascade connected using NOR gates 53. The CPU may be any of the Intel iAPX 86 series of microprocessors, such as the 8088, 8086 or 80286. For details of the connections between the two DMA controller IC's and the CPU, reference may be made to the 1985 Intel Micro-system Components Handbook, pages ~-57 to 2-71.

Accordingly, for a peripheral having a dedicated DMA
channel assignment, once the peripheral wins on the ARBUS, it is guaranteed immediate use of a DMA channel.
For peripheral sharing one of the DMA channels, when it wins on the ARBUS, it will gain the immediate use of a DMA channel only if its channel priority assignment value, as held in its channel priority assignment register 70, matches one of the DMA channel assignment values set in one of the two registers 41. Of course, the BIOS, operating system, or applications program can continually reprogram the channel assignment values held in the DMA channel assignment registers 41 of the two programmable channel compare logics 40 to assure that all peripherals needing access eventually are given the use of a DMA channel. Many different programming schemes can be implemented to control the values stored in the DMA
channel assignment registers 41 and the channel priority assignment registers 70 of the arbitration circuits depending upon the application at hand. In a simple example, the values set in the priority assignment registers 70 are fixed and the values set in the DMA
channel assignment registers 41 are rotated among at least some of the values in the priority assignment registers 70 to thus give each ~ ~9~;8 IBM Docket No. BC9-86-010 peripheral associated with one of the programmable DMA
channels a chance to gain the use of a DMA channel. If "intelligent" peripherals are employed having their own controller, more complex schemes may be implemented.
For example, when a peripheral assigned to a program-mable DMA channel wishes access, the peripheral can query the operating system or BIOS as to the availabil-ity of one of the programmable channels. If a channel is available, its number can then be set in the regis-ters 70 and 41 to guarantee access. However, since the selection of the programming scheme is beyond the scope of the present invention and in the province of the user, further examples will not be discussed here.
.
Other applications of the invention are also contem-plated. For example, programmable DMA channels provid-ed by the use of the invention can be used as redundant back-up channels for ones of the dedicated channels, thereby providing improved system reliability.

It is to be understood that while modifications can be made to the structures and teachings of the present invention as described above, such modifications fall within the spirit and scope of the present invention as specified in the claims appended hereto.

Claims (8)

1. A computer system comprising:
means for providing a plurality of DMA channels;
a plurality of peripheral devices comprising means for requesting DMA access;
means for assigning at least one of said peripheral devices to a respective dedicated one of said DMA
channels for DMA access and for assigning the remainder of said peripheral devices to share the remainder of said DMA channels for DMA access; and wherein said assigning means comprises means for comparing channel priority assignment values of each one of said remainder of said peripheral devices requesting DMA access, with a predetermined programmed set of DMA channel assignment values, and means for granting one of said remainder of said peripheral devices access to a DMA channel when said one of said remainder of said peripheral devices has a channel priority assignment value corresponding to one of said predetermined programmed DMA channel assignment values.
2. The computer system of claim 1, wherein said comparing means comprises means for storing said predetermined set of channel assignment values, and means for simultaneously comparing said channel priority assignment value for one of said peripherals requesting DMA access with said set of channel assignment values.
3. The computer system of claim 2, further comprising means for changing said channel assignment values for said remainder of said DMA channels.
4. A computer system comprising:
a plurality of peripheral devices requiring DMA
access;
arbitration bus means;
means in each of said peripheral devices for requesting DMA access by placing on said arbitration bus means a channel priority assignment value for the respective peripheral device;
means for storing first and second sets of DMA
channel assignment values, said DMA channel assignment values being fewer in number than the number of said peripherals and being equal in number to the number of DMA channels provided in said computer system, said first set of said DMA channel assignment values being fixed and corresponding to fixed predetermined ones of said channel priority assignment values, said second set DMA
assignment values being programmable and allocatable among the remaining ones of said channel priority assignment values;
means for comparing priority assignment values received on said arbitration bus means with said set of stored DMA channel assignment values; and means for granting DMA access to each of said peripherals whose priority assignment value is found by said comparing means to be equal to one of said DMA
channel assignment values of said first and second sets.
5. The computer system of claim 4, wherein said storing means comprises for each of said programmable DMA channel assignment values a register programmable by a central processing unit of said computer system.
6. The computer system of claim 5, wherein said storing means comprises, for each of said fixed DMA channel assignment values, means for fixedly inputting the respective DMA channel assignment value.
7. A method for controlling DMA access in a computer system, comprising the steps of:
assigning to each of a plurality of peripherals requiring DMA access a channel priority assignment value;
fixedly storing a first set of DMA channels assignment values for DMA channels dedicated to respective peripheral devices, and programmably storing a second set of DMA channel assignment values for DMA
channels shared among a plurality of peripheral devices;

?C9-86-010 transmitting onto a bus from each of said peripherals requesting DMA access its channel priority assignment value;
arbitrating on said bus to determine a highest channel priority assignment value of peripherals concurrently requesting DMA access;
comparing said highest channel priority assignment value with said first and second sets of DMA channels assignment value; and granting access to a respective DMA channel to the corresponding peripheral device when said highest channel priority assignment value is equal to one of said DMA
channel assignment values contained in said first and second sets.
8. The method of claim 7, wherein said step of comparing comprises simultaneously comparing said highest channel priority assignment value with said first and second sets.
CA000558111A 1987-03-27 1988-02-04 Computer system having programmable dma control Expired - Fee Related CA1290068C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US3078587A 1987-03-27 1987-03-27
US030,785 1987-03-27

Publications (1)

Publication Number Publication Date
CA1290068C true CA1290068C (en) 1991-10-01

Family

ID=21856015

Family Applications (1)

Application Number Title Priority Date Filing Date
CA000558111A Expired - Fee Related CA1290068C (en) 1987-03-27 1988-02-04 Computer system having programmable dma control

Country Status (2)

Country Link
BR (1) BR8801357A (en)
CA (1) CA1290068C (en)

Also Published As

Publication number Publication date
BR8801357A (en) 1988-11-01

Similar Documents

Publication Publication Date Title
US4901234A (en) Computer system having programmable DMA control
US5388228A (en) Computer system having dynamically programmable linear/fairness priority arbitration scheme
US4633394A (en) Distributed arbitration for multiple processors
US4730268A (en) Distributed bus arbitration for a multiprocessor system
US5129090A (en) System bus preempt for 80386 when running in an 80386/82385 microcomputer system with arbitration
US5621897A (en) Method and apparatus for arbitrating for a bus to enable split transaction bus protocols
US4972313A (en) Bus access control for a multi-host system using successively decremented arbitration delay periods to allocate bus access among the hosts
KR100385871B1 (en) Interrupt controller
US5996037A (en) System and method for arbitrating multi-function access to a system bus
EP0374521A2 (en) Least recently used arbiter with programmable high priority mode and performance monitor
US6986005B2 (en) Low latency lock for multiprocessor computer system
US5420985A (en) Bus arbiter system and method utilizing hardware and software which is capable of operation in distributed mode or central mode
JPS5837585B2 (en) Keisan Kisouchi
EP0702307A1 (en) Multibus dynamic arbiter
GB2136171A (en) Computer memory management system
WO1994008313A1 (en) Arrangement of dma, interrupt and timer functions to implement symmetrical processing in a multiprocessor computer system
GB2171542A (en) System employing tightly coupled processors
EP0675444B1 (en) Multiple arbitration scheme
JPH0690699B2 (en) Interrupt interface circuit
US5241661A (en) DMA access arbitration device in which CPU can arbitrate on behalf of attachment having no arbiter
EP0355463A2 (en) Timer channel with multiple timer reference features
US6253304B1 (en) Collation of interrupt control devices
US4896266A (en) Bus activity sequence controller
US5596749A (en) Arbitration request sequencer
US5036456A (en) Apparatus for controlling concurrent operations of a system control unit including activity register circuitry

Legal Events

Date Code Title Description
MKLA Lapsed