CA1283779C - Arrangement for use in the thermal analysis and modification of molten metal - Google Patents

Arrangement for use in the thermal analysis and modification of molten metal

Info

Publication number
CA1283779C
CA1283779C CA000532681A CA532681A CA1283779C CA 1283779 C CA1283779 C CA 1283779C CA 000532681 A CA000532681 A CA 000532681A CA 532681 A CA532681 A CA 532681A CA 1283779 C CA1283779 C CA 1283779C
Authority
CA
Canada
Prior art keywords
container
molten metal
sampling
opening
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CA000532681A
Other languages
French (fr)
Inventor
Stig Lennart Backerud
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SinterCast AB
Original Assignee
SinterCast AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SinterCast AB filed Critical SinterCast AB
Priority to CA000532681A priority Critical patent/CA1283779C/en
Application granted granted Critical
Publication of CA1283779C publication Critical patent/CA1283779C/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)

Abstract

ABSTRACT OF THE DISCLOSURE
An arrangement for use when thermally analyzing and modifying molten metal, by recording solidification data and controlling the structural modification of the molten metal on the basis of such data. The arrangement includes a sampling container made from a material which remains substantially stable at the temperature of the molten metal and which is adapted to receive at least one thermoelement for recording the solidification data.
Means are also provided for taking a sample of the molten metal with the aid of the container, and for moving the sample to an area in which substantially the same conditions prevail. In addition, the arrangement includes recording means and means for modifying the structure of the molten metal as required. The sampling container is constructed to allow molten metal to pass thereinto when the container is immersed into the molten metal, and to allow a previous content of the container to be displaced therefrom and replaced with fresh molten metal as a result of relative movement between the container and the molten metal.
Means are provided to ensure that a suitable quantity of molten metal is collected during a sampling operation. This may be achieved by providing the sampling container with openings which are closed and exposed by valve means or by some other suitable arrangement.

Description

1283~ 3 An arrangement for use in the therma analysis and modification of molten metal.
The present invention relates to an apparatus for use when thermally analyzing and modifying molten metal. More speci-fically, the invention is intended for use when analyzing the solidifying properties of molten metal prior to pouring the metal into moulds, and particularly, although not exclusively, to the solidifying properties of light-metal melts, such as aLuminium and magnesium melts.
It is known to analyze thermally the properties of mol-ten metal, hereinafter referred to as melts, and to utilize the results of the analysis to determine the solidification properties of the melt and the post-solidification structure of the metal.
It has been fund possible to derive from solidification data such properties as the number of nucleants present, the nucleant acti-vity, and the presence of modifying substances with regard to their function during solidification. In this context, a chemical analysis does not provide sufficient information with respect to the ability of the elements present to function as crystallization nuclei and structure modifying additions.
A common method of procedure in this respect is one in which solidification data is determined with the aid of a thermo-element located in the centre of a sample taken from the melt.
This sample is of the order of about 100 ml, which is considered sufficiently large to ensure that the thermal capacity of the vessel containing the sample and the thermoelement will not ~k "~

lx~3~m unduly influence solidification. The solidification data assessed is primarily the super-cooling prior to solidification commencing, which reflects the number of primary crystallization nuclei pre-sent and khe slope of the temperature curve during the plateau phase as the crystals grow. These values can be recorded digit-ally and, wi-th the aid of known techniques, compared with desired values of respective magnitudes, and the result obtained therewith utilized in the modification of the solidification properties of the melt, by adding structure modifying substances thereto, or by subjecting the melt to some known metallurgical process effective to change the solidification properties of the melt. In accord-ance with the invention there is provided an arrangement which can be used to monitor the structure controlling properties of a melt and -to control the addition of structure modifying substances thereto, or to control the execution of structure changing mea-sures. The arrangement enables foundries, smelters etc., to be automated to a high extent and also enhances the quality of the goods produced therein.
The arrangement according to the invention for use when thermally analyzing and modifying melts, such as molten metal baths, by recording solidification data of the melt and control-ling the possible addition thereto of structure modifying substan-ces on the basis of said analysis is characterized by a sampling container which is made from a material which remains substan-tially stable at melt temperatures and into which molten metal is able to pass when the container is immersed in the melt; means ~' . .

1~337'^~9 which are ef-fective to lift the sampling container from the melt, while enclosing a given quantity of molten metal in said contain-er, and to move the container to an area of controlled temperature and to hold the container in said area until the enclosed molten metal has solidified, and then to return the container to an immersed position in the melt; means for measuring and recording solidification data at one or more locations in the enclosed mol-ten metal during the process of its solidification; means for evaluating the solidification data obtained in relation to data derived from melts of known metallurgical structure; and means which are effective to control the supply of additions to the metal melt; and control means for monitoring continuously structure-influencing additions, by intermittent sampling at suit-able time intervals.
The sampling container is conveniently provided with an opening through which molten metal can flow, such as to enable the content of the container to be constantly replaced with fresh molten metal when the container is again immersed in the melt.
This is achieved either by placing the container in the path of a flowing melt, or by moving the container through a stationary molten bath. The molten content of the container is replaced continually through the turbulence thus created, or the container may be provided with a suitable opening on one side thereof facing the flow of molten metal and a further opening may be provided on the side of the container opposite to one said side, and the con-tainer may include means for closing the further opening, so as to ~83~779 collect a suitable quantity of molten metal in the container.
The arrangement accordiny lo the invention will now be described in more detail with reference to the accompanying draw-ings, in which Figure l illustra-tes schematically an arrangement according to the invention for use in controlling automatically the structure of flowing molten metal;
Figure 2 illustrates a sampliny container lowered in the flow of molten metal; and Figures 3-5 illustrate various embodiments of the samp-ling container.
In Fiy. l there is shown schematically a chute l which conducts flowing molten metal 2 therealong. Immersed beneath the surface 3 of the molten metal 2 is a sampling container 4, which is connected to a horizontal, rotatable shaf-t 5 through an arcuate part 6. The arrow 7 indicates ro-tation of the shaft 5. The hori-zontal shaft 5 is attached to a vertical shaft 8 for movement therealong, as indicated by the arrow 9. The horizontal shaft 5 is mounted on -the vertical shaft 8 in a manner to enable it to be swung around said shaft 8, as illustrated by the arrow lO.
As illustrated in the figure, the shaft 5 can be moved to a position I in which the sampling container 4 is immersed in the molten metal, or melt 2, and therewith oriented so that the molten metal can readily flow through the container. When taking a sample of the flowing molten metal, the shaft 5 is rotated so as to move the sampling container to a position in which it will ~:, lZ837~9 enclose an adapted quantity of the melt, whereafter the shaft 5 is lifted along the shaft 8 to a position II above the melt, and is then swung around the shaft 8 and lowered to a position III. In this latter position, the container ~ is accommodated in a chamber 11, in which the heat given-off as the mol-ten metal sample in the container solidifies is substantially reproducible, from sample to sample.
Fig. 2 illustrates an embodiment of the sampling con-tainer 4, and shows the container immersed in the flowing molten metal 2, the direction of flow being indicated by the arrow 12.
Arranged centrally in the sampling container is a thermoelement 13. The container is provided with an inlet opening 14 and an outlet opening 15, through which molten metal flows in temperature equilibrium with the melt. The sampling container is constructed in a manner which will ensure that a representative quantity of molten metal is contained therein when the container is lifted from the melt. The sampling container has provided therein a spherical device 16 made from a material which is inert in rela-tion to the molten-metal sample and having a higher density than said metal. When the container is raised to its vertical posi-tion, the spherical device 16 moves down in the container and covers and seals the opening 15, thereby preventing molten metal escaping from the container as it is lifted from the flow of mol-ten metal 2. When the sampling container 4 is again lowered into the flow of molten metal 2, subsequent to recording solidification data, the now solid content of the container will melt and the ~83r~3 spherical device 16 wiLl fall back to the position illustrated in Fiy. 2, thereby enabling the molten metaL to flow freely through the openinys L4 and 15, while displacing the re-melted content of the container.
Fiy. 3 illustrates a further embodiment of the sampling container 4, into which moLten metal can flow through an opening 17 and leave the container through a slot 18. The slot 18 is arranged to be closed by means of a plate 19, which is mounted on a centrally located post 20 and arranged for movement towards the sampling container in a manner to co-act sealingly wi-th surfaces 21 and 22 so as to prevent molten metal escaping froln the container as it is lifted from the flow of molten metal. A
thermoelement 23 is arranged in the sampling container.
Fig. 4 illustrates another embodiment of a sampling container which lies within the scope of the invention. In this embodiment, the sampling container, here referenced 24, is open at its one end 25, which in the E`ig. 4 illustration is its upper end, and is provided at its other end, i.e. the bottom end, with a thermoelement 26 and a holder arm 27. In use, the container 24 is moved into the flow of molten metal and the content of the container remaining from a preceding sampling process is displaced from said container by the resultant turbulence and replaced with a fresh sample. For the purpose of determining the solidification data of the sample, the holder arm 27 is rotated about its axis as shown at 29, so as to bring the container 24 to a vertical position, with said one end of the container facing upwards. The ~83~7~9 sampliny container 24 is then move-l, in this position, to a temperature-defined region for solidification. This embodiment requires a modified form of the operating unit illustrated in Fig.
1.
Fig. 5 illustrates a simple embodiment of the sampling container 4. In this case, the container 4 is attached to a holder arm 29, and two thermoelements 30 and 31 are inserted from one side at the point of attachment to the holder arm, to enable the temperature of the sample to be measured at the centre thereof and at the wall of the container, as the sample solidifies. With this embodiment, the holder arm is immersed into the flow of molten metal at right angles to said flow, and is then turned to a position in which the container is filled with molten metal through the turbulence created. Subsequent to immersing -the con-tainer and re-melting the solid content thereof, the container may optionally be lifted from the flow of molten metal and emptied, so as to ensure that the container will be filled with truly fresh molten metal for carrying out the next analysis of the subsequent solidification process.
Alternatively, the sampling container, together with the enclosed sample, can be removed from the flow of molten metal and passed to an area in which conditions are substantially the same as those prevailing in the molten metal flow, whereafter thermo-elements are immersed into the sample, for example by attaching the thermoelements to a container lid, or into pockets provided in the container herefor. The thermoelements are preferably ~283~r~9 - ~ - 20615-867 pre-heated to the temperature of the molten metal.
It wilL be understood that it lies within the expertise of one skilled in this art, and within the scope of the invention, to make suitable modifications to the aforedescribed and illustra-ted sampling containers, and to the :means for manipulating the containers, and to the manner in which the solidification data are recorded and utilized.

'~;`,

Claims (10)

1. An arrangement for effecting the thermal analysis and modification of molten metal, by recording solidification data and controlling a subsequent structure modifying process on the basis of the data obtained, characterized by a sampling container which is intended to be immersed in said molten metal and which is made of a material which remains substantially stable at the tempera-ture of said molten metal, and which container is further con-structed to enable molten metal to enter thereinto and permitting the content to be constantly replaced with fresh metal when said container is in its immersed state' means which are effective to lift the container from the molten metal while enclosing a given quantity thereof, and to move the container to an area in which substantially the same conditions prevail, and to hold the con-tainer in said area until the enclosed sample has solidified, and then to return the container to an immersed position in the molten metal; means which are effective to measure and record solidifica-tion data at one or more locations in the sample as said sample solidifies, means for evaluating solidification data in relation to known data derived from melts having a known metallurgical structure; means for controlling the supply of additions to the molten metal, or for subjecting the molten metal to a structure modifying process in a controlled manner; and control means for monitoring continuously structure modifying measures by sampling the molten metal intermittently at suitable time intervals.
2. An arrangement according to Claim 1, characterized in that the container is provided on one wall thereof with an opening which co-acts with means effective to close the opening prior to lifting the container from the molten metal and to expose said opening when, subsequent to solidification of the sample, the container is re-immersed in the molten metal and the solidified sample in said container has melted.
3. An arrangement according to Claim 1, characterized in that the sampling container is constructed to enable a sample to be taken from a flow of molten metal, and to enable molten metal to enter the container constantly when the container is immersed in said flow.
4. An arrangement according to Claim 1, characterized in that means are provided for moving the sampling container in a static molten metal-bath, and in that the container is constructed to enable molten metal to constantly enter thereinto.
5. An arrangement according to Claim 2, characterized in that the container is arranged for movement between a vertical position and an immersed, inclined position, in that the container is provided with a first opening which can be brought to face the movement direction of the molten metal, and a second opening which can be brought to face in a direction opposite to that faced by the first opening; and in that the container has arranged therein a spherical device which is effective to close the second opening when the container is moved to its vertical position, and to ex-pose said second opening when the container is moved to its im-mersed, inclined position.
6. An arrangement according to Claim 2, characterized in that the sampling container has a sleeve-like configuration having an opening provided in one end wall thereof; valve-means mounted on a centrally arranged post and operative to expose and close said opening when the container is immersed in the molten metal and in substantially temperature equilibrium therewith; in that the sampling container is attached to a holder tube which accommo-dates the central post together with electrical conductors associ-ated with a thermoelement located in the container; and in that the container is provided in the end wall opposite said one end wall with an opening through which molten metal can enter the sampling container when immersed in said molten metal.
7. An arrangement according to Claim 1, characterized in that the sampling container comprises an open vessel which is placed on a holder tube attached to the bottom of the container or to a side wall thereof and accommodating electrical conductors associated with one or more thermoelements arranged therein; and in that means are provided for lowering the container into the molten metal in a manner such that the open end of said container is positioned so as to enable molten metal to pass into said con-tainer under the influence of turbulence, and in that means are provided for lifting the container to a position in which a given quantity of molten metal is contained therein.
8. An arrangement according to Claim 1, characterized in that the sampling container is constructed to enable one or more thermoelements effective to measure the temperature of the sample contained in said container to be introduced thereinto in its raised position.
9. An arrangement according to Claim 8, characterized in that said one or more thermoelements for measuring the solidifying temperature of the sample are attached to a lid or like cover means arranged to be placed on the sampling container in its rais-ed position.
10. An arrangement according to Claim 8, characterized by tubular sleeves which extend into the sampling container and into which thermoelements can be inserted when the container occupies its raised position.
CA000532681A 1987-03-23 1987-03-23 Arrangement for use in the thermal analysis and modification of molten metal Expired - Lifetime CA1283779C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA000532681A CA1283779C (en) 1987-03-23 1987-03-23 Arrangement for use in the thermal analysis and modification of molten metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CA000532681A CA1283779C (en) 1987-03-23 1987-03-23 Arrangement for use in the thermal analysis and modification of molten metal

Publications (1)

Publication Number Publication Date
CA1283779C true CA1283779C (en) 1991-05-07

Family

ID=4135243

Family Applications (1)

Application Number Title Priority Date Filing Date
CA000532681A Expired - Lifetime CA1283779C (en) 1987-03-23 1987-03-23 Arrangement for use in the thermal analysis and modification of molten metal

Country Status (1)

Country Link
CA (1) CA1283779C (en)

Similar Documents

Publication Publication Date Title
US3559452A (en) Thermal analysis of molten steel
EP0192764B1 (en) A method for producing cast-iron, and in particular cast-iron which contains vermicular graphite
US4765391A (en) Arrangement for use in the thermal analysis and modification of molten metal
Bergman et al. Convection and channel formation in solidifying Pb− Sn alloys
RU2198390C2 (en) Sampler for temperature analysis
US6257004B1 (en) Method and apparatus for measuring quenchant properties of coolants
US4046509A (en) Method for checking and regulating the conditions of crystallization in the solidification of melts
CA1283779C (en) Arrangement for use in the thermal analysis and modification of molten metal
EP3035050A1 (en) A sampling device for thermal analysis
GB2289758A (en) Sampling vessel for thermal analysis
US3442116A (en) Pour point meter
RU2001119985A (en) METHOD FOR DETERMINING THE NUMBER OF STRUCTURAL-MODIFICATING AGENT INTRODUCED IN THE IRON MELT, METHOD FOR PRODUCING CASTINGS FROM IRON, INSTALLATION FOR DETERMINING THE NUMBER OF STRUCTURAL-MODIFICATING SMOKE
JP2000131311A (en) Sample collecting container for thermal analysis of molten metal
JPH03172731A (en) Method and device for preparing standard sample of zinc base metal
JP3308276B2 (en) Non-contact continuous temperature measurement method for solidification of alloys
SU1402883A1 (en) Method of determining relative content of nonmetallic inclusions in metals
JPH02257062A (en) Method and device for extracting gas for sample analysis
RU166586U1 (en) DEVICE FOR RESEARCH OF MODIFIING ABILITY OF LIGATURES
JPH0754858Y2 (en) Freezing point temperature measuring device
KR910006222B1 (en) Apparatus for measuring silicon amount in molten iron
SU1142777A1 (en) Plant for testing materials for thermal stability in melts
SU1122104A1 (en) Device for proximate analysis of chemical composition of metals and alloys (versions)
SU928199A1 (en) Device for investigating surface properties of melts
JPH0222690Y2 (en)
SU1155916A1 (en) Device for determining rate of dissolution of solid substance in metallurgical melts

Legal Events

Date Code Title Description
MKLA Lapsed