CA1280700C - Lubricating apparatus - Google Patents
Lubricating apparatusInfo
- Publication number
- CA1280700C CA1280700C CA000528759A CA528759A CA1280700C CA 1280700 C CA1280700 C CA 1280700C CA 000528759 A CA000528759 A CA 000528759A CA 528759 A CA528759 A CA 528759A CA 1280700 C CA1280700 C CA 1280700C
- Authority
- CA
- Canada
- Prior art keywords
- chamber
- lubricant
- bellows
- reaction chamber
- pressure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000001050 lubricating effect Effects 0.000 title claims abstract description 11
- 239000000314 lubricant Substances 0.000 claims abstract description 23
- 238000006243 chemical reaction Methods 0.000 claims description 15
- 239000004952 Polyamide Substances 0.000 claims description 2
- 230000006872 improvement Effects 0.000 claims description 2
- 229920002647 polyamide Polymers 0.000 claims description 2
- 229920000049 Carbon (fiber) Polymers 0.000 claims 1
- 239000004917 carbon fiber Substances 0.000 claims 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims 1
- 230000002093 peripheral effect Effects 0.000 claims 1
- 230000002688 persistence Effects 0.000 claims 1
- 239000004519 grease Substances 0.000 description 13
- 229920001971 elastomer Polymers 0.000 description 6
- 229920001084 poly(chloroprene) Polymers 0.000 description 4
- 239000004020 conductor Substances 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 239000004677 Nylon Substances 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005461 lubrication Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 229920001778 nylon Polymers 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229920002614 Polyether block amide Polymers 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005923 long-lasting effect Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16N—LUBRICATING
- F16N11/00—Arrangements for supplying grease from a stationary reservoir or the equivalent in or on the machine or member to be lubricated; Grease cups
- F16N11/10—Arrangements for supplying grease from a stationary reservoir or the equivalent in or on the machine or member to be lubricated; Grease cups by pressure of another fluid
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Lubricants (AREA)
Abstract
ABSTRACT OF THE DISCLOSURE
A lubricating apparatus comprising a lubricant chamber with an outlet for lubricant in the chamber.
There is a gas generating device to generate gas to deve-lop pressure. The pressure forces lubricant from the chamber. The pressure is applied by a bellows.
A lubricating apparatus comprising a lubricant chamber with an outlet for lubricant in the chamber.
There is a gas generating device to generate gas to deve-lop pressure. The pressure forces lubricant from the chamber. The pressure is applied by a bellows.
Description
~2~3~700 This invention relates to a lubricating appara-tus, particularly an apparatus able to provide grease automatically to a location to be lubricated, for example a bearing, without manual attendance.
Automatic greasing apparatus are well known.
They provide the great virtue of providing a constant supply of lubricant to a bearing, or indeed anything that needs to be lubricated, without manual interference.
That is it is not necessary to keep a schedule of what bearings have been lubricated and what have not and when the bearings should be lubricated. Th~ automatic appara-tus simply provides a constant flow of grease.
The principal method of forcing the grease to the place to be lubricated is by gas pressure. The gas pressure may be developed by chemical reaction and the pressure developed, as a result of gas development, is used to force grease from the container, down a grease line to the bearing.
The apparatus is reliable and long-lasting.
Indeed apparatus developed by applicant is able to pro-vide lubrication of a bearing Eor upto 3 years which is extremely desirable, especially where it can be difficult for a man to reach to carry out the necessary lubrication.
--1-- r ~
.. .. ~
In prior art automatic greasing apparatus it is usual to incorporate a neoprene or rubber diaphragm. The gas acts against the diaphragm, stretching it to move a piston to move grease out of a grease chamber.
However there are a number of disadvantages with the use of rubber and neoprene diaphragms prin-cipally because such diaphragms do not react in a uniform manner to pressure or to temperature. Furthermore their resistance temperature is not particularly good, espe-cially the resistance to low temperature. As a result the characteristics of the diaphragm can change markedly and this, of course, can have an effect on the lubri-cating capability of the apparatus.
The present invention seeks to provide a means of avoiding this inconstant response by providing as part of the greasing apparatus, used to force grease from the apparatus, a component that is able to withstand wide variations in temperature, with a consistent response and, similarly, wide variations in pressure, again with a constant response.
~ ccordingly the present invention is in a lubricating apparatus comprising a lubricant chamber with an outlet for lubricant in the chamber; a gas generating device to generate gas to develop pressure; means responsive to the pressure to force lubricant Erom the chamber, and is the improvement whereby the means respon-,. ~
~2~
sive to the pressure is a bellows.
Aspects of the invention are illustrated,merely by way oi example, in the accompanying drawings in which:
Figure 1 is a perspective view of a lubricating apparatus according to the present invention;
Figure 2 is a bottom plan view of the lubri-cating apparatus of the invention with its base member removed;
Figure 3 is a section on the line 3-3 in Figure 2;
Figure 4 is a detail of bellows useful in the apparatus of the present invention;
Figure 5 is a diagram of a circuit useful in controlling the apparatus of the present invention;
Figure 6 illustrated a modification of the cir-cuit of Figure 5;
Figure 7 illustrates a further modification of the circuit of Figure 5; and Figure 8 illustrates a simple circuit diagram using an external power source.
The drawings show a lubricating apparatus comprising, as shown particularly in Figure 3, lubricant chamber 2 having an outlet 4 for lubricant. In the drawing, which is simply of the apparatus, not in its working position, the outlet 4 is blocked with a plug 6, 7~30 removed when the device is to be used. A grease line can then be a-ttached on threaded portion 8.
There is a gas generating device to generate gas to develop pressure. These means are well known and may, for example, comprise a reaction chamber 10 having an anode 12 and a cathode 14. Batteries 16 are provided to provide voltage across the anode 12 and the cathode.
The reaction chamber 10 may contain any chemical com-position that, upon the application of a voltage, genera-tes the gas. Typically, for convenience of storage the reactants are absorbed on a sponge.
There are a plurality of resistors 18 tsee Figures 4, 5 and 7) between the batteries 16 and the electrodes 12 and 14. Resistors 18, 20, 22, 24 and 26 are mounted in a printed circuit board (PCB) 28 attached to base member 30. The printed circuit board has the resistors 18 to 26 located on it and, of course, com-municating with the printed, copper circuit. Screws 32 act as switches. One screw 32 is shown extending exter-nally of the base member 30 so that its head makes a con-tact for the printed circuit and introduces a resistor into the circuit. The resistors 18 to 26 are a predeter-mined value as indicated in Figure 5. Typically the exterior oE the device, usually the base member 30, will be marked with an indication of time. That is iE one resistor 18 to 26 is brought into contact by moving a --4~
~30700 screw 32 so that its head completes the circuit ~see the left screw in Fi~ure 3) then the device will be useful for a certain time, aEter which all the grease will have been expelled from the chamber.
The batteries 16 contact leads 34 and 36 to supply power to the reaction chamber lO from the ~rinted circuit board. Conductor member 34 takes the power to the anode 12. Conductor 36 takes power to a conductor 38 on the printed circuit board 28 to the cathode 14. The arrangement is conventional, that is the printed circuit board is entirely conventional and not in any way form a part of the present invention. Current is conducted to the reaction chamber 10 through metallic studs 40, insu-laked from the remainder of the structure by insulating members 42.
The apparatus includes means responsive to the pressure generated by the gas to force lubricant from the chamber. In the present invention the means responsive to the pressure comprises a bellows 44, as most clearly shown in Figure 4. The bellows 44 is typically of polyamide and, in a preferred embodiment is made of the nylon available under the trade mark PEBAX. The bellows i5 formed with corrugations 46 enabling its expansion and contraction. Ik is closed at one end 48 and is formed at its base with a flange 50.
~ piston 52 is also located in the lubricant chamber 2. In the illustrated embodiment - see Figure 3 - the bellows 44 expands on the generation of gas to push against piston 52 which is a gastight slidable fit within the chamber 2.
The apparatus includes a collar 54 to which the lubricant chamber 2 is threadedly attached at 56. The base member 30 is clamped between the collar 54 and member 58, which includes the reaction chamber 10 and a recess 60 to receive the batteries 16. As shown in Figure 2, member 58 may be formed with bracing ribs 62.
Bellows 44 is then clamped by an internal flanye 6~ on the lubricant chamber 2 abutting a flat 66 on the member 58. Flat 66 may be formed with projection 67 to assist in sealing. O-ring 68 seals base member 30 to member 58.
To use the device of the present invention it is clamped in position with thread 8 attached to a grease line for whatever is desired to be lubricated, typically a bearing. A screw 32, which of course functions as a switch, is withdrawn, depending upon the needed time of operation, as shown to the left in Figure 3 and the cir-cuit across the reaction chamber thus established.
Lubricant chamber 2 is, of course, full o grease. As the gas is generated it expands bellows 44 which moves the piston 52 which Eorces grease Erom the chamber through outlet 4.
~X~31)70~
The bellows 44 has a great number of advantages over the prior art but in particular has the great virtue of consistency of performance. That is regardless of external pressure or temperature the bellows, as illustrated in Figure 4 according to the preferred embo-diment of the invention, provides particularly uniform performance. In the prior art bellows would not, of course, be present but neoprene and rubber devices have been used, typically in the form of a diaphragm. ~lowever the stretch curve of such a diaphragm varies markedly.
That is its elastic properties diE~er markedly depending upon the external pressure and the amount of stretching that it has undergone. Furthermore rubber and neoprene have less desirable temperature responsive charac-teristics. Rubber at relatively cold temperatures requires much ~reater pressures to stretch it and at low temperatures, Eor example minus 40C, can re~uire such pressure to stretch that it will not be effective in the lubricating apparatus of the type according to the pre-sent invention.
The nylon bellows will not become brittle until minus 94C but rubber becomes brittle at about minus 64C.
Various circuits useEul with the apparatus o-E
the present invention and, in particular, built into the printed circuit board 28 on the base member 30 of the ~8C~70~
apparatus are illustrated in Figures 5, 6, 7 and 8. The circuit of Figure 5 is most simple and comprises a 3 volt power source, typically two ~A batteries 16, mounted within the recess 60. ~ light emitting diode LED 70 is arranged in series with resistor 72 and with transistor 74. A second transistor 76 is in series with the first and emitter 78 communicates with line 80.
Resistors 82, 84 and 86 are positioned in series with a third transistor 88. The electrochemical reactor 10 is arranged as shown particularly in Figure 3 and power supply to the reactor 10 is controlled by resistors 18 to 26, each controlled bv switches 32. The arrangement is such that current is applied to the electrochemical reactor and, depending on the number of switches 32 that are closed, the period of reaction within the reactor, and thus of gas generation, is controlled. The LED 70 indicates when current flows in the circuit, that is when the device is in operation.
Figure 6 differs from Figure 5 only by the pro-vision of a pressure sensing device 90 to vary the current in the circuit depending on ambient pressure.
The sensing of ambient pressure permits the operation of a shunt 92 to vary the current to the electrochemical reactor 10 and thus the supply oE lubricant. If the external pressure increases then the generated pressure, that is the volume of gas generated, should be increased.
^~ ~
~L~8c~70c~
Figure 7 illustrates a more complicated variation of the circuits o~ Figures 5 and 6. It differs from those circuits by the fact that pressure sensing device 90 is able to shunt any selected timing circuit.
In Figure 7 the time for which the device is operable with the numbers of resistors 18 to 26 switched into the circuit is shown.
The circuit again has a current source 16, typically in the form of A~ batteries joined in series~
across the electrochemicaL reactor. Resistance 94 is in series with the reactor 10. The circuit has transistor 96 shunted by line 98 containing resistor lO0 and transistor 102. Transistor 102 is in series with capacitor 104. An LED 106 is present with resistor 108 in parallel and resistor 110 in series. Capacitor 112 is in series with resistor 110. Transistor 114 is in series with resistor 116 and with transistor 118. Resistor 120 is the equivalent of resistor 84 in the circuit of Figure 6. Transistor 118 is in series with resistor 122.
The circuit shown in Figure 8 is a simple indi-cation of the use of an external source 124 feeding through a transformer to provide power to the circuit.
The external source 124 may, for example, be a battery oE
a vehicle, especially where the lubricating apparatus is mounted on a vehicle. The circuit includes sockets 126, resistor 128 and switch 130, typically mounted con-veniently, for example on the facia oE a vehicle.
Automatic greasing apparatus are well known.
They provide the great virtue of providing a constant supply of lubricant to a bearing, or indeed anything that needs to be lubricated, without manual interference.
That is it is not necessary to keep a schedule of what bearings have been lubricated and what have not and when the bearings should be lubricated. Th~ automatic appara-tus simply provides a constant flow of grease.
The principal method of forcing the grease to the place to be lubricated is by gas pressure. The gas pressure may be developed by chemical reaction and the pressure developed, as a result of gas development, is used to force grease from the container, down a grease line to the bearing.
The apparatus is reliable and long-lasting.
Indeed apparatus developed by applicant is able to pro-vide lubrication of a bearing Eor upto 3 years which is extremely desirable, especially where it can be difficult for a man to reach to carry out the necessary lubrication.
--1-- r ~
.. .. ~
In prior art automatic greasing apparatus it is usual to incorporate a neoprene or rubber diaphragm. The gas acts against the diaphragm, stretching it to move a piston to move grease out of a grease chamber.
However there are a number of disadvantages with the use of rubber and neoprene diaphragms prin-cipally because such diaphragms do not react in a uniform manner to pressure or to temperature. Furthermore their resistance temperature is not particularly good, espe-cially the resistance to low temperature. As a result the characteristics of the diaphragm can change markedly and this, of course, can have an effect on the lubri-cating capability of the apparatus.
The present invention seeks to provide a means of avoiding this inconstant response by providing as part of the greasing apparatus, used to force grease from the apparatus, a component that is able to withstand wide variations in temperature, with a consistent response and, similarly, wide variations in pressure, again with a constant response.
~ ccordingly the present invention is in a lubricating apparatus comprising a lubricant chamber with an outlet for lubricant in the chamber; a gas generating device to generate gas to develop pressure; means responsive to the pressure to force lubricant Erom the chamber, and is the improvement whereby the means respon-,. ~
~2~
sive to the pressure is a bellows.
Aspects of the invention are illustrated,merely by way oi example, in the accompanying drawings in which:
Figure 1 is a perspective view of a lubricating apparatus according to the present invention;
Figure 2 is a bottom plan view of the lubri-cating apparatus of the invention with its base member removed;
Figure 3 is a section on the line 3-3 in Figure 2;
Figure 4 is a detail of bellows useful in the apparatus of the present invention;
Figure 5 is a diagram of a circuit useful in controlling the apparatus of the present invention;
Figure 6 illustrated a modification of the cir-cuit of Figure 5;
Figure 7 illustrates a further modification of the circuit of Figure 5; and Figure 8 illustrates a simple circuit diagram using an external power source.
The drawings show a lubricating apparatus comprising, as shown particularly in Figure 3, lubricant chamber 2 having an outlet 4 for lubricant. In the drawing, which is simply of the apparatus, not in its working position, the outlet 4 is blocked with a plug 6, 7~30 removed when the device is to be used. A grease line can then be a-ttached on threaded portion 8.
There is a gas generating device to generate gas to develop pressure. These means are well known and may, for example, comprise a reaction chamber 10 having an anode 12 and a cathode 14. Batteries 16 are provided to provide voltage across the anode 12 and the cathode.
The reaction chamber 10 may contain any chemical com-position that, upon the application of a voltage, genera-tes the gas. Typically, for convenience of storage the reactants are absorbed on a sponge.
There are a plurality of resistors 18 tsee Figures 4, 5 and 7) between the batteries 16 and the electrodes 12 and 14. Resistors 18, 20, 22, 24 and 26 are mounted in a printed circuit board (PCB) 28 attached to base member 30. The printed circuit board has the resistors 18 to 26 located on it and, of course, com-municating with the printed, copper circuit. Screws 32 act as switches. One screw 32 is shown extending exter-nally of the base member 30 so that its head makes a con-tact for the printed circuit and introduces a resistor into the circuit. The resistors 18 to 26 are a predeter-mined value as indicated in Figure 5. Typically the exterior oE the device, usually the base member 30, will be marked with an indication of time. That is iE one resistor 18 to 26 is brought into contact by moving a --4~
~30700 screw 32 so that its head completes the circuit ~see the left screw in Fi~ure 3) then the device will be useful for a certain time, aEter which all the grease will have been expelled from the chamber.
The batteries 16 contact leads 34 and 36 to supply power to the reaction chamber lO from the ~rinted circuit board. Conductor member 34 takes the power to the anode 12. Conductor 36 takes power to a conductor 38 on the printed circuit board 28 to the cathode 14. The arrangement is conventional, that is the printed circuit board is entirely conventional and not in any way form a part of the present invention. Current is conducted to the reaction chamber 10 through metallic studs 40, insu-laked from the remainder of the structure by insulating members 42.
The apparatus includes means responsive to the pressure generated by the gas to force lubricant from the chamber. In the present invention the means responsive to the pressure comprises a bellows 44, as most clearly shown in Figure 4. The bellows 44 is typically of polyamide and, in a preferred embodiment is made of the nylon available under the trade mark PEBAX. The bellows i5 formed with corrugations 46 enabling its expansion and contraction. Ik is closed at one end 48 and is formed at its base with a flange 50.
~ piston 52 is also located in the lubricant chamber 2. In the illustrated embodiment - see Figure 3 - the bellows 44 expands on the generation of gas to push against piston 52 which is a gastight slidable fit within the chamber 2.
The apparatus includes a collar 54 to which the lubricant chamber 2 is threadedly attached at 56. The base member 30 is clamped between the collar 54 and member 58, which includes the reaction chamber 10 and a recess 60 to receive the batteries 16. As shown in Figure 2, member 58 may be formed with bracing ribs 62.
Bellows 44 is then clamped by an internal flanye 6~ on the lubricant chamber 2 abutting a flat 66 on the member 58. Flat 66 may be formed with projection 67 to assist in sealing. O-ring 68 seals base member 30 to member 58.
To use the device of the present invention it is clamped in position with thread 8 attached to a grease line for whatever is desired to be lubricated, typically a bearing. A screw 32, which of course functions as a switch, is withdrawn, depending upon the needed time of operation, as shown to the left in Figure 3 and the cir-cuit across the reaction chamber thus established.
Lubricant chamber 2 is, of course, full o grease. As the gas is generated it expands bellows 44 which moves the piston 52 which Eorces grease Erom the chamber through outlet 4.
~X~31)70~
The bellows 44 has a great number of advantages over the prior art but in particular has the great virtue of consistency of performance. That is regardless of external pressure or temperature the bellows, as illustrated in Figure 4 according to the preferred embo-diment of the invention, provides particularly uniform performance. In the prior art bellows would not, of course, be present but neoprene and rubber devices have been used, typically in the form of a diaphragm. ~lowever the stretch curve of such a diaphragm varies markedly.
That is its elastic properties diE~er markedly depending upon the external pressure and the amount of stretching that it has undergone. Furthermore rubber and neoprene have less desirable temperature responsive charac-teristics. Rubber at relatively cold temperatures requires much ~reater pressures to stretch it and at low temperatures, Eor example minus 40C, can re~uire such pressure to stretch that it will not be effective in the lubricating apparatus of the type according to the pre-sent invention.
The nylon bellows will not become brittle until minus 94C but rubber becomes brittle at about minus 64C.
Various circuits useEul with the apparatus o-E
the present invention and, in particular, built into the printed circuit board 28 on the base member 30 of the ~8C~70~
apparatus are illustrated in Figures 5, 6, 7 and 8. The circuit of Figure 5 is most simple and comprises a 3 volt power source, typically two ~A batteries 16, mounted within the recess 60. ~ light emitting diode LED 70 is arranged in series with resistor 72 and with transistor 74. A second transistor 76 is in series with the first and emitter 78 communicates with line 80.
Resistors 82, 84 and 86 are positioned in series with a third transistor 88. The electrochemical reactor 10 is arranged as shown particularly in Figure 3 and power supply to the reactor 10 is controlled by resistors 18 to 26, each controlled bv switches 32. The arrangement is such that current is applied to the electrochemical reactor and, depending on the number of switches 32 that are closed, the period of reaction within the reactor, and thus of gas generation, is controlled. The LED 70 indicates when current flows in the circuit, that is when the device is in operation.
Figure 6 differs from Figure 5 only by the pro-vision of a pressure sensing device 90 to vary the current in the circuit depending on ambient pressure.
The sensing of ambient pressure permits the operation of a shunt 92 to vary the current to the electrochemical reactor 10 and thus the supply oE lubricant. If the external pressure increases then the generated pressure, that is the volume of gas generated, should be increased.
^~ ~
~L~8c~70c~
Figure 7 illustrates a more complicated variation of the circuits o~ Figures 5 and 6. It differs from those circuits by the fact that pressure sensing device 90 is able to shunt any selected timing circuit.
In Figure 7 the time for which the device is operable with the numbers of resistors 18 to 26 switched into the circuit is shown.
The circuit again has a current source 16, typically in the form of A~ batteries joined in series~
across the electrochemicaL reactor. Resistance 94 is in series with the reactor 10. The circuit has transistor 96 shunted by line 98 containing resistor lO0 and transistor 102. Transistor 102 is in series with capacitor 104. An LED 106 is present with resistor 108 in parallel and resistor 110 in series. Capacitor 112 is in series with resistor 110. Transistor 114 is in series with resistor 116 and with transistor 118. Resistor 120 is the equivalent of resistor 84 in the circuit of Figure 6. Transistor 118 is in series with resistor 122.
The circuit shown in Figure 8 is a simple indi-cation of the use of an external source 124 feeding through a transformer to provide power to the circuit.
The external source 124 may, for example, be a battery oE
a vehicle, especially where the lubricating apparatus is mounted on a vehicle. The circuit includes sockets 126, resistor 128 and switch 130, typically mounted con-veniently, for example on the facia oE a vehicle.
Claims (13)
1. In a lubricating apparatus comprising a lubricant chamber with an outlet for lubricant in the chamber;
a gas generating device to generate gas to develop pressures;
means responsive to the pressure to force lubricant from the chamber, the improvement whereby the means responsive to the pressure is a bellows.
a gas generating device to generate gas to develop pressures;
means responsive to the pressure to force lubricant from the chamber, the improvement whereby the means responsive to the pressure is a bellows.
2. Apparatus as claimed in claim 1 in which the bellows acts against a piston that contacts and moves lubricant through the outlet.
3. Apparatus as claimed in claim 1 in which the gas is generated in a reaction chamber by the appli-cation of a voltage across an anode and a cathode in the chamber.
4. Apparatus as claimed in claim 1 in which the anode and cathode are of carbon fiber.
5. Apparatus as claimed in claim 3 in which the voltage is applied by dry cells.
6. Apparatus as claimed in claim 5 including a plurality of resistors between the cells and the reactor;
switch means for each resistors;
whereby the voltage applied to the reaction chamber can be varied to control the rate of gas generation.
switch means for each resistors;
whereby the voltage applied to the reaction chamber can be varied to control the rate of gas generation.
7. Apparatus as claimed in claim 1 in which the bellows is of a polyamide.
8. Apparatus as claimed in claim 7 in which the bellows has a base flange to permit its clamping within the device.
9. Apparatus as claimed in claim 1 comprising a base member;
the lubricant chamber being threadedly received within the base member;
a plurality of resistors located in the base member;
switch means to permit variation of the per-sistence of the resistors;
a reaction chamber received within the base member and adapted to receive a power source;
an outlet for the reaction chamber;
bellows being mounted on the reaction chamber with a hollow interior communicating with the outlet;
bellows being clamped in position between the reaction chamber and the lubricant chamber.
the lubricant chamber being threadedly received within the base member;
a plurality of resistors located in the base member;
switch means to permit variation of the per-sistence of the resistors;
a reaction chamber received within the base member and adapted to receive a power source;
an outlet for the reaction chamber;
bellows being mounted on the reaction chamber with a hollow interior communicating with the outlet;
bellows being clamped in position between the reaction chamber and the lubricant chamber.
10. Apparatus as claimed in claim 9 having corresponding flanges on the reaction chamber and the lubricant chamber;
a peripheral flange on the base of the bellows to clamp between the reaction chamber and lubricant chamber flanges.
a peripheral flange on the base of the bellows to clamp between the reaction chamber and lubricant chamber flanges.
11. Apparatus as claimed in claim 9 including a circuit to allow the application of pulsating power from the power source.
12. Apparatus as claimed in claim 9 including an electronic circuit able to compensate for variations in ambient pressure.
13. Apparatus as claimed in claim 9 including a circuit enabling operation of the device from an exter-nal power source.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA000528759A CA1280700C (en) | 1987-02-02 | 1987-02-02 | Lubricating apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA000528759A CA1280700C (en) | 1987-02-02 | 1987-02-02 | Lubricating apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
CA1280700C true CA1280700C (en) | 1991-02-26 |
Family
ID=4134885
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA000528759A Expired - Lifetime CA1280700C (en) | 1987-02-02 | 1987-02-02 | Lubricating apparatus |
Country Status (1)
Country | Link |
---|---|
CA (1) | CA1280700C (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8783418B2 (en) | 2004-05-06 | 2014-07-22 | Natasa Enterprises Ltd | Automatic motor driven in-line piston pump lubricator |
US9151443B2 (en) | 2009-02-22 | 2015-10-06 | Stephania Holdings Inc. | Fluid holder and electromechanical lubricator employing same |
-
1987
- 1987-02-02 CA CA000528759A patent/CA1280700C/en not_active Expired - Lifetime
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8783418B2 (en) | 2004-05-06 | 2014-07-22 | Natasa Enterprises Ltd | Automatic motor driven in-line piston pump lubricator |
US9151443B2 (en) | 2009-02-22 | 2015-10-06 | Stephania Holdings Inc. | Fluid holder and electromechanical lubricator employing same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4671386A (en) | Lubricating apparatus | |
US4023648A (en) | Lubricant applicators | |
US5404966A (en) | Lubrication apparatus | |
US4928700A (en) | Pulse wave detecting apparatus | |
GB1526913A (en) | Apparatus for water purification | |
EP0278138B1 (en) | Lubricating apparatus | |
CA1280700C (en) | Lubricating apparatus | |
FR2755706B1 (en) | STEAM GENERATOR | |
US4581941A (en) | Combined electronic pressure transducer and power switch | |
ES8406215A1 (en) | Probe and drain assembly. | |
US4612102A (en) | Silver recovery system | |
US5667037A (en) | Lubrication system | |
AU600468B2 (en) | Lubricating apparatus | |
CN216227450U (en) | Multipurpose special electronic welding table | |
KR920004472B1 (en) | Lubrication apparatus | |
US6589403B2 (en) | Electrolysis gas converter and electric device using same | |
US3696747A (en) | Flooder | |
JPH0726716B2 (en) | Automatic lubricator | |
US3275925A (en) | Electrolytic cell anode potential control system | |
ATE225928T1 (en) | WEAPON SYSTEM | |
DE3472002D1 (en) | Contact device, especially for guns and munition | |
FR2348550A1 (en) | Temp. sensing thermistor electric insulation - uses electrically insulating mesh sleeve to house thermistor to provide simultaneous heat contact and electrical insulation | |
FR2394785A1 (en) | Lubrication oil flow monitoring system - has conductive float responsive to flow used to operate alarm | |
SU122286A1 (en) | Signaling device | |
JPS5445458A (en) | Oiling of chain conveyor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MKEX | Expiry |