CA1278911C - Flexible machining system - Google Patents

Flexible machining system

Info

Publication number
CA1278911C
CA1278911C CA000492765A CA492765A CA1278911C CA 1278911 C CA1278911 C CA 1278911C CA 000492765 A CA000492765 A CA 000492765A CA 492765 A CA492765 A CA 492765A CA 1278911 C CA1278911 C CA 1278911C
Authority
CA
Canada
Prior art keywords
receiving means
axis
mounting
along
receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CA000492765A
Other languages
French (fr)
Inventor
Reno D. Sansone
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WADELL MACHINE AND TOOL COMPANY Inc
Original Assignee
Wadell Equipment Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wadell Equipment Co Inc filed Critical Wadell Equipment Co Inc
Priority to CA000492765A priority Critical patent/CA1278911C/en
Application granted granted Critical
Publication of CA1278911C publication Critical patent/CA1278911C/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

ABSTRACT OF THE DISCLOSURE

Flexible machining apparatus includes first, second and third holding means, each of which is adapted to releaseably and rotatably receive a workpiece or a tool. The first and second holding means, which are arranged coaxially relative to each other, can be moved bidirectionally along a first axis. The third holding means, which can be moved bidirectionally along the first axis between the first and second holding means, is also movable bidirectionally along a second axis which is perpendicular to the first axis.

Description

~ 78~

The present invention relates to a flexible machining system, and, more particularly, to such a system which has the flexibility to function as a chucking, boring, milling, way-type and shaf-t machine.
In the past, at-tempts have been made to develop machining systems which have increased flexibility. Thus, for example, in U.S. Patent No. 4,457,193 there is disclosed a machining apparatus which includes two coaxial spindles. One spindle is mounted on a stationary headstock, while the other spindle is carried on a movable headstock, which is designed to permit the transfer of workpieces between the spindles. Vertical tool turrets are carried by slides mounted on opposite sides of the axis of rotation of the spindles. The slides and hence the vertical tool turrets can move in a direction parallel to the axis of rotation of the spindle. The vertical tool -turrets can also move in a direction perpendicular to the axis of rotation of -the spindles.
The machining apparatus of the '193 patent has the capability of permi-tting two tools to simultaneously perform machining operations on a workpiece mounted on either one of the spindles. Also, the apparatus has the capability of permitting a workpiece mounted in one spindle to be machined by a tool mounted in one turret, while another workpiece moun-ted in the other spindle is machined by a tool mounted in the other turret. Although these capabilities give the apparatus some degree of flexibility, the flexibility of the apparatus is limited.
For instance, because the vertical turrets are adapted to hold tools only, the machining apparatus does not have the capability of functioning as a way-type machine in which workpieces would be mounted in place of the turrets and , .

~ ~ .
-2- ~ ~ 7 a ~1~

the spindles, equipped with appropriate tools, would be moved toward -the workpiece to perform a machining operation thereon. The inability to mount workpieces between the spindles also eliminates the capability of simultaneously machining both ends of a single workpiece.
Because the vertical turrets are not adapted to receive workpieces, the workpieces must be mounted in -the spindles and the tools must be mounted in the turrets. As a result of such a desiyn constraint, the machining operations which can be performed by the apparatus are limited to those operations which can be performed by a non-rotating tool on a rotating workpiece. Inasmuch as the vertical turrets are permanently mounted on the slides, the apparatus does not have the flexibility to replace the vertical turrets with horizontal turrets or with a jig milling attachment.
According to the present invention, there is provided a flexible machining apparatus which includes first holding means for releaseably and rotatably holding a workpiece or a tool, first mounting means for mounting the first holding means such that the first holding means is movable bidirectionally along a first axis, second holding means for releaseably and rotatably holding a workpiece or a tool, second mounting means for mounting the second holding means such that the second holding means is movable bidirectionally along the first axis and such that the second holding means is arranged coaxially relative to the first holding means, third holding means for releaseably holding a workpiece or a tool, and third mounting means for mounting the third holding means such that the -third holding means is movable bidirectionally along the first axis between -the first and second holding `
: ~ .

~7891~

means and such that the third holding means is movable bidirectionally along a second axis which is arranged perpendicular to the first axis. More particularly, the first holding means can be a first spindle, the first S mounting means can be a first slide, the second holding means can be a second spindle, the second mounting means can be a second slide, and the third mounting means can be a third slide, which includes a main slide movable bidirectionally along the first axis and a cross,,slide mounted on -the main slide for bidirectional movement relative thereto along the second axis.
In one exemplary embodiment of the presen-t invention, the third holding means is a modular horizontal tool turret, which is removably mounted on the cross slide for conjoint movement therewith along the first an~ ,econd axis.
In a second exemplary embodimen-t, the -third holding means is a modular vertical tool turret, which is removably mounted on the cross slide for conjoint movement therewith along the first and second axis.
In a third exemplary embodiment, the third holding means is a clamp removably mounted on the cross slide for conjoint movement therewith along the first and second axis. The clamp includes a pair of clamp members which cooperate with each other to releaseably clamp a workpiece to the cross slide.
In a fourth exemplary embodiment, the third holding means is a jig milling slide removably mounted on the cross slide for conjoint movement therewith along the first and second axis. The jig milling slide also is movable bidirectionally along a third axis arranged normal to a plane containing the first and second axis.

The four embodiments described above provide the present invention with the capability of operating as a single or double spind]e chucker, a precision boring machine, a way-type machine, a lathe, an automatic bar feeder or a jig milling machine. Thus, the present invention offers the user a high degree of flexibility.
In order tha-t the invention may be fully understood, i-t will now be described with reference to the accompanying drawings, in which:
Figure 1 is a perspective view of a first exemplary embodiment of a flexible machining system constructed in accordance with the present invention;
Figure 2 is a top view, looking down at a slight angle relative to the vertical, of the flexible rnachining 15 system illustrated in Figure 1;
Figure 3 is a perspective view of a second exemplary embodiment of a flexible machining system construc-ted in accordance with the present invention;
Figure 4 is a perspective view of a third exemplary embodiment of a flexible machining system constructed in accordance with the present invention; and Figure 5 is a perspective view of a fourth exemplary embodiment of a flexible machining system constructed in accordance with the present invention.
Referring -to Figures 1 and 2, a flexible machining system 10 includes a base 12 of fabricated steel construction. The base 12 has a pair of ends 14, 16 and a slant bed 18. A pair of hardened and ground box-type ways 20, 22 extend across the bed 18. The way 20 is bolted and pinned to a beam 24 which extends along the bed 18 from the end 14 of the base 12 to the end 16 of the base 12. In addition to being bolted and pinned to a beam 26 which extends along the bed 18 from the end 14 of '' ~

-5~

the base 12 to the end 16 of the base 12, -the way 22 is keyed to the beam 26 so that it functions as a guide or register way.
End slides 28l 30 are movably mounted on the ways 20, 22 at the ends 14, 16, respectively, of the base ~2. The end slide 28 carries a precision boring spindle 32, an AC motor 34 and a two-speed gear box 36, which cooperates with the motor 34 to rotate the spindle 32 at infinitely variable speeds. The end slide 30 carries a precision boring spindle 38, an AC motor 40 and a two-speed gear box 42, which cooperates with the motor 40 to rotate the spindle 38 at infinitely variable speeds. The end slides 28, 30 are mounted on the ways 20, 22 such that the spindles 32, 38 are arranged coaxially.~
Hydraulic cylinders 44, 46 move the end slides 28, 30, respectively, along a Z axis 48 which is defined by the ways 20, 22 and which runs longitudinally of the bed 18. More particularly, the hydraulic cylinder 44 includes a casing 50, which is fixedly mounted on the end 14 of the base 12, and a piston 52 (see Figure 2), which is attached to the slide 28. Thus, the position of the slide 28 along the Z axis 48 can he varied by retracting or extending the piston 52 of the hydraulic cylinder 44. Similarly, the hydraulic cylinder 46 includes a casing 54, which is fixedly mounted on the end 16 of the base 12, and a piston 56, which is attached to the slide 30. Thus, the position of the slide 30 along the Z axis 48 can be varied by retracting or extending the : piston 56 of the hydraulic cylinder 46. If it is desired 30 to temporarily fix the position of the end slides 28, 30 ~: relative to the z axis 48, they can be releaseably locked by hydraulic clamps (not shown) to the ways 20, 22.

7~39~1 A central compound slide 58 is mounted for movement along the Z axis 48 between the end slides 28, 30. More particularly, the central slide 58 includes a main slide 60, which is movably mounted on the ways 20, 522. Two hardened and ground box-type ways 62, 64 are mounted on the main slide 60. The central slide 58 also includes a cross slide 66, which is mounted on the ways 62, 64 for movement along an X axis 68 which is defined by the ways 62, 64 and which runs transvers,e~ly of 10the bed 18. A horizontal modular tool turret 70 is removably mounted on the cross slide 66 such that the turret 70 can be indexed bidirectionally. The turret 70 includes eight qualified tool positions 72 adapted to releaseably receive a tool holder (not shown) and ,a 15cutting tool (not shown). Liquid coolant can be supplied to the cutting location through cooling hoses 74, each of which is associated with a corresponding one of the tool positions 72. The turret 70, which is mechanically and hydraulically indexed, can be programmed such tha-t the 20tool positions 72 may be randomly selected.
A hydraulic cylinder 76, which is mounted between the ways 20, 22, moves the central slide 58 along the Z axis 48. More particularly, the hydraulic cylinder 76 includes a casing 78, which is fixedly 25attached to the bed 18 of -the base 12, and a piston 80, which is attached to -the main slide 60 of the central slide S8. Thus, the position of the main slide 60 and hence the central slide 58 along the Z axis 48 can be varied by retracting or extending the piston 80 of the hydraulic cylinder 76. If it is desired to fix the position of the central slide 58 relative to the Z axis 48, the main slide 60 can be releaseably locked to the ways 20, 22 by a hydraulic clamp (not shown). A

~"~

hydraulic cylinder 82 moves the cross slide 66 along the X axis 68. More particularly, the hydraulic cylinder 82 includes a casing 84, which is fixedly attached to the main slide 60, and a piston 86 (see Figure 2), which is attached to the cross slide 66. Thus, the position of the cross slide 66 along the X axis 68 can be varied by retracting or extending the piston 86 of the hydraulic cylinder 82. If it is desired to fix the position of the cross slide 66 relative to the X axis 68, the cross slide 66 can be releaseably locked to the ways 62, 64 by a hydraulic clamp (not shown).
A linear feedback transducer 88 of one micron resolution is mounted on the bed 18. The transducer 88 has three homing positions in order to permit the precise positioning of either of the end slides 28, 30 or the central slide 58 along the Z axis 48. Another linear feedback transducer 90 of one micron resolution is mounted on the cross slide 66 in order to permit the precise positioning of the cross slide 66 along the X axis 68.
The embodiment illustrated in Figures 1 and 2 can be operated as a single end chucking machine or a double end chucking machine. As a single end chucking machine, a workpiece would be chucked in one of the spindles 32, 38 and one or more tools would be mounted in the turret 70. In order to permit the tool or tools to perform a machining operation on the workpiece, the central slide 58 would be moved along the Z axis 48 toward the spindle in which the workpiece is chucked. As a double end chucking machine, the turret 70 would be equipped with one tool adapted to perform a machining operation on a workpiece chucked in one of the spindles 32, 38 and with at least one other tool adapted to perform a machining operation on a workpiece chucked in the other one of the -8- ~ 9~

spindles 32,38. In order to perform a machining operation on a workpiece chucked in the spindle 32, the central slide 58 would be moved in one direction along the Z axis ~8 toward the spindle 32. After the workpiece chucked in the spindle 32 has been machined, a machining operation could be performed on the workpiece chucked in ; the spindle 38 by moving the central slide 58 in an opposite direction along the Z axis 48 -toward the spindle 38. Also, a single workpiece could be chucked in, for example, the spindle 32 for machining by one tool mounted in the turret 70. After its machining, the workpiece could be automatically transferred to the spindle 38 by moving the spindle 38 along the Z axis 48 toward the spindle 32. Upon chucking the workpiece i~ the spindle 38, the spindle 38 could be returned t~ its original position in preparation for the performance of another machining operation on the workpiece by an appropriate tool mounted in the turret 70. It should be understood that the workpiece can be transferred from the spindle 38 to the spindle 32, as well as from the spindle 32 -to -the spindle 38.
The embodiment of Figures l and 2 can also function as a lathe by having one of the spindles 32, 38 function as a headstock and the other function as a : 25 tailstock. A suitable tool would be mounted in the turret 70 and positioned so as to perform a machining : operation on a workpiece as it is rotated by the spindles 32, 38.
By providing the spindles 32, 38 with through holes, the embodiment of Figures l and 2 could also function as an automatic bar feed machine in which a bar ~ is fed through either one of the spindles 32, 38 to a tool .~, ~ , , ;:

~'78~1 carried by the turret 70. More particularly, after feeding the bar through, for example, the spindle 32, a suitable chuck in the spindle 32 would hold the bar in position as it is rotated and a tool mounted in the turret 70 is moved toward the bar to perform a machining operation thereon.
After the machining operation has been completed, the central slide 58 could be moved away from the bar along the X axis 68 and the opposing spindle 38 could be moved into a position in which it grabs the bar. As the bar is held by the spindles 32, 38, a cutting tool held by the turret 70 can be moved along the X axis 68 to a position in which it severs the bar. The severed portion of the bar can then be transferred by the spindle 38 to a position in which another tool mounted in the turret 70 performs a machining operation on an opposite end or unmachined area of the severed portion of the bar.
Three other exemplary embodiments of the present invention are illustrated in Figures 3, 4 and 5. Elements illustrated in Figures 3, 4 and 5 which correspond to the elements described above with respect to Figures 1 and 2 have been designa-ted by corresponding even numbered reference numerals increased by one hundred, two hundred and three hundred, respectively, while new elements are designated by odd numbered reference numerals. The embodiments of Figures 3, 4 and 5 are constructed and operated in the same manner as the embodiment of Figures 1 and 2 unless it is otherwise stated.
Referring now to Figure 3, a central slide 158 is provided with a vertical modular tool turret 111, which can be indexed bidirectionally. The vertical turret 111 includes six qualified tool positions 113. ~asically, the vertical turret 111 is adapted to perform the same machining operations which can be performed by the ', ' - 1 o ~;~7~391~L

horizontal turret 70 of the embodiment of Figures 1 and 2.
One reason for replacing the horizontal turret 70 with the vertical turre-t 111 is to obtain additional clearance.
With reference to Figure 4, a central slide 258 is provided with an automatic hydraulically-operated clamp 211 adapted to non-rotatably hold a workpiece. By mounting a suitable tool in a spindle 232 and moving the workpiece toward the tool, a machining operation can be performed on the workpiece. If another tool is mount,e,d in a spindle 238, the workpiece can be subjected to a second machining operation by moving it away from the spindle 232 and toward the spindle 238. The embodiment of Figure 4 can also function as a way-type machine by maintaining the central slide 258 stationary and moving the spindles 232, 238 toward the central slide 258, whereby two machining operations may be simultaneously or successively performed on the opposing ends of the workpiece.
Referring now to Figure 5, a central slide 358 is provided with a vertical slide 311 adapted -to be moved up and down along a Y axis 313, which is normal to a plane containing a Z axis 348 and arranged parallel to ways 320, 322, by a hydraulic cylinder (not shown). This embodiment permits a jig milling operation to be performed by mounting a tool in the slide 311 and a workpiece in one of two spindles 332, 338. Alternatively, the slide 311 could hold the workpiece, while the tool is held in one of the spindles 332, 338.
During the operation of all four of the embodiments described above, all machine movements along the various axis are numerically controlled by a computer.
The direction and speed of rotation of the spindles are also numerically controlled by the computer. In addition, 78~1~

all metal cuttiny functions or operations are under the same computerized control.
It will be understood that the embodiments described herein are merely exemplary and that a person skilled in the art may make many variations and modifications without departing from the spirit and scope of the invention. For instance, another workpiece or -tool holder can be mounted such that it is movable bidirectionally along the Z axis 48 between the spindles 32, 38 and such that it is movable bidirectionally along the X axis 68. All such modifications and variations are intended to be included within the scope of the invention as defined in the appended claims.

Claims (16)

1. Flexible machining apparatus, comprising first holding means for releasably and rotatably-holding a workpiece or a tool, first mounting means for mounting said first holding means such that said first holding means is movable bidirectionally along a first axis, second holding means for releaseably and rotatably holding a workpiece or a tool, second mounting means for mounting said second holding means such that said second holding means is movable bidirectionally along said first axis and such that said second holding means is arranged coaxially relative to said first holding means, third holding means for releasably holding a workpiece or a tool, and third mounting means for mounting said third holding means such that said third holding means is movable bidirectionally along said first axis between said first and second holding means and such that said third holding means is movable bidirectionally along a second axis which is arranged perpendicular to said first axis, and wherein said first holding means includes a first spindle, said first mounting means includes a first slide, said second holding means includes a second spindle, said second mounting means includes a second slide, and said third mounting means includes a third slide, said third slide including a main slide movable bidirectionally along said first axis and a cross slide mounted on said main slide for bidirectional movement relative thereto along said second axis and further comprising first moving means for bidirectionally moving said first mounting means along said first axis, second moving means for bidirectionally moving said second mounting means along said first axis, third moving means for bidirectionally moving said main slide along said first axis, and fourth moving means for bidirectionally moving said cross slide along said second axis and wherein said first moving means is a first hydraulic cylinder, said second moving means is a second hydraulic cylinder, said third moving means is a third hydraulic cylinder and said fourth moving means is a fourth hydraulic cylinder.
2. Flexible machining apparatus according to claim 1, wherein said first, second, third and fourth hydraulic cylinders are numerically controlled by a computer.
3. Flexible machining apparatus according to claim 2, wherein said first holding means includes a first spindle, said first mounting means includes a first slide, said second holding means includes a second spindle, said second mounting means includes a second slide, and said third mounting means includes a third slide, said third slide including a main slide movable bidirectionally along said first axis and a cross slide mounted on said main slide for bidirectional movement relative thereto along said second axis, further comprising first moving means for bidirectionally moving said first mounting means along said way system, second moving means for bidirectionally moving said second mounting means along said way system, third moving means for bidirectionally moving said main slide along said way system, and fourth moving means for bidirectionally moving said cross slide along said second axis and wherein said first moving means is a first hydraulic cylinder, said second moving means is a second hydraulic cylinder, said third moving means is a third hydraulic cylinder and said fourth moving means is a fourth hydraulic cylinder.
4. Flexible machining apparatus according to claim 3, wherein said first, second, third and fourth hydraulic cylinders are numerically controlled by a computer.
5. Flexible machining apparatus according to claim 4, wherein said first holding means includes a plurality of spindles and said second holding means includes a plurality of spindles.
6. Flexible machining apparatus according to claim 4, further comprising fourth holding means for releasably holding a workpiece or a tool and fourth mounting means for mounting said fourth holding means such that said fourth holding means is movable bidirectionally along said first axis between said first and second holding means and such that said fourth holding means is movable bidirectionally along a third axis, which is arranged parallel to said second axis.
7. A flexible machining system, comprising first adjustable receiving means for interchangeably and rotatably receiving workpieces or tools, whereby a tool received in said first receiving means can be removed therefrom and replaced with a workpiece or vice versa;
first rotating means for rotating said first receiving means; first mounting means for mounting said first receiving means such that said first receiving means is movable bidirectionally along a first axis; second adjustable receiving means for interchangeably and rotatably receiving workpieces or tools, whereby a tool received in said second receiving means can be removed therefrom and replaced with a workpiece or vice versa;
second rotating means for rotating said second receiving means; second mounting means for mounting said second receiving means such that said second receiving means is movable bidirectionally along said first axis and such that said second receiving means is arranged coaxially relative to said first receiving means; third receiving means for releasably receiving a workpiece or a tool; third mounting means for mounting said third receiving means such that said third receiving means is movable bidirectionally along said first axis between said first and second receiving means and such that said third receiving means is movable bidirectionally along a second axis which is arranged perpendicular to said first axis, said third mounting means including a main slide movable bidirectionally along said first axis and a cross slide mounted on said main slide for bidirectional movement relative thereto along said second axis, said cross slide including attaching means for removably and interchangeably attaching a horizontal tool turret, a vertical tool turret, a workpiece holder or a jig milling slide to said cross slide such that said horizontal tool turret, said vertical tool turret, said workpiece holder or said jig milling slide functions as said third receiving means when attached to said cross slide, whereby said system has the flexibility to perform numerous diverse machining operations; supporting means for supporting said first, second and third mounting means such that said first, second and third mounting means are movable bidirectionally and independently of each other along said supporting means, said supporting means including a single way system common to said first, second and third mounting means such that each of said first second and third mounting means is supported by said way system; first moving means for bidirectionally moving said first mounting means along said way system between a first position in which said first mounting means is remote from said third mounting means and a second position in which said first mounting means is adjacent to one side of said third mounting means; second moving means for bidirectionally moving said second mounting means along said way system between a third position in which said second mounting means is remote from said third mounting means and a fourth position in which said second mounting means is adjacent an opposite side of said third mounting means, whereby when said first mounting means is in said second position and said second mounting means is in said fourth position said first and second receiving means are close enough to each other such that workpieces can be transferred from said first receiving means to said second receiving means or vice versa; third moving means for bidirectionally moving said main slide along said way system between said first and second mounting means; and fourth moving means for bidirectionally moving said cross slide along said second axis.
8. Flexible machining apparatus adapted to machine opposite ends of a workpiece without requiring its removal from said apparatus, comprising first adjustable receiving means for releaseably and rotatably receiving a workpiece; first rotating means for rotating said first receiving means; first mounting means for mounting said first receiving means such that said first receiving means is movable bidirectionally along a first axis; second adjustable receiving means for releasably and rotatably receiving a workpiece; second rotating means for rotating said second receiving means; second mounting means for mounting said second receiving means such that said second receiving means is movable bidirectionally along said first axis and such that said second receiving means is arranged coaxially relative to said first receiving means; third receiving means for releasably receiving at least one tool;
third mounting means for mounting said third receiving means such that said third receiving means is movable bidirectionally along a second axis which is arranged perpendicular to said first axis; first moving means for bidirectionally moving said first receiving means along said first axis between a first position in which said first receiving means is remote from said second receiving means and a second position in which said first receiving means is adjacent to said second receiving means, said second position being close enough to said second receiving means so as to permit a workpiece to be transferred from said first receiving means to said second receiving means, or vice versa, when said first receiving means is in said second position; second moving means for bidirectionally moving said second receiving means along said first axis between a third position in which said second receiving means is remote from said first receiving means and a fourth position in which said second receiving means is adjacent to said second receiving means, said fourth position being close enough to said first receiving means so as to permit a workpiece to be transferred from said second receiving means to said first receiving means, or vice versa, when said second receiving is in said fourth position; and third moving means for bidirectionally moving said third receiving means along said second axis between a fifth position in which said third receiving means is adjacent to said first axis, said fifth position being close enough to said first axis so as to permit a tool received in said third receiving means to perform a machining operation on a workpiece received in at least one of said first and second receiving means, and a sixth position in which said third receiving means is remote from said first axis, said sixth position being far enough away from said first axis so that said third receiving means does not interfere with the transfer of workpieces between said first and second receiving means.
9. Flexible machining apparatus according to Claim 8, wherein said first receiving means and said second receiving means such that workpieces received therein can be simultaneously machined by tools received in said third receiving means.
10. Flexible machining apparatus according to Claim 8, wherein said first receiving means includes a first spindle, said first mounting means includes a first slide, said second receiving means includes a second spindle, said second mounting means includes a second slide, and said third mounting means is movable bidirectionally along said first axis, said third mounting means including a third slide bidirectionally along said first axis and a fourth slide mounted on said third slide for bidirectional movement relative thereto along said second axis.
11. Flexible machining apparatus according to Claim 8, wherein said first and second receiving means are alternately or simultaneously movable along said first axis toward and away from each other.
12. Flexible machining apparatus according to Claim 8, wherein said third receiving means releasably receives a plurality of tools.
13. Flexible machining apparatus according to Claim 8, wherein said first receiving means can be positioned at any one of an infinite number of locations between said first and second positions, said second receiving means can be positioned at any one of an infinite number of locations between said third and fourth positions, and said third receiving means can be positioned at any one of an infinite number of locations between said fifth and sixth positions.
14. A method of machining a workpiece on an apparatus which includes first adjustable receiving means for releaseably and rotatably receiving a workpiece, first rotating means for rotating said first receiving means, first mounting means for mounting said first receiving means such that said first receiving means is movable bidirectionally along a first axis, second adjustable receiving means for releasably and rotatably receiving a workpiece, second rotating means for rotating said second receiving means, second mounting means for mounting said second receiving means such that said second receiving means is movable bidirectionally along said first axis and such that said second receiving means is arranged coaxially relative to said first receiving means, third receiving means for releaseably receiving a plurality of tools, third mounting means for mounting said third receiving means such that said third receiving means is movable bidirectionally along a second axis which is arranged perpendicular to said first axis, said method comprising the steps of mounting a workpiece in said first receiving means; rotating said first receiving means; utilizing one of said tools to perform a machining operation on said workpiece as said workpiece is rotated by said first receiving means; moving said third receiving means away from said first axis along said second axis a distance which is great enough so that said one tool is not positioned between said first and second receiving means; moving said first and second receiving means relative to each other along said first axis such that said first and second receiving means are close enough to each other so as to allow said second receiving means to grip said workpiece; moving said first and second receiving means away from each other along said first axis so as to effect the transfer of said workpiece from said first receiving means to said second receiving means; rotating said second receiving means; and utilizing another of said tools to perform a machining operation on said workpiece as said workpiece is rotated by said second receiving means, whereby opposite ends of said workpiece can be machined without removing said workpiece from said apparatus.
15. A method according to Claim 14, further comprising the step of moving said third receiving means toward said first axis along said second axis in order to position said one tool for the performance of a machining operation on one end of said workpiece.
16. A method according to Claim 15, further comprising the step of moving said third receiving means toward said first axis along said second axis in order to position said another tool for the performance of a machining operation on an opposite end of said workpiece.
CA000492765A 1985-10-10 1985-10-10 Flexible machining system Expired - Lifetime CA1278911C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA000492765A CA1278911C (en) 1985-10-10 1985-10-10 Flexible machining system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CA000492765A CA1278911C (en) 1985-10-10 1985-10-10 Flexible machining system

Publications (1)

Publication Number Publication Date
CA1278911C true CA1278911C (en) 1991-01-15

Family

ID=4131596

Family Applications (1)

Application Number Title Priority Date Filing Date
CA000492765A Expired - Lifetime CA1278911C (en) 1985-10-10 1985-10-10 Flexible machining system

Country Status (1)

Country Link
CA (1) CA1278911C (en)

Similar Documents

Publication Publication Date Title
US4719676A (en) Flexible machining system
EP0463453B1 (en) A machine tool
EP1046461B1 (en) Universal machine tool
US4612832A (en) Multiple-function machine tool with two spindles
JP3360824B2 (en) Lathe
EP0375783B1 (en) Machine tool
US6715386B2 (en) Turning method
US4785525A (en) Machine tool for complex machining
US5815902A (en) Rotary transfer machine
EP1485231B1 (en) Machine tool assembly
EP0821631B1 (en) Method and apparatus for machining holes in crankshafts
US4635329A (en) Tool holder assembly for machine tools
US4635342A (en) Plano-milling machine
US4881309A (en) Flexible machining system
GB2178991A (en) Machine tool having two spindles
EP0265586A1 (en) Apparatus for finishing pistons and the like and method therefor
US4622734A (en) Apparatus for the variable machining of workpieces
US5282300A (en) Bar turning lathe with fixed poppet and retaking spindle
US4327612A (en) Turret lathe
GB2181372A (en) Flexible machining system
JP2007075922A (en) Multispindle lathe
CA1278911C (en) Flexible machining system
GB2059823A (en) Trasnfer machine
US4738572A (en) Machine tool
JPS6350125B2 (en)

Legal Events

Date Code Title Description
MKLA Lapsed