CA1273270A - Tiltable steering column with play provided between two tilt mechanism pawl release means - Google Patents

Tiltable steering column with play provided between two tilt mechanism pawl release means

Info

Publication number
CA1273270A
CA1273270A CA000511750A CA511750A CA1273270A CA 1273270 A CA1273270 A CA 1273270A CA 000511750 A CA000511750 A CA 000511750A CA 511750 A CA511750 A CA 511750A CA 1273270 A CA1273270 A CA 1273270A
Authority
CA
Canada
Prior art keywords
pawl
ratchet
column
steering shaft
steering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CA000511750A
Other languages
French (fr)
Inventor
Seitaro Shibasaki
Moritaka Yoshida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Application granted granted Critical
Publication of CA1273270A publication Critical patent/CA1273270A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D1/00Steering controls, i.e. means for initiating a change of direction of the vehicle
    • B62D1/02Steering controls, i.e. means for initiating a change of direction of the vehicle vehicle-mounted
    • B62D1/16Steering columns
    • B62D1/18Steering columns yieldable or adjustable, e.g. tiltable
    • B62D1/184Mechanisms for locking columns at selected positions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D1/00Steering controls, i.e. means for initiating a change of direction of the vehicle
    • B62D1/02Steering controls, i.e. means for initiating a change of direction of the vehicle vehicle-mounted
    • B62D1/16Steering columns
    • B62D1/18Steering columns yieldable or adjustable, e.g. tiltable
    • B62D1/183Steering columns yieldable or adjustable, e.g. tiltable adjustable between in-use and out-of-use positions, e.g. to improve access
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/20Control lever and linkage systems
    • Y10T74/20576Elements
    • Y10T74/20582Levers
    • Y10T74/206Adjustable
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/20Control lever and linkage systems
    • Y10T74/20576Elements
    • Y10T74/20636Detents
    • Y10T74/20714Lever carried rack
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/21Elements
    • Y10T74/2133Pawls and ratchets
    • Y10T74/2136Pivoted pawls
    • Y10T74/214Multiple tooth

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Steering Controls (AREA)

Abstract

ABSTRACT OF THE DISCLOSURE
A tiltable steering column for an automotive vehicle includes a main steering shaft made up from a lower steering shaft and an upper steering shaft tiltably rotationally connected to the lower steering shaft, and a column tube assembly which includes a lower tube which rotatably supports the lower steering shaft from the body of the automotive vehicle and an upper tube which rotatably supports the upper steering shaft and is pivotally mounted so as to be able to tilt relative to the lower tube. A tilt locking mechanism also included in the steering column includes a first side ratchet mechanism on one side of the column tube assembly and a second side ratchet mechanism on the other side of the column tube assembly. Each such side ratchet mechanism includes a ratchet fixedly attached to one of the upper tube and the lower tube, a means which acts constantly for biasing the pawl so as to engage it with the ratchet, and a means for selectively biasing the pawl so as to release its engagement with the ratchet. And the tilt locking mechanism also includes a means for coupling the operation of the two pawl releasing means together, with a certain amount of play being available therebetween. Thereby, errors in manufacture and assembly can be compensated for, thus assuring good operability and manufacturability of the steering shaft.

Description

~.~7~X70 TILTABLE STEERING CO~llMN Wm-I PLAY PROVIl)ED
BETWEEN TWO ~lLT MECILANISM PAWL Rl~ ASE MI~ANS

BACKGROUND OF l~lE INVENTION

The present invention relates to a tiltable steering column for an 10 automotive vehicle, and more particularly relates to such a tiltable stee~ing column for an automotive vehicle, which L5 su~tsble for being adju.sted so as to conform the driving position to the p~rticular physical buiid and preference of an individual driver, which is improved in term~s of fittability and assemblabi1ity.
As an ove~all constructlon, a tiltsble steering column for an automotive vehicle comprises a main steerinF shaft comprising a lower steering shaft and an upper steering shaft tiltabb rot~Uonally connected to said lower steering shaft, and a column tube a~sembly, ~0 comprlsing a lower tube which rotatabb supports said lower steering sha t from the body of said automotive vehicle, and an upper tube which rotstabb supports sdd upper steering shaft and is pivotslly mounted so as to be able to tiit relative to sald lower tube. Further, it i~s known for such a tiitable steering cohlmn for an automotive vehicle to 25 comp~ise a tiit locXing mechanism which comprises a ratchet mechanism comprising: a ratchet fixed4r attached to one of said upper tube and said lower tube; a pawl plvot~lly attached to the other of said upper tube and said lower tube; a means for biadng said pawl so as to engage it with said ratchet, which acts constantly; and a means for 30 selectively bia~;ing ssid pawl so a~ to reiea~e its said engagement with said ratchet. Thereby, by operaUng the reiea~ng means for the pawL
; the engagement of the pawl to the ratchet is released, and the upper tube csn be rotatabb tilted with respect to the lower tube, thus enabling the position of the steering wheeL which is fixed to the 35 upper end of the upper steering shaM, tn be ad~usted so as to confo~n .~
.''~ .

- , ., ~ . ., . ~ - ' : .
.
. .' ' ' -. . . .

,. .

1~73~7() the driving position to the particular physical build and preference of an individual driver.
According to such a tiltable type steering column, for instance the ones disclosed in Japanese Utility Model Publication Serial No. 57-53730 t 1982) and Japanese Uti l i ty Model Layi ng Open Publication Serial No. 5 8 -163354 (1983), neither of which is it intended to admit as prior art to the present application except to the extent otherwise required by law, the upper tube is rotationally locked with respect to the lower tube and thus the vehicle body by the tilt locking mechanism; but, 6ince the tilt locking mechanism is in principle provided only on one side of the steering column assembly, the lateral 6upport rigidity for the upper tube is not always sufficient, and good vibrational characteristics cannot be assured in all cases. And, in the worst ca6e, sideways 6kewing of the steering wheel could in principle occur.
In view of these problems, the present applicant, in Japanese Utility Model Application Serial No. 59-106772, which again it is not intended hereby to admit as prior art to the present application except to the extent otherwise required by law, has proposed a tiltable steering column in which two such tilt locking mechanisms are located one on each side of the steering column; and the two release levers of these two tilt locking mechanisms are synchronized by way of a connecting shaft.
As a result of this arrangement, in such a tilt steering device, since the upper tube of the steering column is ~upported by a pair of tilt loc~ing mechanisms arranged on both sides of the steering oolumn, the lateral rigidity of the support of the upper tube can be increased, and good vibrational characteristics can be obtained, with the additional advantage that, since the release levers of the two tilt locking mechanisms are synchronized, the rotational operation of only ~i -.
-, 127~270 one of the release levers is requlred for releasing the lockin~ actionof the two tllt locking mechanisrns, and accordingly the operability of the device is quite good.

The problem however arises that, since the two ~sides of the upper and lower tubes are individually locked together by the two ti]t locking mechani.~3ns, the accuracy of fitting of these mechanisms is cruciah Specifically, a slight difference in the phases of the teeth o~ the two ratchets, or other divergence from the Ideal due to manufacturing varlatlons of the parts, can prevent the proper engagement of one of the two tilt locking mechanisms, and it is extremely difricult to properly ensure s~nultaneous me,shina of the two pawls with the two ratchets, because of the inevitability of dimenslonal variations dr the parts dur~ng manufacture, as well as because of the inevitability of assembly varlations of the steering column structure.

SUMMARY OF THE INV~ON

~ 20 Accordingly, It ~s the primary object of the present invention to- provlde a tUtable steering colun~, whlch avolds the above described problemæ.

It Is a further ob~ect of the present invention to provide such a tlltab}e steering column, whl~h provides ~ood stabllity for the support of the upper tube member thereof and for the stee~ing wheeL

It is a further object Or the present inventlon to provide such a tlltable stee~ing column, which is not prone to any sideways skewinl~ of the steellng whe~

lt is a yet further ob~ect Or the present inventlon to provide such a tUtsble steerlng column, whlch has two such tUt locking mechsnisms on eltller side of the steering coh~mn, snd which is not ~, :
. : , , .: . . , :
. ~` ~: -` , . - . .

- , :

3~'7~) prone to difficulties with proper simultsneous engagemellt o~ said tllt lockinF mechanlsms.

It is a yet further object of the present invention to provide 5 such a tiltable steerinF column, which has two such tilt lockinF
mechanisms on either side of the steering column, and in which said two tilt locking mechanisms can both rel;ably be simultaneou.qly engaged.

It is a yet further object of the present invention to provide 10 such a tiltable steering column, the operaUon of which does not suffer unduly due to moderate deviances from msnufacturing or assembly specifications.

It is a yet hlrther object of the present invention to provide 15 such a tiltable steering column, which has good vibrational chsracteri~qtics.

lt is a yet further object of the present invention to provide such a Ultable steering column, which has good assemblability.
According to the most genersl aspect of the present invention, these and other ob~ects are accomplished by a tiltable steering column for sn automoUve vehicle, comprLsing: (a) a main steering shaft comprising a lower steering shaft and an upper steering shaft rotatsbly 25 connected to snid lower steering shaft; ~b) a column Ulbe assembly, comprislng: ~b1) a lower tube which rotatably support~s said lower steering sha~t from the body ol sald automoUve vehicle; and (b2) an upper tube which rotatably supports ssid upper steerin~ shaft and is pivotally mounted so as to be able to Ult relaUve to said lower tube 30 at least in a substanUslly verUcal plane; and: (c) a tilt locking mechanism, comprising a first side ratchet mechsnLsm on one side of said column tube assembly and a second side ratchet mechanism on the other side of ssid column tube assembly, each comprising: (cI) a ratchet fixedly attached to one of said upper tube and said lower tube;
35 (c2) a pawl pivotally attached to the other of said upper tube and said ~7~

lower tube; (c3) a means fvr bia~n~ s id pawl so llS to engage lt with said ratchet, which acLs constantly; and: ~c4) a means for selectively biasing said pawl so as to release its said engagement with said ratchet; and further comprising: (d) a means for coupling the 5 operation of said pawl relea.<;ing means to~ether with a certain amount oI play being available therebetween.

According to the present invention as described above, since the coupling together of the side ratchet mechanisms by the coupling means 10 provides a cerhin smount of play between said side rstchet mech~i~ns, the problem of matching together the engsgement of said two side ratchet mechanisms is essentially solved, and mismatching of the pha.ses Or the pawls to the teeth of the ratchets can be easily compen.sated for without causing any operational problems. ~Ience, at least one of the 15 two side ratchet mechanisms can be positively engaged, and there is provided a tiltable steering column which overcomes the problems outlined above with respect to other constructions, and which provides good stability Ior the support of the upper tube member thereof and for the steering wheeL as well as not being prone to any sideways skewing 20 of the steering wheeL Further, this tiltable steering column has two tilt locking mechanisms on either side of the steering column, and yet is not prone to difficulties with proper simultaneous engagement of said tilt locking mechanisms, and does not suffer unduly due to moderate deviances irom manufacturing or assembly specifications.
25 Thus, this tiltable steering column has good assemblability and good vibrational characteristics.

BRlE~ DESCRlPTlON OF TlIE DRAWINGS

The present invention will now be shown and described with regard to certain of the preferred embodiments thereof, and with reference to the illustrative drawings, which however should not be considered as limitative of the present invention in any way, since the scope of the present invention is to be considered as being delimited solely by the .

"

~ X7;~'7~

accompanying claims, rather than by any particulsr features of the disclosed embodiments or of the drawings. In these drawings:

l~g. 1 is a partly schematic sectional view of the first preferred 5 embodiment of the tilt steering colwnn assemb4r of the present invention taken in a sectional plane containing the longitudinal axis of said column assembly (which is shown as extended substantially straight) and parallel to the transverse axis of the vehicIe to which said column assembly is fitted;
Fig. 2 is a side view of said first preferred embodiment tilt steering column a.ssembly, shown in its state of being mounted to a vehicle body;

Fig. 3 is a side view of a first tilt locking mechanism shown in Fig. 1, shown at a magnified scale and at one stage of its operation;

Fig. 4 is a vlew similar to Fig. 3, showing said first ti]t locking mechanism at another stage of its operation;
Fig. 5 is a vlew similar to Figs. 3 and 4, showing said first tilt locklng mechanism at yet another stage of its operation;

Fig. 6 is a side view of a first release lever, incorporat~i in 25 the first tilt locking mechanism of Figs. 3 through 5;

Fig. 7 is a sectlonal view of said first release lever as taken in a plane shown by the arrows VII - VII in Fig. 6;

Fig. 8 is a side view of a cover plate incorporated in said first tilt locking mechanism;

Fig. 9 is a side view of a second release lever incorporated in sald first tilt locking mechanism;

~L~73~70 Fig. 10 is a slde view of a third release lever incorporated in a second tilt locking mechanism;

Fig. 11 is a sectional view of said third release lever as taken 5 in a plane shown by the arrows XI - XI in Fig. 10;

Fig. 12 is an end on view of a connecting lever which connects the first and the third levers shown in Pigs. 6 and 10, of the first and second tilt locking mechani.sms;
Pig. 13 is a side view of said connecting lever of F~g~ 12;

Pig. 14 is a longitudinal secUonal view of an ad~ustable construction for rotatably mounting a pawl of said fir.st ti]t locking 15 mechanlsm to a fLlced member; and Pig. 15 is a transverse sectional view of said ad~ustable construction, as taken in a plane shown by the arrows XV - XV in Fig. 14.
DI~SCRlPI~ON OF T~E PRI~FERI~ED EMBODlMENTS
. .
The present inventlon will now be described with reference to the preferred embodiments thereof. F~. 1 is a longitudinal sectional view 25 of the first preferred embodiment of the tilt steering col~mn assembly of the present invention taken in as near a horizontal sectional plsne as possible containing the lon~it~ldinal axis of said column assembly, and Fig. 3 is a side view of said tilt steering column assembly shown in its state of being mounted to a vehicle body. In these figures, the 30 reference numeral 10a denotes an upper stee~ing shaft assembly, which Ls made up from a first shaft 11 and a second shaft 12; and similarly the reference numeral 10b denotes a lower steering shaft a.s.sembly, which i~ made up from a third shaft 13 and a fourth shaft 14. In said upper steering shsft assembly 10a, ssid first shaft 11 is rotationally 35 coupled to said second shaft 12 but Ls left free to move axial4r with ~ .
~.................... .

:

~73;~7~) respect thereto, by a male splined portion on the right end in Fig. 1 of 6aid 6econd shaft 12 being fitted engagingly with a female splined portion formed on the left end in Fig. 1 of said first shaft 11. On the other hand, in 8 aid lower steering 6haft assembly 1Ob, said third shaft 13 is coupled to said fourth shaft 14 both with regard to relative rotational movement therebetween and with regard to relative axial movement therebetween, by a portion on the right hand end in Fig. 1 of 6aid fourth shaft 14 being fitted over and being fixedly coupled to a portion formed on the left end in Fig. 1 of said third shaft 13, 6aid coupling being quite weak so as to allow for collapse of the steering column assembly in an impact situation. And the left end in Fig. 1 of the second shaft 12 is coupled to the right end in ~aid figure of the third shaft 13 by a universal joint 15 of a per se known sort, thus rotationally coupling the upper and lower steering shaft assemblies lOa and lOb together while allowing some bending between them; and the left end in the figure of the fourth shaft 14 is connected via a universal joint to a stub shaft 16 which leads to a steering box, not particularly shown, while a steering wheel W, not ~hown in Fig. 1 but shown in Fig. 2, i6 mounted on the right end in the figure of the first shaft 11, which is adapted for mountingly receiving it.
A steering column tube as6embly is fitted around this steering shaft assembly, said a66embly compri~$ng an upper tube 21 which rotatably 6upports the first shaft 11 of the upper shaft assembly lOa via a pair of bearings, and a lower tube 22 which rotatably supports the fourth shaft 14 of the lower shaft assembly lOb by a bePring.
~he lower tube 22 is fixedly mounted to the vehicle body, hanging below the instrument panel thereof, via a main fixing bracket 23 attached to a higher portion of said lower tube 22 and an auxiliary fixing bracket 24 attached to a lower portion of said lower tube 22.

:

~LZ73~7~

- 8a -A tubular portion 25a of a rotatable bracket 25 i~
slidably fitted over the upper tube 21, and this rotatable bracket 25 is supported, so as to be rotatable around a horizontal axis substantially transverse to ,:

, .~ . ,~.
''` ` ~ '.:

.

~ ~73~'70 the body of the vehicle, by the two sides as seen in Fig. 1 Oe the main fixing bracket 23. This sliding of the upE~er tube 21 in the tubular portion 25a of the rotatable bracket 25 is selectively fixable, by the driver of the vehicle operating a lock mechanism 26 by actuating a 5 release lever 26a. Thus, by the driver actuatinç~ said release lever 26a so as to release the locking of the upper tube 21 tll the rotatable bracket 25, the upper tube 21 becomes able to axially slide with respect to said rotatable bracket 25 with the second shaft 12 sliding inside the first shaft 11, thus providing axial adjustment of the 10 steering wheel W and allowing telescopic operation of the steering column as a whole.

Extending between the main fixing bracket 23 and the rotatable bracket 25 there are provided a pair of tension coil springs 27a and 15 27b, one on each side of the steerlng column assembly, and these sprJngs 27a and 27b constantly urge said rotatable bracket 25 in the counterclockwise direction in Figs. 2 through 5, so as to counterbalance the weight of the upper tube 21, the upper steering shaft assembl~r 10a, the steering wheel W, and so on. Further, a pair 20 of tilt locking mechanisms, denoted as 30 and 40, are provided, one on each side Or the steering column assemb4r, for selectively either locking together the main fixing bracket 23 and the rotatable bracket 25, or releasing said locking together of said main fixing bracket 23 and said rotatable bracket 25 so that they can rotate with respect to 25 one another about said horizontal axis substantially tran~sverse to the body of the vehicle, thus providing tilting adju~stment ror the steering wheel W and allowing tilting operation as a whole of the steering column.

The first one 30 of these tilt locking mechanisms will now be described, with reference to Figs. 3 throu~h 5 which show it as a whole and Figs. 6 through 9 which show certain individual parts o~ it. This first tilt locking mechanism 30 comprises a ratchet 31, a pawl 32, a first release lever 33, a cover plate 34, and a second release lever 35.

~ ~73~

To the lower left side as seen iTI Fi~s. 3 throuFh 5 oi the rotatable bracket 25 there Ls fixedly secured the ratchet 31, which is a substantially planar member and flmctions as a support member for said rotatable br~cket 25 and for the steering wheel W and the tiltable 5 portion of the steering colurnn as a whole, by bein~ rotatably fitted over a sleeve provided on a mounting bolt 36b which is fixed to the main ~ixing bracket 23. Thereby, the aforesaid horizontal axis substantially transverse to the body of the vehicle about which the steering wheel W and the steering column as a whole tilt Ls defined.
lV An edge portion of this ratchet 31 is formed with a circumferentially extending arcuate toothed portion 31a.

Likewise, the pawl 32 iq a substantial~y planar member, and is pivotally mounted to the main fixing bracket 23 by being rotatably fitted over a sleeve provided on another mounting bolt 36a which is likewise fitted to the main fixing bracket 23 and by being retained thereon by a nut 36h; the full detaiLs of this fitting con.struction will be explained hereinafter. And this pawl 32 is formed with an arcuate toothed portion 32a opposed to and confronting the arcuate toothed portion 31a of the ratchet 31. Thereby, when the pawl 32 is rotated about its molmting bolt 36a in the clockwise direction from the point of view of Figs. 3, 4, and 5, to its position as seen in ~ig. 4 or Fig. S, its arcuate toothed portion 32a is disengaged from the arcuate toothed portion 31a of the ratchet 31, and accordingly the 25 rotation of the steering wheel W and the tiltable portion of the steering column as a whole with respect to the fixed main fixing bracket 23 around the axis defined by the mounting bolt 36b is not substantially impeded thereby; but, on the other hand, when said pawl 32 is rotated in the anticlockwise direction from the point of view of 30 Figs. 3, 4, and 5 to its position as seen in Fig. 3, then its arcuate toothed portion 32a is engaged to the arcuate toothed portion 31a of the ratchet 31 somewhere along it, and accordingly the rotation of the steering wheel W and oi the tiltable portion of the steering column assembly as a whole with respect to the fixed main fixing bracket 23 35 around said axis defined by the mounting bolt 36b is prevented, and the :1~73~7a~

upper portion of the steering column along with the wheel W are effectively locked into place.

For releasing this meshing engagement between the pawl 32 and the 5 ratchet 31 there is provided the first relea,se lever 33, and this is formed of a lever 33a and an auxiliary plate 33b fitted thereto as extending generally parallel thereto; these members can best be seen in Figs. 6 and 7, whlch show said first release lever 33 in side view and in secUonal view respecUvely. This lever 33a and aw~liary plate 10 33b are connected together via the axis of a roller 33c extending between them, and both have apertures, confronting one another, which are fitted over the mol~nting bolt 36b previously mentioned, so as to mount the first release lever 33 to the main ii~ing bracket 23 in a rotatable manner around; the same transverse horizontal axis for Ulting 15 the steerlng column assembly, previously defined. A cam groove 33d is iormed on a portion of the lever 33a, and an engagement pin 32b formed on the pawl 32 i~s fitted into this cam groove 33d so as to slide therein and so as to be guided thereby. One end of a tension coil spring 36c (see Fig. 3) is fitted to a hole formed in the lever 33a, 20 and the other end of said tension coil spring 36c is hooked to a point on the main i'L~dng bracket 23, and thereby the iirst release lever 33 is biased in the clockwise direction as seen in Fig. 5, so as ~provided the end 33a of said first release lever 33 is not impelled by the hand of the driver) to press the roller 33c against the back of the pawl 32 25 and so as thereby to press said pawl 32 in the anticlockwise direction, so as to urge lts toothed portion 32a to be meshed with the toothed po~tion 31a Or the ratchet 31 as seen in Fig. 5.

A side view of the cover plate 3~ is shown in Fig. 8. This cover 30 plate 34 is used for defining the porUon of the toothed shaE~e 31a on the ratchet 31 to which the toothed shape 32a of the pawl 32 engages~
i.e. for shielding the portion of sald ratchet 31 to which it is not desired that sald pawl 32 should engage. The cover plate 34 comprises an arcuate cover portion 34b molmted on the end of a plate portion 34a.
35 The arcuate cover portion 34b has a set of teeth 34d formed on its ~;~7~ ~7~3 concave inner sur~ace, and a projectioll 34c extends outwards from the other side of said cover portion 34b. At the other end of said cover plate 34 there are provided an engagement pin 34f and an arcuately curved sheet spring 34e. This cover plate 34 is fitted over the 5 mounting bolt 36b, on the outside of the ratchet 31, by an elongated hole formed in said cover plate 34. In this state, the sheet spring 34e engages to the back side of the rutchet 31, and the cover plate 34 both is rotatable around the axis of the mounting bolt 36b and Lq also slidable sideways thereon through a certain distance, either so as to 10 engage the teeth 34d formed on the in.side of its arcuate cover portion 34b to a particular contiguous set of the teeth 31a formed on said ratchet 31, or alternatively so as to disengage said teeth 34d and 31a from one another; and the sheet spring 34e bla.ses the cover plate 34 in such a direction as to press said teeth 34d and 31a into mutual 15 engagement. Thereby, the arcuate cover portion 34b serves to blank off a part of the toothed portion 31a of the ratchet 31, leaving that particular covered portion of said ratchet 31 effectively smooth and free from teeth. And, in the above described state wherein said teeth 34d and 31a are moved apart from one another and disengaged, by the 20 pushing of the cover plate 34 in the leftward direction in Fig. 8 against the biasing action of the leaf spring 34e which is overcome, the cover plate 34 can be rotated around the axis of the mounting bolt 36b, so as to change the aforesaid portion of the toothed portion 31a of the ratchet 31 which is blanked off by said cover plate 34. 5 in Fig. 9 there is shown in side view the second release lever 35, which is for adjusting the above described mutual meshing position of the cover plate 34 relative to the ratchet 31, by lifting and sliding the cover plate 34. Said second relea.se lever 35 comprises a main 30 plate portion 35a, a lever portion 35b extending therefrom, a cam aperture 35c formed therein, and an engagement pin 35d extendinF
sideways therefrom. And this second release lever 35 is fitted, via a hole formed therein, over the mounting bolt 36b between the first release lever 33 and the cover plate 34. A retainer plate 36d is 35 fitted over the whole assembly, as best seen in Fig. 1, and a tension ~3~7~

co~ spring 36e is stretched between a projection oî said retainer plate 36d and the lever portion 35b o~ the second release lever 35;
thereby, said second release lever 35 is biased in the clockwise direction as seen in Fig. 3, and its clockwise rotation is stopped when 5 a portion of it comes into contact with a bolt 36i fitted to the retainer plate 36d. In this condition, the engagement pin 34f of the cover plate 34 faces and engages with the cam groove 35c of said second release lever 35. A ~lide plate 37 is assembled to the outside of the fixed bracket 23 and an engagement depression 37a of the ~l~ide plate 37 10 opposes the projection 34c o~ the cover plate 34, so as to limit the rotation of the cover plate 34 when said cover plate 34 makes a sliding motion and the projection 34c enters into said depression 37a.

The second one of these tilt locking mechanisms will now be 15 described, with particular reference to Figs. 10 and 11. Said second tilt locking mechanism 40 comprises a ratchet 41, 8 pawl 42, and a third release lever 43. The ratchet 41 and the pawl 42 are similarly formed and arranged to the ratchet 31 and the pawl 32 of the first tilt locking mechanism 30 described above. The third release lever 43 is 20 for disengaging the meshing of the pawl 42 and the ratchet 41, which are assembled to the main fixing bracket 23 on the other side of it from the first tilt locking mechanism 30 by a mounting bolt 44a and another mounting bolt shown in the figures but not designated by any reference numeral, and comprises a lever member 43a and an auxiliary 25 plate 43b fitted thereto as extending generally parallel thereto;
these members can best be seen in Figs. 10 and 11, which show said release lever 43 in side view and sectional view re.spectively. The mounting bolt 44a is subs~antially coaxial with the mounting bolt 36b for the first tilt locking mechanism 30, and like it also serves for 30 pivoting the upper tube 21 to the main flxing bracket 23 so that it is rotatable around the previousl~r defined horizontal tilt axis substantially transverse to the body of the vehicle. The lever 43a and the auxiliary plate 43b of the third release lever 43 are connected together via the axis of a roller 43c extending between them, and both 35 have apertures, confronting one another, which are fitted over the ~ ;~73~7~

mounting bolt 44a for the ratchet 41 previously mentioned, so as to mount the third release lever 43 to the main fixing bracket 23 in a rotatable manner arolmd the same transverse horizontal tilt axis 8S
previously defined. A cam groove 43d is formed on a portion of the lever 43a, and an engagement pin 42b formed on the pawl 42 is fitted into this cam groove 43d so as to slide therein and so as to be guided thereby. One end of a tension coil spring 44b (see Fig. 3) is fitted to a hole formed in the lever 43a, and the other end of said tension coil spring 44b is hooked to a point on the main fixing bracket 23, and thereby the third release lever 43 is biased in the direction so as (provided the end of the lever 43a is not impelled by the hand of the driver of the vehicle) to press the roller 43c against the back of the pawl 42, so as to press said pawl 42 in the direction to engage its toothed portion with the toothed portion of the ratchet 41.
The particular means by which the pawl 32 of the first tilt locking mechanism 30 is rotatably mounted to the main fixing bracket 23 will now be particularly explained with reference to Figs. 14 and 15, which are a longitudinal sectional view thereof and a sectional view thereof as taken in a plane shown by the arrows XV - XV in Fig. 14, respectively. In detaiL over the previously mentioned bolt 36a, which is fixedly mounted to the main fixing bracket 23 by spline means formed proximate to the head portion of said bolt 36a, there is fitted an eccentric collar 36f which is formed as a tubular eccentric cam with two ilats on its end portion. ln other words, the middle portion of this collar 36r, over which the cam 32 fits and on which said cam 32 turns, is formed with a cylindrical inner surface and with a cylindrical outer surface which are eccentrically off.set from one another by a certain distance L; and the cylind~cal inner surface rotatably slides on the outer surface of the mounting bolt 36a, while on the cylindrical outer surface there is rotatably mounted the cam 32.
And on the end portion of this collar 36f, over the two flats formed thereon, there is fitted a spacer 36g whose outer suriace is formed in a hexagonal shape. The whole construction is retained by the nut 36h 35 fitted onto the end Or the mounting bolt 36a. As a result, the 1~7;~

rotation of the spacer 36F causes an lntegral rotation of the eccentric collar 36f, thereby allowing the center of the swinging motion of the pawl 32 to ~e adjusted within a range of plus L to minus L. The eccentric collar 36f is located between the main fixing bracket 23 and 5 the retainer plate 36d, and is restricted from rotational motion aîter the devlce is ~itted and after the above described positioning adjustment has been completed, by the fastening ~orce of the mlt 36h when fully tightened, which longitudinally compresses said eccentric coilar 36f.
The first release lever 33 of the first tilt locking mechanism 30 and the third release lever 43 of the second tilt locking mechanism 40 are connected together by a connecting member 38, which is shown in end on view in Fig. 12 and in side view in Fig. 13. This connecting member 15 38 is a lever which is bent into an L-shape, and a plate portion 38a thereof is rotatably fitted onto the molmting bolt 36b between the cover plate 34 and the second release lever 35. A connection pin 38b, provided on said plate portion 38a, is fitted into a connection aperture 33e formed in the first release lever 33, while an arm portion 20 43e formed on the third release lever 43 is fixed by bolts or other ~uitable means to an arm portion 38c extending from the lower end of the plate portion 38a of the connectin~ member 38 in the rightward direction as seen in Fig. 13. Thus, the first release lever 33 and the third release lever 43 are connected together, so that the rotational 25 operation of the first release lever 33 causes the rotation of the connection member 38 which in turn causes the rotation of the third release lever 43.
. ~
llowever, particularly according to the concept of the present 30 invention, as can best be seen in Fig. 6, the connection aperture 33e formed in the first release lever 33 is shaped as a somewhat elongated circular arc with center the center of rotation of said first release lever 33, and the connection pin 38b of the connectlon member 38 fits into this connection aperture 33e with a certain amount of free play 35 remaining in the circumferenUal direction. In other words, the ~73;~7~3 a~oresaid rotational coupling toFether of the first relesse lever 33 of the first tilt locking mechanism 30 and the third release lever 43 of the second tilt locking mechanism 40 is provided, only with a certain amount of rotational play therebetween.

in the first and third release levers 33 and 43, the cam grooves 33d and 43d respectively provided are formed in an asymmetric manner, and there is a certain time lag in the meshing and the release of meshing of the pawls 32 and 42 with their respective ratchets 31 and 41. The cam groove 33d of the first release lever 33 (vide Fi~. 6) is formed with an arcuate portion 33dl at its proximal end portion the center of which is the central axis of the mounting bolt 36b, and with a cam portion 33d2 at its free end portion. On the other hand, the cam groove 43d Or the third release lever 43 is formed with a cam portion 43dl at its proximal end portion and with an arcuate portion 43d2 at its free end portion the center of which is the central axis of the mounting bolt 44a. Thus, when the first and the third relea.se levers 33 and 43 rotate, the pressures of the rollers 33c and 43c on the pawls 32 and 42 respectively actuated thereby are released at the same time, 20 but, thereafter, the pawl 42 is displaced from the ratchet 41 to be disengaged therefrom first and then subsequently the pawl 32 is dlsplaced from the ratchet 31 to be disengaged therefrom. And, when the two pawls 32 and 42 mesh with their respective ratchets 31 and 41, the pawl 32 has a priority.
The lock mechanism 26 for selectably preventing the sliding of the upper tube 21 in the rotatable bracket 25 will not be particularly described with regard to its structure, because it is not directly relevant to the concept of the present invention; suffice it to say 30 that said lock mechanism is selectably actuated by the driver by the operaUon of the relea~se lever 26a.

The relevant portions of the operation of this tilt steering device as described above will now be explained.

127~;~7{) - l7 -In the condition that the driver does not operate the flrst release lever 33 of the first tilt locking mechanism 30, then the rotatable bracket 25 is locked to the main fi~ng bracket 23 by means of the two tilt locking mechanisms 30 and 40. In this state of the apparatus, the first tilt locking mechanism 30 is in its state as shown in Fig. 3, with its pawl 32 engsged with its ratchet 31; snd the second tilt locking mechanism 40 is also in a similar state, muhtis mutandis, with its pawl 42 engaged with its ratchet 41, and with its third release lever 43 in a like position to that of the first release lever 33.

When the hand of the driver, from this locked state, is applied to the end of the first relesse lever 33 of the first tilt lockmF
mechanism 30 so as to rotste said first release lever 33 in the counterclockwise direction as seen in Fig. 3, then the connection member 38 and the third release lever 43 of the second tilt locking mechanlsm 40 are rotated in the ssme direction, albeit with a relstively slight and bssically insignificant at this time delay due to the provision of the elongated shspe for the connection aperture 33e as explained above. As a result, the pressures exerted on the pawls 32 and 42 respectively by the rollers 33c and 43c provlded on the first and thlrd release levers 33 and 43 respectively of the first and second tllt locking mechalusms 30 and 40 are released substantially at the same time, but, because of the di~ference in the forms and the actions of the cam grooves 33d and 43d, the pawl 42 of the second tilt locking mechanism 40 is displaced from its ratchet 41 first to release said second tilt locking mechanism 40, and only subsequently is the pawl 32 Or the first tilt locking mechanism 30 displaced irom its ratchet 31 to release said first tilt locking mechanism 30. This effect, of ~irst releasing that one of the tilt locking mechanisms which is dLsplaced sideways i~om the first release lever 33 which is being manually operated, is done in order to prevent the type of twisting of the mechanism that mi~ht occur if the reverse condition were to prevail.
When the locking or the rotatable bracket 25 to the main fixing bracket 23 by the two tllt locking mechanisms 30 and 40 has been thus released, 127;~;~71) then by the actions of the tension coil sprin~s 27a and 27b the rotatable bracket 25 as well as the upper tube 21, the upper shaft assembly 10a, and the steering wheel W are lifted up ~possibly with some slight mamlal a~Lst by the vehicle driver), and the posiUon of 5 the elements of the first tilt locking mechanism 30 becomes as shown in Fig. 4.

the inner teeth 34a of the arcuate portion 34b of the cover plate 34, in this situation of the first tilt locking mechanism 30, are still 10 meshed with the same ones of the teeth 31a of the ratchet 31 with which they were previously meshed, not having moved with respect thereto, and the pawl 32 has raised up from those of the teeth 31a of said ratchet 31 with which it was previously meshed, and is now confronting the smooth outslde surface Or said arcuate portion 34b of said cover plate 15 34. Therefore, when from this positlon of the apparatus the driver slmply pushes downwards on the steering wheel W (without sctuating sny control lever), the pawl 32 which was being pressed by the roUer 33c now slides over the smooth outside surface of said arcuate portion 34b of said cover plate 34, until it reaches those of the teeth 31a of ssid 20 ratchet 31 with which it was previously meshed, and then it snaps downwards thereagainst and bcks to those particular teeth again. And, at this time, in the second tilt locking mechanism 40, the roller 43c presses the pawl 42, but, before the meshing of the ratchet 31 snd the pawl 32 of the first tilt locking mechanism 30 has occurred as 25 described sbove, the ratchet 41 and the pawl 42 of said second tilt locking mechanism 40 are still dlsplaced from one another by the action of the engsgement pin 42 and the cam groove 43d as explained above, and the pawl 42 and the ratchet 41 mesh together only substantiaUy immediately after the meshlng of the ratchet 31 and the pawl 32 of the 30 first tilt locking mechanism 30. Thus, this tllt locking system is equipped with a so caUed memory function, and as a result the steering wheel is always returned to the set initial position, as described above.

' ~

' " . .- ' : -.:

~73 ~7~) The way in which thls memorized positlon of the steerinK wheel W
may be adju.sted will now be explained. In thls case, from the state of the members of the first tilt locking mechsni,~n shown in l~iF. 3, the second release lever 35 is rotatlonally moved by the vehicle operator 5 in the anticlockwise direction as seen in the fig~Ire. As a result, the cover plate 34 is slidably moved to the left as seen in I;~. 3 by the acUon of the engagement pin 34f and the cam groove 36c of the second release lever 35, and it~s cover porUon 34b is dLsplaced from the ratchet 31 with its teeth 34a becoming disengaged from the ratchet teeth 31a, while the projection 3~c of the cover plate 34 enters the engagement depression 37a of the guide plate 37. Therefore, the cover plate 34 now aan be rotated with respect to the ratchet 31. And, when the second relesse lever 35 is hlrther rotaUonally operated, the engagement pin 3Sd provided on said second release lever 35 Ls engaged 15 with the first release lever 33 so as to integrally rotate it. As a result, the third release lever 43 oi the second tilt locking mechanism 40 is slmultaneously rotated by way oi the connection member 38, and, as shown in fig. 5, the locking of the fixed bracket 23 to the rotational bracket 25 by the two Ult locking mechanisms 30 nnd 40 is 20 released. Therefore, the steering wheel W may be moved vertically, either upwards or downwards, while the second release lever 35 Ls retained at its rotational posltlon. And, after the steering wheel W
has been vertically ad~usted to its desired posiUon, the releasing of the operaUon of the second release lever 35 callses the rotational 25 restoration of the first and the third release levers 33 and 43, thereby causing the pawls 32 and 42 to now mesh with portions of the arcuate teeth porUons 31a and 41a of their ratchets 31 and 41 which are different from the positions with which they were previously meshed. Thereafter, the second release lever 35 rotationalbr restores - 30 itself, and returns the cover plate 34 back to its non operaUonal position so as to now make its teeth portion 34d mesh with and cover a portion of the arcuate teeth portion 31a of the ratchet 31 which is different from the previously meshed with and covered portion. LTI this ; case, the teeth porUon 34d of the cover plate 34 meshes with a teeth35 porUon 31a of the ratchet 31 which is angularly displaced from the .

~;~7~

previous teeth portion which was meshed with the opposing member prior to the positional adjuslment of the steering wheel W, just by the angle through which the steering wheel W has been adjusted, and the newly adjusted position of the steering wheel W is thus memori7~d.

Accordin~ to the shown construction, therefore, the upper tube 20 and the upper steering shaft assembly lOa and the steering wheel W
mounted thereon can be supported on the two sides of the main fixing bracket 23 which is fixedly secured with respect to the lower tube 22, 10 by means of the two tilt locking mechanisms 30 and 40 the operation of which is linked together as explained above. Therefore, it has become possible to obtain very good vibrational characteristics o the entire construction, by increasing the rigidity of the locking support of the upper tube 21 and its associated members. In this shown construction, 15 since the first and the third release levers 33 and 43 are connected together for synchronization by the connecting member 38, the operability of the first and second tilt locking mechanisms 30 and 40 is quite favorable.

Particularly according to the concept of the present invention, since a small amount of play is provided in the coupling between the first release lever 33 oi the first tilt loclcing mechani,sm 30 and the coupling member 38 by, in this first preferred embodiment, forming the connectlon aperture 33e in the first relea.se lever 33 as shaped as a somewhat elongated circular arc with center the center of rotation of said first release lever 33, and by arranging the fit of the connection pin 38b of the connection member 38 into this connection aperture 33e to have a certain amount of free play remaining in the circumîerential direction, thereby when fittlng together the two tilt locklng mechanisms 30 and 40 and the steering column a.ssembly as a whole, there is a certain degree of freedom available between these two tilt locking mechanisms 30 and 40, and this degree of freedom absorbs any misalignment which might otherwise deteriorate the meshing state of the pawls 32 and 42 with the ratchets 31 and 41 which may have arisen due to manufacturing variations of the structural elements of said two tilt ~73~ 1~

lockin~ mechanisms. Thus, lt is possible to ensure thnt the pawls 32 and 42 engage properly and positively with their ratchets 31 and 41 at all times, without any problems arising with precise alignment of the components of the two tilt locking mechanisms 30 and 40 du~ng assembly 5 of the construcUon.

Since in this construction the pawl 32 of the first Ult locking mechanism 30 is assembled to the device by the use of the eccentric pivoting means incorporating the mounUng bolt 36a, the eccentric collar 36f, the spacer 36g, and the fastening nut 36h and so on, as shown in Figs. 14 and 15 in detail, thereby as explained above by turning the eccentric collar 36f and the spacer 36f integrally fitted therewith in assembllng the pawl 32 to the first Ult locking mechanism 30, the swing center of; the pawl 32 can be adjusted to a desired 15 posiUon wlthin a certaln rsnge, and thus the meshing state between said pawl 32 and its ratchet 31 can be ad~usted. Therefore, according to this construction, by first assembling the pawl 42 of the second tilt locking mechanism 40 and, after meshing said pawl 42 with its ratchet 41, subsequently assembling the pawl 32 of the first tilt 20 locking mechanism 30 with its swing center properly ad~usted as described above, the meshlng states of the pawis 32 and 42 relative to the ratchets 31 and 41 respectively can be set correctly, irrespective of the inevitable manufacturing errors and assembling errors of the varlous components d the two fflt mechanisms 30 and 40. And this 25 proper setting of the meshing states of the pawls 32 and 42 rehtive to the ratchets 31 and 41 respectively is very materially aided by the provision accordlng to the present inventlon of the certain degree of play as explained above between the first release lever 33 of the first tilt locking mechanism 30 and the coupiing member 38.
The present invention is not to be considered as limited in its appl~cation to the type of steering device shown above, although that is its most preferred application. Various other posslbilities are a1so concelvable of. For example, it would be possible to apply the 35 constructlon, explained above, of providing a small amount of play in . .

.
.
' .

~.~73~

the rotational dlrection between the first release lever 33 of the first tilt locking mechanism 30 and the coupling member 38, for instead provlding a smull smount of play in the rotational direction between the coupling member 38 and the second release lever ~3 of the second 5 tilt locking mechsnism 40, thus allowing a very small but non zero relstive movement amount between said coupling member 38 and said second release lever 43 of said second tilt locking mechanism 40. This would perform the same funcffon Or absorbing the inevitable manufscturing errors present in the vsrious parts of the construction 10 and allowing smooth operstion. Alternatlvely, it would be possible to construct the tilt locking mechanisms 30 and 40 in the reverse manner to that shown, with the ratchets 31 and 41 instead assembled to the main fixing bracket 32, and with the pawls 32 and 42 rotatably mounte<i to the rotatable bracket 25. In either csse, it will be clear to one 15 oi' ordinary skill in the art, based upon the descriptions contaLned in this specification, that the same advantages as accrued in the case of the first preferred embodiment of the present invention described above will be avallable.

The preænt invenUon can slso be applied to a tilt steerjng column of a type disclosed in Japsnese Utility Model Pub]icst~on Seri~l No. 57-53730 applled for by the assignee of the present patent appl~cation. This type of steering column may not be provided with any memory function and/or any telescopic iunction. For applying this invention to a tilt steering column in which the upper steering column tube is directly pivoted to the lower steering column tube, the ratchet or ratchets may be assembled to either one of the tubes, and the pawl or pawls may be assembled to the other one of the tubes. Therefore, although the present invention has been shown and described in terms of certain preferred embodiments thereof, and with reference to the appended drawings, it should not be considered as being particularly limited thereby. The details of any particular embodiment, or of the drawlngs, could be varied without, in many cases, departing from the ambit of the present invention. Accordingly, the scope of the present invention is to be considered as being delimited, not by any particular . . .

. ' ~ - ' '.

~3 ~7~) perhsps entirely fortuitous details oE the disclosed preferred embodiments, or Or the drawings, but solely by the le~itlmate snd properly interpreted scope of the accompanying claims, which ~ollow.

, , .

~ ,

Claims (3)

The embodiments of the invention in which an exclusive property or privilege is claimed are defined as follows:
1. A tiltable steering column for an automotive vehicle, comprising:
(a) a main steering shaft comprising a lower steering shaft and an upper steering shaft tiltably rotationally connected to said lower steering shaft;
(b) a column tube assembly, comprising:
(b1) a lower tube structure which rotatably supports said lower steering shaft from a body of said automotive vehicle; and (b2) an upper tube structure which rotatably supports said upper steering shaft and is pivotally mounted so as to be able to tilt relative to said lower tube structure about a tilting axis;
(b3) a first and a second pivot pin arranged along said tilting axis on a first side and a second side opposite to said first side of said column tube assembly, respectively, for tiltably connecting said upper tube structure with said lower tube structure;
and (c) a tilt locking mechanism, comprising a first side ratchet mechanism on said first side of said column tube assembly and a second side ratchet mechanism on said second side of said column tube assembly, said first and second side ratchet mechanisms respectively comprising:
(c1) a first and a second ratchet each fixedly attached to one of said upper tube structure and said lower tube structure;
(c2) a first and a second pawl each pivotally attached to the other of said upper tube structure and said lower tube structure;
(c3) a means for continuously biasing said first and said second pawl so as to engage them respectively with said first and said second ratchet; and (c4) a first and a second pawl releasing means respectively mounted to be rotatable about said first and said second pivot pin for selectively biasing said first and said second pawl so as to release said respective engagement thereof with said first and said second ratchet;
and further comprising:
(d) a means for coupling rotational movement of said first and said second pawl releasing means around said first and said second pivot pin together with a certain rotational angle of play being available therebetween.
2. A tiltable steering column according to claim 1, wherein said means for coupling the rotational movement of said first and said second pawl releasing means together comprises an L-shaped member having a first leg portion mounted on said first pivot pin so as to be rotatable therearound and bearing a pin projection engaged in an opening formed in said first pawl releasing means, said opening allowing said pin projection to move therein along an arc around said first pivot pin for an angle corresponding to said certain angle of play, and a second leg portion extending from said first leg portion thereof sidewardly from said first side of said column tube assembly toward said second side of said column tube assembly, and a means for fastening said second leg portion of said L-shaped member with said second pawl releasing means.
3. A tiltable steering column according to claim 2, wherein said second pawl releasing means comprises a portion extending sidewardly from said column tube assembly toward said first side of said column tube assembly so as to overlap with said second leg portion of said L-shaped member, said overlapped portions being fastened by bolts and nuts.
CA000511750A 1985-06-25 1986-06-17 Tiltable steering column with play provided between two tilt mechanism pawl release means Expired - Lifetime CA1273270A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP9619685 1985-06-25
JP60-096196 1985-06-25

Publications (1)

Publication Number Publication Date
CA1273270A true CA1273270A (en) 1990-08-28

Family

ID=14158538

Family Applications (1)

Application Number Title Priority Date Filing Date
CA000511750A Expired - Lifetime CA1273270A (en) 1985-06-25 1986-06-17 Tiltable steering column with play provided between two tilt mechanism pawl release means

Country Status (2)

Country Link
AU (1) AU580674B2 (en)
CA (1) CA1273270A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU666637B2 (en) * 1994-06-06 1996-02-15 Nsk Ltd. Tilt type steering apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU466122B2 (en) * 1972-10-31 1974-05-02 Lindstrom Bengt Vehicle steering gear

Also Published As

Publication number Publication date
AU5858086A (en) 1987-01-08
AU580674B2 (en) 1989-01-27

Similar Documents

Publication Publication Date Title
US4793204A (en) Tilt and telescope steering column having a single control
US5678454A (en) Steering column
US4102218A (en) Fastening device for tiltable steering mechanisms
US4722241A (en) Tiltable steering column with play provided between two tilt mechanism pawl release means
EP0231453B1 (en) Tilt-telescope steering column
US4723461A (en) Tiltable steering column with coupling means provided between two coaxial tilt mechanism pawl release means
CA1296599C (en) Tilt-telescope steering column
US6402168B1 (en) Steering device for vehicle
CA1039626A (en) Vehicle steering apparatus
US4538478A (en) Tiltable steering shaft assembly for automotive vehicles
CA1273270A (en) Tiltable steering column with play provided between two tilt mechanism pawl release means
US4656887A (en) Tiltable steering column with adjustable locking pawl
CA2011197C (en) Tilt steering column latch release
US4538477A (en) Tiltable steering shaft assembly for automotive vehicles
JPH02164697A (en) Wheel steering device of landing
US5645299A (en) Steering column support
JPS601012Y2 (en) Tilt handle device for vehicle
JPH0129178Y2 (en)
US6814363B2 (en) Vehicle suspension
JPH0225750Y2 (en)
US6301990B1 (en) Locking apparatus
JPS6129065Y2 (en)
JPS6338137Y2 (en)
JPH0222339Y2 (en)
JPH065952Y2 (en) Rear-wheel steering system for four-wheel steering vehicle

Legal Events

Date Code Title Description
MKLA Lapsed