CA1261682A - Particulate waste product combustion system - Google Patents

Particulate waste product combustion system

Info

Publication number
CA1261682A
CA1261682A CA000505051A CA505051A CA1261682A CA 1261682 A CA1261682 A CA 1261682A CA 000505051 A CA000505051 A CA 000505051A CA 505051 A CA505051 A CA 505051A CA 1261682 A CA1261682 A CA 1261682A
Authority
CA
Canada
Prior art keywords
inflow
improvement
combustion
rake
bed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
CA000505051A
Other languages
French (fr)
Inventor
Charles E. Chastain
Donald R. King
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PRM Energy Systems Inc
Original Assignee
PRM Energy Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US06/719,712 external-priority patent/US4589355A/en
Application filed by PRM Energy Systems Inc filed Critical PRM Energy Systems Inc
Application granted granted Critical
Publication of CA1261682A publication Critical patent/CA1261682A/en
Expired legal-status Critical Current

Links

Landscapes

  • Gasification And Melting Of Waste (AREA)
  • Solid-Fuel Combustion (AREA)
  • Incineration Of Waste (AREA)

Abstract

ABSTRACT OF THE DISCLOSURE

The carbon content of the residue from combustion of agricultural waste products and the fly ash content of the gaseous exhaust is controlled by regulated inflow of the combustion supporting air in a plurality of flow stream at different velocities to enhance fluidization of particulate feed in a bed being raked by a rotating sweep arm inducing radially outward movement of com-bustion residue into a collecting zone from which the residue enters a discharge duct. The particulate feed is dropped at location in the combustion chamber above the bed in alignment with the inflow stream of maximum velocity.

Description

~ 26 ~

This invention relates to improvements in the controlled incineration of agricultural waste products for utilization of the ash residue and gaseous exhaust.
The disposal of waste or by-products from the processing of agricultural food crops by incineration create many problems, particularly the incineration of by-products such as rice and peanut hulls, wood chips, cottonseed, etc., which are tough, woody and abrasive. Further, such by-products are variable in density and have a high silica content.
Incineration of such by-products is not only expensive but consumes large quantities of energy and creates air pollution problems.
The controlled combustion of the foregoing type of waste or by-products has heretofore been attempted to deal with the problem of abrasive fly ash and combustion efficiency. Because of feed density variation, over~iring or underfiring o~ten occur~3 dur;ng comhustion resulting in unstable heat generation and exhaust ~as quality that is not satisfactory for heat recovery purposes. Prior burners are also unable to control the degree of burn and therefore lack flexibility for control of the ash content of the combustion residue as a marketable product.
It is therefore an important object to provide an economical combustion system for a variety of feeds without requiring pretreatment or prior expensive processing and to accommodate a wide variation in feed bulk density.
Another obJect is to provide a combustion system for such wa-3te products whereby the ash content of the combustion residue may be controlled and the fly ash content of its gaseous exhaust minimized.
In accordance with the present invention, a particulate feed is fed into a combustion chamber and mixed with air at an infeed location within the combustion chamber above a bed into which the particulate feed drops. Combustion supporting air is supplied to the combustion chamber from an underfire location below the bed. Underfire air enters the combustion chamber through grate openings in a plurality of flow streams at velocities insufficient to fluidize the particuLate material while undergoing combustion. A sweep arm is rotated an adjustable distance above the bed support to rake and agitate the particulate solids through the fluidizing zone of the combustion chamber at a speed sufficient to mechanically fluidize the solids during combustion. The raking action of the sweep arm also induces radially outward movement of burning matter under centrifugal force toward a non-fluidized collection zone above an imperforate peripheral portion of the bed support from which the residue agh i9 withdrawn.
Operation of the foregoing apparatus evolves a ~ascous e~chaust that Elows past the ineecl location to an upper exhaust duct which delivers an exhaust useful as a heating medium for boilers or the like. By control of the feed rate of the particulate feed and adjustment of the vertical spacing of the sweep arm above the bed support, the heat energy content of the e~haust may be varied to meet different requirements. Further, the carbon content of the ash residue may be varied by adjustment of underfire air inflow rates between limits, in order to meet different market requirements for disposal of the ash residue.
~ ccording to certain embodiments the flow streams of inflowing air are separated by circular partitions within an inflow compartment underlying the bed support. The inflow velocities of the flow streams are selected at different values by use of separate air valves. The radially inner air inflow zone aligned below the infeed location conducts its upward inflow stream at the highest velocity.
Figure 1 is a simplified side elevational view of the apparatus associated with the system of the present invention.
Figure 2 is an enlarged partial side sectional view of the apparatus shown in Figure 1.

Figure 3 is a partial section view taken suhstantially through a plane indicated by section line 3--3 in Figure 2.
Figure 4 is an enLarged partial section view taken substantially through a plane indicated by section line 4--4 in ~igure 3.
Figure 5 is a partial transverse section view taken substantially through a plane indicated by section line 5--5 in Figure 2.
Figure 6 is a block diagram schematically illustrating the system of the present invention in association with its controls.
Referring now to the drawings in detail, Figure 1 illustrates typical apparatus or practicing the system of the present invention, generally referred to by reference numeral 10. ~ solid waste product is stored in a stock hopper 12 having a lower unloading end portion 14 from which particulate feed material enters an auger conveyor 16 at~ached to the hopper. The conveyor 16 ia driven hy a varinble speed motor 18 to deliver the Eeed to the upper inlet end of a gravity duct 20 oE generally rectangular cross-section. The lower delivery end of the duct 20 is con-nected to the housing of a flow meter 22 through which the feed passes into a rotary type of metering device 24. The flow meter 22 may be of a commer-cially available impact line type designed to measure the weight flow rate of the feed and generate an electrical signal reflecting such measurement.
The signal output of the flow meter 22 is accordingly used ta control drive of the variable speed motor 18 in order to maintain a substantially constant weight flow feed rate for the infeed mechanism generally ref0rred to by reference numeral 26. The rotary metering device 24 is well known in the art and is utilized herein to prevent gas back-up.
The infeed mechanism 26 is driven by a variable speed motor 27 and extends into combustion chamber device, generally referred to by reference numeral 28. The products of combustion include a gaseous exhaust discharged through an e~haust duct 30 from the upper end of the combustion chamber device, and an ash residue withdrawn through a duct 32 from the lower end. Combustion ~26~6~
supporting air i9 supplied through an overfire inflow duct 34 at the upper end and an underEire inflow duct 36 at the lower end. The underfire inflow is split between two inflow paths by inflow controlling air valves 37 and 39 through which air enters device 2~ at two different velocities. A feed raking mechanism 38 is associated with the device 28 and extends from its lower end for drive by a variable speed motor 40. The mechanism is vertically adjustable through any suitable power operated adjusting device 41 from which a piston adJustment rod 43 extends.
The system with which apparatus lO is associated, is diagrammed in Figure 6 ~howing the flow of the particulate feed from storage 12 to the combustion chamber device 28 with which some form of igniting device 42 is associated. Also associated with combustion chamber device 28 are the rake drive motor 40 afore-nentioned, and blowers 44 and 46 for respectively ~upplying air through the overfire and ~lnderf;re inflow ducts 34 and 36.
The flignal output of the flow meter 22 is fed to a visual display 48 and as an input to a computer 50 to which adjustment input data is also fed from 52. The computer produces outputs for control of the feed drives 18-26 in order to maintain an adjusted uniform weight flow rate for the feed into the combustion chamber. IJnderfire inflow velocities from blower 46, the vertical spacing of the sweep arm and its rotational speed may also be controlled by the co~lputer thrGugh valve control 53, motor 40 and rake height adjustment control 55. The computer if utilized is thus programmed to control the feed rate, inflow velocitie~ of the underfire air, and the height and speed of the rake in accordance with the present invention.
Referring now to Figures 1 and 2, the infeed mechanism 26, includes an auger type conveyor 54 driven by the motor 27 externally of the housing 56 of the combustion chamber device 28. The conveyor 54 is enclosed by air pas-sages 58 and an outer water jacket 60 that extend into the housing 56 with the conveyor 54 to cool the conveyor within the high temperature environment of the combustion chamber 62 enclosed by housing 56 above a fixed, horizontal ~L26~61~2 bed support generally referred to by reference numeral 64. An insulating coating 61 i8 formed on the outer water cooling jacket 60 which extends axially beyond the discharge end 66 of the auger conveyor 54 to form a mixing space 68 at a central infeed location within the combustion chamber substantially aligned with the vertical longitudinal axis of the housing 56.
The cooling air passages 58 open into the mixing space 68 so that air supplied thereto externally of the housing by conduit 70 will discharge into space 68 for mixing with the particulate feed being di~charged from the delivery end 66 of the conveyor 54. The annular water space of jacket 60 is closed at its inner end for circulation of water between inlet and outlet conduits 72 and 74.
Thus, air and water cooling of the conveyor 54 enables it to function continu-ously in discharging a mixture of air and particulate solids at a relatively hot central location in a thermal upflow of gaseous combustion products for decelerated gravitational descent toward the bed support 64. The space fi8 not only provides for mixing of the particles with air before drop onto the bed, but also prevents back firing into the auger conveyor 54 and clears the discharge end thereof by the continued outflow of air from passages 58 when feed from the conveyor 54 is interrupted.
The bed support 64 as shown in Figure 2 includes a steel gas dis-20 tributor plate 76 spaced above the bottom wall 78 of the housing 56 and a refractory plate 80 fixed to the steel plate. A major radially inner porous portion of the plate 76 has closely spaced openings 82 to form a burner grate above an underfire compartment divided into two radially spaced inflow zones 84a and 84b to which the underfire air is conducted through the air valves 37 and 39 as aforementioned. Accordingly, the blower pressurized underfire air will be directed upwardly through the gra~e openings 82 under different J velocities from two :Elow streams separated by a circular partition 85.
The particulates which form the bed as shown by dotted line 87 in Figure 2, are mechanically fluidized, during combustion, by the rake mechanism 38 which includes a radial sweep arm 86 extending through the fluidized zone ~.2~i3161~3~

from a rotor portion 88 supported by a sealed bearing assembly 90 for rotation about the vertical axis of the housing. The sweep arm will be adjustably spaced above the plate 76. The rotor 88 has a gear 92 splined thereto externally of the housing for driving connection to the motor 40.
A conduit 94 extends concentrically through the rotor 88 and sweep arm 86 to form an inner return flow passage 96 and an annular inflow passage 98, respectively, connected through fixed manifolds 100 and 102 to coolant outlet and inlet conduits 104 and 106. The end 108 of inner conduit 94 opens into a hollow paddle formation 110 connected to the radially outer end of the sweep arm 86. The interior of the paddle is in communication with the annular passage 98 so that water will circulate through the flweep arm and paddle for cooling thereof.

The paddle llO i~ vertic~lly ~pflced above ~ radi~lly o~lter, imperforate portion 112 of the be~ support 6~ over which a non-Eluidized collection zone is established. It will be apparent that rotation of the sweep arm through the rotor portion 88 of the mechanism 38 not only fluidizes material during combustion, but also induces radially outward movement thereof under centrifugal forces toward the non-fluidized collection zone above the annular imperforate portion 112 of the bed support. Thus, an ash residue is collected on portion 112 of the bed support and is displaced by the paddle 110 each revolution to the upper inlet end 114 of the residue discharge duct 32 as more clearly seen in Figures 3 and 4. As shown in Figure 4, a water cooling jacket 116 is mounted about the duct 32, which is connected at its upper inlet end to the imperforate portion 112 of the bed support 64. The inlet end 114 is furthermore aligned with the paddle which cyclically passes thereabove to effect withdrawal of the ash residue collected on the portion 112 of the bed support.
As a result of the arrangemen~ of the apparatus hereinbefore described, the 1y ash content and abrasiveness of the exhaust gas is minimal `` ~L2~

despite the use of a feed having a high silica content. The fly ash content of the exhaust gas is furthermore reduced by a lower velocity of the underfire inflow through the radially outer ~one 84b aligned below the radially outer portion of the bed ~7 which is thinned out by the raking action. The central portion of the bed 87, of maximum height because of its alignment with the central infeed location, is aligned with the radially inner inflow zone 84a through which inflow air enters at a higher velocity. Because of the foregoing zoning of the underfire air, a fly ash reducing affect is realized which is particularly critical in accommodating the combustion of lightweight feeds such as cottonseed.
To accommodate heavier feeds such as rice hulls, the rake speed of the sweep arm and the height of the sweep arm above the plate 76 must be increased toward upper operational limits oE 7.5 RPM and 13-l/2 inches, respectively, for efEicient combustion. For the lighter feeds, such as cottonseed, sweep nrm hei~ht is lowered toward a lower limit oE 5-l/2 inches according to actual embodiments of the invention. Also, for lighter feeds dimensional increases in width and height of the sweep arm paddle 110 was found to be beneficial in enhancing the recovery of the ash residue.
Variations in the aforementioned parameters, including sweep arm height and speed, paddle size and underfire inflow zone velocities also affect the carbon content of the ash residue in different ways which may thereby be tailored to meet different combinations of product requirements and feed characteristics.

Claims (9)

The embodiments of the invention, in which an exclusive property or privilege is claimed are defined as follows:
1. In combination with apparatus for incinerating combustible material within a fluidized bed, including a combustion chamber housing, a bed support within the housing separating a fluidizing zone from an underfire compartment and a rake rotably mounted within the fluidizing zone, the improvement comprising infeed means for introducing the material into the combustion chamber from an infeed location therein above the fluidizing zone, inflow means for upwardly conducting combustion supporting gas into the fluidizing zone through the bed support from at least two flow streams under different inflow velocities insufficient to fluidize the material, and drive means operatively connected to the rake for rotation thereof at a predetermined speed effective to mechanically fluidize the material within said fluidizing zone during combustion and cause displacement of residual ash from the fluidizing zone.
2. The improvement as defined in claim 1 wherein the inflow means includes partition means for dividing the underfire compartment into radially spaced inflow zones through which the two flow streams are conducted.
3. The improvement as defined in claim 2 wherein the inflow means further includes an underfire blower from which pressurized flow of the gas originates and a pair of flow controlling valve devices operatively connected to the blower for supply of the pressurized gas to the inflow zones at the different inflow velocities, respectively.
4. The improvement as defined in claim 3 wherein the inflow velocity of the gas conducted through one of the inflow zones, vertically aligned with the infeed location, is higher than that in the other of the inflow zones.
5. The improvement as defined in claim 4 including means for selectively adjusting the spacing between the rake and the bed support.
6. The improvement as defined in claim 2 wherein the inflow velocity of the gas conducted through one of the inflow zones, vertically aligned with the infeed location, is higher than that in the other of the inflow zones.
7. The improvement as defined in claim 1 including means for selectively adjusting the spacing between the rake and the bed support.
8. The improvement as defined in claim 1 wherein the material is particulate agricultural by-products.
9. The improvement as defined in claim 8 wherein said by-products are of a class of high silica content particles, including rice hulls and cottonseed.
CA000505051A 1985-04-02 1986-03-25 Particulate waste product combustion system Expired CA1261682A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US06/719,712 US4589355A (en) 1983-02-10 1985-04-02 Particulate waste product combustion system
US719,712 1985-04-02

Publications (1)

Publication Number Publication Date
CA1261682A true CA1261682A (en) 1989-09-26

Family

ID=24891067

Family Applications (1)

Application Number Title Priority Date Filing Date
CA000505051A Expired CA1261682A (en) 1985-04-02 1986-03-25 Particulate waste product combustion system

Country Status (6)

Country Link
CN (1) CN1014445B (en)
BR (1) BR8601436A (en)
CA (1) CA1261682A (en)
MX (1) MX163697B (en)
PH (1) PH23715A (en)
PT (1) PT82324B (en)

Also Published As

Publication number Publication date
PT82324B (en) 1993-01-29
CN86102019A (en) 1986-10-01
CN1014445B (en) 1991-10-23
PT82324A (en) 1986-05-01
BR8601436A (en) 1986-12-09
PH23715A (en) 1989-09-27
MX163697B (en) 1992-06-15

Similar Documents

Publication Publication Date Title
US4589355A (en) Particulate waste product combustion system
EP1780465B1 (en) Particulate waste product gasification system and method
EP2239499B1 (en) Integrated biomass gas turbine system with a cyclonic combustion chamber
US5732894A (en) Micronization apparatus and method
US4646637A (en) Method and apparatus for fluidized bed combustion
EP0246308B1 (en) Method of and apparatus for particulate matter conditioning
US4400150A (en) Fluidized bed combustor distributor plate assembly
US4442795A (en) Recirculating fluidized bed combustion system for a steam generator
JP2007126625A5 (en)
AU546421B2 (en) Fluidized bed combustion apparatus
JPS6294705A (en) Method of controlling bed height by fluidized bed in prime mover and prime mover with bed height controller
CA1261682A (en) Particulate waste product combustion system
CN1017469B (en) Composite circulation fluidizing bed boiler
US3669502A (en) Pneumatic spreader stoker
US4734960A (en) Equipment for direct fuel firing
EP0279340B1 (en) Power plant with combustion of a fuel in a fluidized bed
SU1054647A2 (en) Plant for drying loose materials
CA1210995A (en) Incineration system
CN2155538Y (en) Rotary fluid-bed drier
MX2008005735A (en) Particulate waste product gasification system and method

Legal Events

Date Code Title Description
MKEX Expiry