CA1261123A - Fluidized bed reactor - Google Patents
Fluidized bed reactorInfo
- Publication number
- CA1261123A CA1261123A CA000500486A CA500486A CA1261123A CA 1261123 A CA1261123 A CA 1261123A CA 000500486 A CA000500486 A CA 000500486A CA 500486 A CA500486 A CA 500486A CA 1261123 A CA1261123 A CA 1261123A
- Authority
- CA
- Canada
- Prior art keywords
- combustion chamber
- tube walls
- cyclone separator
- fluidized bed
- bed boiler
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Fluidized-Bed Combustion And Resonant Combustion (AREA)
Abstract
(57) Abstract The invention comprises a circulating fluidized bed boiler having a vertical combustion chamber and a convection part which at least partly are formed by tube walls, and a hori-zontal cyclone separator, the gas inlet channel of which is connected to the upper part of the combustion chamber and a return channel for solids to the lower part of the combustion chamber. In order to accomplish a compact construction, the cyclone separator has been located on top of the combustion chamber and two opposite tube walls of the combustion chamber and possibly also one tube wall of the convection part have been used to form the cyclone separator.
Description
Circulating fluizied bed boiler The present invention relates to a circulating fluidized bed boiler having a vertical combustion chamber and a convection part which at least partly are formed by tube walls, and a horizontal cyclone separator, the gas inlet channel of which is connected to the upper part of the combustion chamber and a return channel for solids to the lower part of the combustion chamber.
The object of the invention is to accomplish a constructional-ly simple and compact circulating fluidized bed boiler in which solids can effectively be separated from the flue gases and returned to the combustion chamber of the boiler.
The circulating fluidized bed technique has long been applied e.gO in calcinators and is nowadays applied to a growing extent in various reactors r such as boilers and gasifiers. In known applications, the separation of solids from flue gases takes place in an ordinary, in its lower part funnel-shaped cyclone separator, in the cylindrical turbulence chamber of which is disposed a gas outlet pipe that leads the gases upwards, and from which solids are returned to the reactor via a discharge pipe.
As an example can be mentioned a circulating fluidized bed boiler known from the Swedish publication 8203268-1 in which the back wall of the combustion chamber has been bended towards the front wall to form the ceiling of the combustion chamber. Directly under the ceiling is located a discharge opening for flue gases which is connected to the cyclone separator. The gas outlet opening of the cylone separator is connected to a channel on top of the ceiling which channel has a connection to the vertical convection part, one wall of which is formed by the back wall of the combustion chamber.
~fr~
Because the cyclone separator is separated from the boiler and located on diEferen-t side of the boiler than the convection part, the gas channel system becomes complicated and requires several expansion joints. In the circulating fluidized bed boiler according to the invention the horizontal cyclone separator has been located on top of the boiler and connected to it in a way that avoids the above mentioned problems.
The solution according to the invention is mainly characte-rized in that two opposite tube walls of the combustion chamber have been used to form the cyclone separator.
Because the separator has been intergrated with the construc-tion of the circulating fluidized bed boiler a both space and material saving construction is accomplished.
The invention will be described in detail in the following with reference to the accompanying drawings in which fig. 1 shows a vertical section of one embodiment of the in-vention, fig. 2 shows a section along the line A-A in fig.l, fig. 3 shows a section along the line B-B in fig.1, fig. 4 shows a vertical section of another embodiment of the invention and fig. 5 a section along the line C-C in fig. 4.
The steam boiler shown in the figures 1-3 comprises a combus-tion chamber 5 defined by four walls 1-4 formed by tubes that have been welded together in a way known per se. The tubes form heat transfer surfaces of the boiler and they have been connected to the boiler circulation system in a way that has not been described in detail.
A fuel inlet channel 6 is located in the lower part of the combustion chamber. There are also inlet channels 7 and 8 for primary gas and secondary gas respectively.
A horizontal cyclone separator 9 is disposed on top of the com-bustion chamber. Beside the combustion chamber is situated a vertical convection part 10 which is defined by tube walls 11-14 and in which heat transfer surfaces 15 additionally have been disposed.
Front and back walls 1, 3 of the combustion chamber and a wall 11 of the convection part parallel with the back wall 3 of the combustion chamber have been used to form the cyclone separator. The front wall 1 of the combustion chamber and the wall 11 of the convection part have been bended towards each other and connected with each other to form a cylindrical upper part 16 of the separator. The back wall 3 of the combustion chamber has been bended towards the front wall to form a ceiling 17 of the combustion chamber and runs then parallelly with the cylindrical part of the front wall so that -they form together an inner and outer wall 19, 20 of the gas inlet channel 18 of the separator.
Using the back wall 3 of the combustion chamber and the wall 11 of the convection part two opposite walls 22, 23 of return channels 21 have been formed that connect the separator to the lower pArt of the combustion chamber.
partition wall 26 divides the separator into parallelly functioniny units 24 and 25. Each unit has been provided with a guide 27 the inner surface 28 of which forms with the inner surfaces 29 and 30 of the cylindrical upper part of the back ~ r~
wall 3 of the combustion chamber and the wall 11 of the con-vection part parallel turbulence chambers 31 and 32. The par tition walls 25 with openings 33 form end walls of the turbu-lence chambers and side walls of the return channels. Eaeh turbulence chamber has been connected to its own return channel. Passages 34 between the turbulence chambers open into the convection part.
Tubes 35 of the front wall of the combustion chamber, tubes 36 of the wall 11 of the convection part and tubes 37 of the opposite wall 13 have been connected to a collector tube 38 and tubes 39 of the back wall of the combustion chamber have been connected to a collector tube 40.
When leaving the combustion ehamber the flue gases containing solids are lead to the turbulence chambers 31, 32 of the parallel separation units through a gas inlet channel 18 that is tangentially conneeted to the turbulence chamber.
The solids coneentrated on the outer periphery of the turbu-lence chambers are discharged from the turbulence chamber through openings 41 and 42 formed between the guide 27 and the walls 3 and 1~ and returned to the combustion chamber through the return channels 21. The purified gases flow through the openings 33 in the end walls of the turbulence chambers and through channels 34 formed between these to the conveetion part 10.
In order to prevent erosion the tube walls forming the sepa-rator are lined with a fire and erosion resistant coating 43, 44 and 45 e.g. mortar.
In the steam boiler shown in the Eigures 1-3, the return channels 21 for solids of the separator are located between the eombustion ehamber and the eonveetion part.
In the steam boiler shown in the figures ~ and 5, the return channels for solids of the separator and the convention part have been located on different sides of the combustion chamber The opposite tube walls 101 and 103 of the combustion chamber 105 and the wall 111 parallel with the wall 103 have been used to form the cyclone separator 109. One wall 101 of the com-bustion chamber forms one of the tube walls of the convection part 110. The back wall 103 of the combustion chamber and beside the combustion chamber with this wall parallel tube wall 111 have been used to form return channels for solids of the separator.
The invention is not limited to the above embodiments but it can be modified and applied within the inventive concept defined by the claims.
The object of the invention is to accomplish a constructional-ly simple and compact circulating fluidized bed boiler in which solids can effectively be separated from the flue gases and returned to the combustion chamber of the boiler.
The circulating fluidized bed technique has long been applied e.gO in calcinators and is nowadays applied to a growing extent in various reactors r such as boilers and gasifiers. In known applications, the separation of solids from flue gases takes place in an ordinary, in its lower part funnel-shaped cyclone separator, in the cylindrical turbulence chamber of which is disposed a gas outlet pipe that leads the gases upwards, and from which solids are returned to the reactor via a discharge pipe.
As an example can be mentioned a circulating fluidized bed boiler known from the Swedish publication 8203268-1 in which the back wall of the combustion chamber has been bended towards the front wall to form the ceiling of the combustion chamber. Directly under the ceiling is located a discharge opening for flue gases which is connected to the cyclone separator. The gas outlet opening of the cylone separator is connected to a channel on top of the ceiling which channel has a connection to the vertical convection part, one wall of which is formed by the back wall of the combustion chamber.
~fr~
Because the cyclone separator is separated from the boiler and located on diEferen-t side of the boiler than the convection part, the gas channel system becomes complicated and requires several expansion joints. In the circulating fluidized bed boiler according to the invention the horizontal cyclone separator has been located on top of the boiler and connected to it in a way that avoids the above mentioned problems.
The solution according to the invention is mainly characte-rized in that two opposite tube walls of the combustion chamber have been used to form the cyclone separator.
Because the separator has been intergrated with the construc-tion of the circulating fluidized bed boiler a both space and material saving construction is accomplished.
The invention will be described in detail in the following with reference to the accompanying drawings in which fig. 1 shows a vertical section of one embodiment of the in-vention, fig. 2 shows a section along the line A-A in fig.l, fig. 3 shows a section along the line B-B in fig.1, fig. 4 shows a vertical section of another embodiment of the invention and fig. 5 a section along the line C-C in fig. 4.
The steam boiler shown in the figures 1-3 comprises a combus-tion chamber 5 defined by four walls 1-4 formed by tubes that have been welded together in a way known per se. The tubes form heat transfer surfaces of the boiler and they have been connected to the boiler circulation system in a way that has not been described in detail.
A fuel inlet channel 6 is located in the lower part of the combustion chamber. There are also inlet channels 7 and 8 for primary gas and secondary gas respectively.
A horizontal cyclone separator 9 is disposed on top of the com-bustion chamber. Beside the combustion chamber is situated a vertical convection part 10 which is defined by tube walls 11-14 and in which heat transfer surfaces 15 additionally have been disposed.
Front and back walls 1, 3 of the combustion chamber and a wall 11 of the convection part parallel with the back wall 3 of the combustion chamber have been used to form the cyclone separator. The front wall 1 of the combustion chamber and the wall 11 of the convection part have been bended towards each other and connected with each other to form a cylindrical upper part 16 of the separator. The back wall 3 of the combustion chamber has been bended towards the front wall to form a ceiling 17 of the combustion chamber and runs then parallelly with the cylindrical part of the front wall so that -they form together an inner and outer wall 19, 20 of the gas inlet channel 18 of the separator.
Using the back wall 3 of the combustion chamber and the wall 11 of the convection part two opposite walls 22, 23 of return channels 21 have been formed that connect the separator to the lower pArt of the combustion chamber.
partition wall 26 divides the separator into parallelly functioniny units 24 and 25. Each unit has been provided with a guide 27 the inner surface 28 of which forms with the inner surfaces 29 and 30 of the cylindrical upper part of the back ~ r~
wall 3 of the combustion chamber and the wall 11 of the con-vection part parallel turbulence chambers 31 and 32. The par tition walls 25 with openings 33 form end walls of the turbu-lence chambers and side walls of the return channels. Eaeh turbulence chamber has been connected to its own return channel. Passages 34 between the turbulence chambers open into the convection part.
Tubes 35 of the front wall of the combustion chamber, tubes 36 of the wall 11 of the convection part and tubes 37 of the opposite wall 13 have been connected to a collector tube 38 and tubes 39 of the back wall of the combustion chamber have been connected to a collector tube 40.
When leaving the combustion ehamber the flue gases containing solids are lead to the turbulence chambers 31, 32 of the parallel separation units through a gas inlet channel 18 that is tangentially conneeted to the turbulence chamber.
The solids coneentrated on the outer periphery of the turbu-lence chambers are discharged from the turbulence chamber through openings 41 and 42 formed between the guide 27 and the walls 3 and 1~ and returned to the combustion chamber through the return channels 21. The purified gases flow through the openings 33 in the end walls of the turbulence chambers and through channels 34 formed between these to the conveetion part 10.
In order to prevent erosion the tube walls forming the sepa-rator are lined with a fire and erosion resistant coating 43, 44 and 45 e.g. mortar.
In the steam boiler shown in the Eigures 1-3, the return channels 21 for solids of the separator are located between the eombustion ehamber and the eonveetion part.
In the steam boiler shown in the figures ~ and 5, the return channels for solids of the separator and the convention part have been located on different sides of the combustion chamber The opposite tube walls 101 and 103 of the combustion chamber 105 and the wall 111 parallel with the wall 103 have been used to form the cyclone separator 109. One wall 101 of the com-bustion chamber forms one of the tube walls of the convection part 110. The back wall 103 of the combustion chamber and beside the combustion chamber with this wall parallel tube wall 111 have been used to form return channels for solids of the separator.
The invention is not limited to the above embodiments but it can be modified and applied within the inventive concept defined by the claims.
Claims (7)
1. In a circulating fluidized bed boiler including a vertical combustion chamber which at least partly is formed by tube walls, and a horizontal cyclone separator having a gas inlet channel connected to the upper part of the combustion chamber, a return channel of the separator, for solids being connected to the lower part of the combustion chamber, wherein two opposite tube walls of the combustion chamber are used to form the cyclone separator.
2. The circulating fluidized bed boiler according to claim 1, wherein two opposite tube walls of the combustion chamber and a wall parallel with one of the tube walls beside the combustion chamber are used to form the cyclone separator.
3. The circulating fluidized bed boiler according to claim 2, wherein the two opposite tube walls of the combustion chamber and one of the tube walls of the convection part are used to form the cyclone separator.
4. The circulating fluidized bed boiler according to claim 1, 2 or 3, wherein two opposite tube walls of the combustion chamber are used to form a gas inlet channel tangentially connected to the cyclone separator.
5. The circulating fluidized bed boiler according to claim 2, wherein one of the opposite tube walls of the combustion chamber and one of the tube walls of the convection part are used to form the return channel for solids of the cyclone separator.
6. The fluidized bed boiler according to claim 2, wherein one of the tube walls of the combustion chamber used to form the cyclone separator forms one of the tube walls of the convection part.
7. The circulating fluidized bed boiler according to claim 3, wherein one of the opposite tube walls of the combustion chamber and one of the tube walls of the convection part are used to form a turbulence chamber of the cyclone separator.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FI851199 | 1985-03-26 | ||
FI851199A FI85183C (en) | 1985-01-29 | 1985-03-26 | Boiler with circulating bed |
Publications (1)
Publication Number | Publication Date |
---|---|
CA1261123A true CA1261123A (en) | 1989-09-26 |
Family
ID=8520580
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA000500486A Expired CA1261123A (en) | 1985-01-29 | 1986-01-28 | Fluidized bed reactor |
Country Status (1)
Country | Link |
---|---|
CA (1) | CA1261123A (en) |
-
1986
- 1986-01-28 CA CA000500486A patent/CA1261123A/en not_active Expired
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4708092A (en) | Circulating fluidized bed boiler | |
CA1261122A (en) | Apparatus for separating solid material from flue gases in a circulating fluidized bed reactor | |
CA1318642C (en) | Cyclone separator having water-steam cooled walls | |
KR910001838B1 (en) | Circulating fluidized bed reactor | |
WO1994011673A1 (en) | Method and apparatus for operating a circulating fluidized bed system | |
US5203284A (en) | Fluidized bed combustion system utilizing improved connection between the reactor and separator | |
US5471955A (en) | Fluidized bed combustion system having a heat exchanger in the upper furnace | |
FI89203B (en) | FOERBRAENNINGSANLAEGGNING | |
AU568201B2 (en) | Two-or multi-component reactor | |
EP0497528B1 (en) | Steam generating system utilizing separate fluid flow circuitry between the furnace section and the separating section | |
US5393315A (en) | Immersed heat exchanger in an integral cylindrical cyclone and loopseal | |
CA1261123A (en) | Fluidized bed reactor | |
US5171542A (en) | Circulating fluidized bed reactor | |
KR940015356A (en) | Large Fluidized Bed Reactor | |
AU580495B2 (en) | Circulating fluidizied bed boiler | |
US5370084A (en) | Pantleg circulating fluidized bed boiler and combustion method using same | |
FI85183B (en) | Furnace with circulating bed | |
US4920924A (en) | Fluidized bed steam generating system including a steam cooled cyclone separator | |
FI79404C (en) | Reactor with circulating bed. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MKEX | Expiry |