CA1253611A - Modular cable interconnection apparatus - Google Patents

Modular cable interconnection apparatus

Info

Publication number
CA1253611A
CA1253611A CA000487870A CA487870A CA1253611A CA 1253611 A CA1253611 A CA 1253611A CA 000487870 A CA000487870 A CA 000487870A CA 487870 A CA487870 A CA 487870A CA 1253611 A CA1253611 A CA 1253611A
Authority
CA
Canada
Prior art keywords
unit
cable
mounting
units
interconnection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
CA000487870A
Other languages
French (fr)
Inventor
Arthur D. Becraft
Howard M. Citron
Joseph E. Tatarski
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AT&T Corp
Original Assignee
American Telephone and Telegraph Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by American Telephone and Telegraph Co Inc filed Critical American Telephone and Telegraph Co Inc
Application granted granted Critical
Publication of CA1253611A publication Critical patent/CA1253611A/en
Expired legal-status Critical Current

Links

Landscapes

  • Connector Housings Or Holding Contact Members (AREA)

Abstract

MODULAR CABLE INTERCONNECTION APPARATUS

Abstract A cable connection unit includes a mounting arrangement for holding a variety of modular interconnection units for interconnecting a variety of communication cables. Each interconnection unit has the same length and a width which is an integer multiple of the width of the smallest interconnection unit. The mounting arrangement can be mounted to a plate surface or to an apparatus enclosure having cable entry and exit opening and a moveable front panel. The apparatus enclosure perimeter includes a mortise and tenon to enable mechanical interconnection to one or more additional housing enclosures.

Description

~i36~

MODULAR CABL~ INTERCONNECTION ~PPARATUS

Technical Field This invention relates to mounting arrangements for communication wiring apparatus and more particular to a cable connection arrangement having modular interconnection units for in-terconnecting communica~ion cables.
Background of the Invention Typically communication systems utilize building or premises wiring distribution arrangements to interconnect terminals, station se-ts and central office (CO) lines to the system controller unit. These premises wiring distribution arrangements are either installed when the building is constructed or later when the communication system is added to the building. Often a company or building tenant may decide to change communication systems or to add a new communication capability or service requiring a change to the premises wiring distribution arrangement. When this occurs the result is often a "rats nest" of different wires and connectors which is disorganized, unprotected and occupies too much space. Moreover, the nest grows each time a change is made to the system. What is desired is apparatus which provides an easily changeable organized cable (wires, fiber op~ics, etc.) interconnection arrangement.
In accordance with one aspect of the invention there is provided a cable connection arrangement for - interconnecting communication cables comprising a group of modular interconnection units, each unit adapted -to terminate a cable at each end of a first side thereof using any one of a variety of cable terminating means, each unit having the same end-to-end length, each unit having a different width which is equal to an integer ~253~
- la -multiple of the width of the narrowest unit in said group, and each unit adapted to be mounted by the ends of said first side below said cable termination means; and mounting arrangement adapted for mounting one or more of said units each having the same or different widths, said mounting means including a plurality of retaining means arranged in two rows spaced apart by the length of said units and adjacent retaining means in each row having a spacing substantially equal to the width of the narrowest unit, each of said one or more of said units being held at each respective end of said first side between two retaining means on each row such that the cable termination means of said unit are located above a mounting plane formed by the two rows of the retaining means.
In accordance with another aspect of the invention there is provided a group of rectangularly shaped modular interconnection units, each unit comprising means for terminating a cable at a first and second ends of a top said of said unit using any one of a variety of cable terminating means, means located at said Eirst and second ends below said cable termination means on a bottom side of said unit for mounting said unit in a snap mounting arrangement using the corners formed by the bottom side and said first and second ends of said unit such that when the unit is mounted the cable termination means of said unit are located above said mounting arrangement, and wherein each of said units has the same length and each unit has a different width which is equal to an integer multiple of the width oE the narrowest unit in said group.
In accordance with yet another aspect of the invention there is provided a rectangularly shaped interconnection unit comprising means for terminating a cable at a first and a second end of a top side of said ``" ~æ~36~
- lb -unit using any one of a variety of cable terminating means, means loca~ed at said first and second ends below said cable termination means on a bottom side of said unit for mounting said unit in a snap mounting arrangement using the corners formed by the bottom sides and said first and second ends of said unit such that when the unit is mounted the cable termination means of said unit are located above a plane formed by the snap mounting arrangment.

.~

~2536~
- 2 -One embodiment o the cable connection unit includes a modular housing enclosure (apparatus enclosure) for connecting the mounting arrangement therein. This modular housing enclosure may include mechanical interconnection apparatus thereon to enable connection to one or more additional housing enclosures.

The operation of the present invention will be more fully appreciated from the detailed description which references the drawings in which:
FIG~ 1 illustrates one embodiment of a cable connection unit according to the present invention;
FIG~ 2 illustrates the apparatus mounting arrangement used for mounting the modular interconnection unit;
FIG~ 3 shows the details of the apparatus on the mounting arrangement used to mount a modular interconnecting unit;
FIGo 4 shows a typical interconnection of several . ~
types of cables and connectors using the present invention;
FIG~ 5 shows a modular housing enclosure having ~; apparatus thereon to enable mechanical connection to one or more additional housing enclosures; and FIGs~ 6-13 show a variety o interconnecting units and associated apparatus (FIGs~ 91 13) in accordance with the present invention.

Shown in FIG~ 1 is one embodiment of the present invention. Apparatus enclosure 10 includes two moveable ~i 30 doors 11, 12 for gaining access to the jack field or apparatus mounting arrangement 105 and cable ways (106, 107) of the enclosure. The doors are held closed using posts 110 which engage clips 111 on apparatus enclosure 10.
In one embodiment the doors can be marked to indicate to the user the type of terminations the apparatus enclosure houses (e.gO, line, port, station, etc.). Additionally, since apparatus enclosure 10 is ~L~53~

.
divided into two halves, one half may house the permanent building wiring and the other half the connection to a user administered communication system. Thus, the building wiring section may include a door (12) without a handle which makes it inaccessible to unfamiliar users, while the other door (11) is accessible to all using handle 13. This arrangement provides a security against unwarranted access to the enclosure. Cable entry and exit openings 101-104 provide cable access to apparatus enclosure 10 and jack field 105. Thus, cables from a communication system controller can connect via jack field 105 to the building wiring cables which connects to station equipment and/or central office lines. Apparatus enclosure 10 may also provide additional cable ways 116 and 117 for which enable cables to pass between apparatus enclosure 10 and the surface to which it is mounted.
- Apparatus enclosure 10 is designed to house an apparatus mounting arrangement to hold a variety of modular interconnection apparatus or units (e.g., 112) including cut down (or insulation displacement~ connecting blocks (FIG. 6), modular jacks (FIGs. 6, 7, 8 and 10) and 25-pair cable connectors (FIGs. 11 and 12). These modular interconnection units all have a common width which enable them to fit into clips (e.g., 114) in the apparatus mounting arrangement or 105 of the apparatus enclosure.
Therefore, any building wiring run that terminates in cut down or insulation displacement connecting blocks, modular jacks, or 25-pair cable connectors can be terminated in jack field 105. The apparatus mounting arrangement may - 30 accommodate other connection arrangements providing they are designed to fit into the clips 114 of the apparatus mounting arrangement.
As will be discussed in detail later, all of the interconnec-tion units have the same length 108 as the jack field 105 and the width is a multiple of the width 109 of the smallest unit. The spacing of clips 114 is the same dimension as 109 to facilitate the mounting of any of the v~ ~L2~36~

variety oE interconnection units. Obviously, these dimensions and those of the apparatus enclosure may be adjusted to meet the particular requirements of the application. Moreover, the apparatus enclosure can also house transmission electronics which could fit into the apparatus mounting arrangement or jack field location.
Additionally, the apparatus mounting arrangement 105 can be removed and circuit boards can be directly screwed or snapped into the apparatus enclosure 10. Obviously apparatus enclosure 10 can be si~ed to accommodate larger or smaller numbers of interconnecting units.
FIG. 2 illustrates apparatus mounting arrangement 105 according to the present invention for mounting one or more modular interconnection units. Mounting arrangement 105 also includes connecting means (i.e., four retaining clips 201) which enables the arrangement to be mounted to mounting connecting means (i.e., the four holes 202) located on mounting plate 203 or housing enclosure 10 of FIG. 1.
The retaining clips (e.g., 114a, 114b) and the ~; pedestals (e.g., 115a, 115b) are designed to securely hold the modular interconnecting units. A separator tab ~e.g., 204) on each retaining clip insures that a mounted interconnecting unit is correctly positioned in the direction 205 between the retaining clips. Each pedestal also has a vertical post section (e.g., 206) which insures that a mounted interconnecting unit is firmly supported in the direction 207 to absorb the stress when cables are mounted thereto.
FIG. 3 illustrates a view looking from one end of the mounting arrangement and shows the retainer clips 114a and 114b used to hold the variety of modular interconnection units. FIG. 1 illustrates how an interconnection unit such as 112 is mounted into apparatus enclosure 10 by moving it in the direction 113. As will be described in a later paragraph, 301 and 302 of the modular interconnection unit 112 may be any one of a variety of gL25~3G~ ' cable termination means (e.g., modular jacks or insulation displacement connectors) mounted to and electrically interconnected by a printed wiring board 303. When such an interconnecting unit is moved in the direction 113 the bottom edges 304 and 305 of the ends of printed wirin~
board 303 come into contact, respectively, with the sloping surfaces 306 and 307 of clips 114a and 114b. These edges cause the clips 114a and 114b to deflect outward and enable the printed wiring board 303 to finally reach the top surface of pedestals 115a and 115b whereupon edges 311 and 312, respectively, of 114a and 114b snap-over to hold printed circuit board 303. The pedestals 115a and 115b are shown with the vertical post sections 206a and 206b in dotted lines since they are hidden by retaining clips 115a and 115b, respectively. Note how the printed circuit board ; 105 is positioned between clip 114a, pedestal 115a and clip 114b, pedestal 115b.
~;~ Removal is effected by pushing the printed ~ wiring board to the left or right thereby deflecting the ; 20 clips 114a and 114b outward so the opposite end will clear its clips. Once interconnection unit 112 is in place, cables having mating connectors can be connected to jacks 301 and 302. Obviously, other mounting arrangements can be utilized to mount the interconnecting units 112 to apparatus enclosure 10 without deviating from the present invention. For example, a one piece interconnecting unit as shown in FIG. ~ can be built with a moulded housing which encapsulates the electrically connected connectors 201 and 202.
FIG. 4 shows an illustrative example of apparatus enclosure 10 having a modular jack 401 (FIG. 6), a cut down or insulation displacement 402 (FIG. 5) and multiple modular 403 (FIG. 9) type interconnecting units for connecting, respectively, a 4-pair cable terminated in a modular plug 405, 4-pair cable without a connector to a four pair cable 406 and four 1-pair cables 407 to a four pair cable. Cables 404 enter the apparatus enclosure via i36~

opening 103 and occupy cable way or trough 106. Similarly, cables 405 and 406 enter via opening 104 while cable 407 enters via opening 102 and both occup~ cable trough 107.
FIG. 5 illustrates the tenon 501 and mortise 502 which exists on the top, bottom and sides of mounting apparatus 10 which enables multiple apparatus enclosures to be adjacently mounted together in a vertical or horizontal manner as shown. Using this modular apparatus enclosure 10, a compact, user accessible interconnection may be provided between the wiring of larger communication system and the associated building wiring. FIG. 5 also shows apparatus enclosure 10 with its doors 11 and 12 closed. As noted handle 13 enables the user to open door 11 for access only to the left side of apparatus enclosure 10.
FIGs. 6 through 13 show various interconnecting or adapter units. FIG. 6 shows one type of interconnecting unit having a standard 4-pair modular station jack 601 and standard cut down or insulation displacement connecting block 602 mounted to and interconnected via printed wiring board 603. As previously noted, one type of ~- lnterconnecting unit may have an insulation displacement connecting block 602 at both ends.
~` As shown, the terminals of jack 601 and block 602 provide the means Eor mounting these pieces to printed wiring board 603 and for making connection to the printed circuit paths thereon. The dimensions 604 and 605 correspond, respectively, to the mounting dimensions 109 and 108 of FIGo 1~
FIG. 7 shows a second type of interconnecting unit, including station jacks 701 and 702 connected to printed wiring board 703.
FIG. 8 shows a one piece moulded housing interconnecting unit having connecting jacks at each end mou]ded therein along with the associated interconnecting wires. A moulded foot 801 has the same dimensions ~i.e., 108 and 109) and having the same thickness as the printed ,~ . -~2~3~
-- 7 ~

circuit board (e.g., 303 or 703). This foot is used to enable the mounting of the interconnecting unit between the retaining clips (114a, 114b) and pedestals (115a, 115b).
Any type of plastic material can be used ~or this one 5 piece moulded housing.
In circumstances where only a single interconnecting unit of the type of FIG. 6 or FIG. 7 is needed it may be housed as shown by FIG. 9. FIG. 9 shows a housing comprising cover 901 which snaps o~7er base 902 10 which may be permanently attached to the building structure using a suitable ~astener (e.g., double sided tape).
- FIG. 10 shows an interconnecting unit including a 4-pair modular station jack 1001 connected to four 1-pair standard modular station jacks 1002-1005. Note the 15 dimension 1006 corresponds to dimension 108 of FIG. 1 while dimension 1007 is an integer number times the dimension 109 of FIG. 1. When mounted this interconnecting unit would occupy multiple mounting locations as shown by 303 of FIG. 3. Note, the printed circuit board 1006 is notched 20 on the connector sides to enable the unit to be mounted without interference from the separator tabs (204 of FIG. 2) of the interior retaining clips. Thus, only the retaining clips located at the corners of the printed circuit board 10()6 hold the unit to the mounting 25 arrangement 105.
FIG. 11 shows an interconnecting unit including six 4-pair modular jacks 1101-1106 connected to a standard 25-pair connector 1107. Dimension 1109 would correspond to dimension 108 of FIG. l and dimension 1108 would be an 30 integer multiple of the dimension 109 of FIG. 1.
Shown in FIG. 12 is another interconnecting unit including eight/ dual 1-pair modular line jacks 1201-1208 connected to a standard 25-pair connector 1209. Again dimension 1210 would correspond -to dimension 108 of FIG. 1 35 and dimension 1211 would correspond to an integer multiple of the dimension 109 of FIG. 1.
Shown in FIG. 13 is an interconnecting unit 1301 ~253~

similar to FIG. 6 or FIG. 7 except that it includes clip means 1302 for mounting the unit into a simplex plate 1303 for mounting into a standard simplex wall outlet 1304 with screws 1305. The clip means 1302 and the lip or equivalent on the interconnecting unit face used to mount the unit can be implemented in a variety of well known ways.
Additionally, plate 1303 can be embodied to work with any type of electrical box: floor, duct and duplex.
The above interconnecting units can convert any number of pair connector and/or cable from and to any other number of pair connector and/or cable. Using the above described interconnecting units as a reference, it is obvious that the techni~ues utilized can be extended to provide interconnection to almost any type of existing connector and cable to any other, and probably to any similarly constructed new connector or cable. It is contemplated that circuitry may be utilized as part of the interconnecting units which may enable protocol conversion, multiplexing, optical to electrical conversion, coax eliminator, etc.
Thus, what has been disclosed is merely illustrative of the invention. Other arrangements and methods can be implemented by those skilled in the art without departing from the spirit scope of the present ~; 25 invention.

Claims (14)

Claims:
1. A cable connection arrangement for interconnecting communication cables comprising a group of modular interconnection units, each unit adapted to terminate a cable at each end of a first side thereof using any one of a variety of cable terminating means, each unit having the same end-to-end length, each unit having a different width which is equal to an integer multiple of the width of the narrowest unit in said group, and each unit adapted to be mounted by the ends of said first side below said cable termination means; and mounting arrangement adapted for mounting one or more of said units each having the same or different widths, said mounting means including a plurality of retaining means arranged in two rows spaced apart by the length of said units and adjacent retaining means in each row having a spacing substantially equal to the width of the narrowest unit, each of said one or more of said units being held at each respective end of said first side between two retaining means on each row such that the cable termination means of said unit are located above a mounting plane formed by the two rows of the retaining means.
2. The cable connection arrangement of claim 1 further comprising a mounting surface having connecting means thereon, and said mounting arrangement further including connecting means for mating with said surface connecting means to affix said mounting arrangement to said mounting surface.
3. The cable connection arrangement of claim 2 wherein said mounting surface is part of an apparatus enclosure having a moveable front panel for accessing the interior of said enclosure, and a cable opening to said enclosure.
4. The cable connection arrangement of claim 3 wherein said apparatus enclosure includes separate cable entry and exit openings each opening accessible using different moveable front panels.
5. The cable connection arrangement of claim 4 wherein only one of said moveable front panels includes a handle.
6. The cable connection arrangement of claim 3 wherein said apparatus enclosure includes connection means for enabling connection to an adjacent apparatus enclosure.
7. The cable connection apparatus of claim 6 wherein said apparatus enclosure includes a top, bottom and two sides each including said connection means.
8. The cable connection arrangement of claim 6 wherein said apparatus enclosure connecting means includes a mortise and a tenon and which connects, respectively, to a tenon and a mortise of said adjacent apparatus enclosure.
9. The cable connection arrangement of claim 1 wherein said unit includes a connector means.
10. A group of rectangularly shaped modular interconnection units, each unit comprising means for terminating a cable at a first and second ends of a top said of said unit using any one of a variety of cable terminating means, means located at said first and second ends below said cable termination means on a bottom side of said unit for mounting said unit in a snap mounting arrangement using the corners formed by the bottom side and said first and second ends of said unit such that when the unit is mounted the cable termination means of said unit are located above said mounting arrangement, and wherein each of said units has the same length and each unit has a different width which is equal to an integer multiple of the width of the narrowest unit in said group.
11. The group of modular interconnection units of claim 10 wherein said terminating means is a connector means.
12. The group of modular interconnection units of claim 11 wherein said connector means includes means for affixing said interconnecting unit to a mounting plate.
13. A rectangularly shaped interconnection unit comprising means for terminating a cable at a first and a second end of a top side of said unit using any one of a variety of cable terminating means, means located at said first and second ends below said cable termination means on a bottom side of said unit for mounting said unit in a snap mounting arrangement using the corners formed by the bottom sides and said first and second ends of said unit such that when the unit is mounted the cable termination means of said unit are located above a plane formed by the snap mounting arrangment.
14. The interconnection unit of claim 13 further comprising means for affixing an end of said interconnection unit to a mounting plate so that one of said cable termination means is accessible therethrough.
CA000487870A 1984-08-01 1985-07-31 Modular cable interconnection apparatus Expired CA1253611A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US63672184A 1984-08-01 1984-08-01
US636,721 1984-08-01

Publications (1)

Publication Number Publication Date
CA1253611A true CA1253611A (en) 1989-05-02

Family

ID=24553064

Family Applications (1)

Application Number Title Priority Date Filing Date
CA000487870A Expired CA1253611A (en) 1984-08-01 1985-07-31 Modular cable interconnection apparatus

Country Status (1)

Country Link
CA (1) CA1253611A (en)

Similar Documents

Publication Publication Date Title
US7014495B2 (en) Method and apparatus for zone cabling
US7682187B2 (en) Multi-port mounting bracket and method
CA1118879A (en) Modular termination system for communication lines
US4684198A (en) Modular cable interconnection apparatus
US6608764B2 (en) Telecommunications patch panel
US4773867A (en) Premise distribution cross connect apparatus
US5396405A (en) Wiring cabinet having vertically aligned patch panels
US5647763A (en) Multi-media cross connect system
US5492478A (en) Electrical connection system with alternatively positionable connector
US6504726B1 (en) Telecommunications patch panel
US20010040140A1 (en) Electronics component mounting system
WO2015195679A1 (en) Hybrid patch panel assembly for multiple media connections
US4624516A (en) Electrical junction housings
AU749859B2 (en) Patch panel and interlocking module
US4678251A (en) Modular installation system for data cable interfacing
US4700384A (en) Indoor telephone line demarcation box having several compartments
CA1253611A (en) Modular cable interconnection apparatus
US4753610A (en) Connectorized terminal block
US20030092314A1 (en) Network interface panel
US5741157A (en) Raceway system with transition adapter
GB2286731A (en) Electrical connection system
CA1095136A (en) Connector adapter constructions with improved connector and connector mounting arrangement

Legal Events

Date Code Title Description
MKEX Expiry