CA1244395A - Rocket projectiles - Google Patents

Rocket projectiles

Info

Publication number
CA1244395A
CA1244395A CA000097206A CA97206A CA1244395A CA 1244395 A CA1244395 A CA 1244395A CA 000097206 A CA000097206 A CA 000097206A CA 97206 A CA97206 A CA 97206A CA 1244395 A CA1244395 A CA 1244395A
Authority
CA
Canada
Prior art keywords
combustion chamber
missile
valve
fuel tank
nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
CA000097206A
Other languages
French (fr)
Other versions
CA97206S (en
Inventor
John F. Waddington
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UK Secretary of State for Defence
Original Assignee
UK Secretary of State for Defence
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UK Secretary of State for Defence filed Critical UK Secretary of State for Defence
Priority to CA000097206A priority Critical patent/CA1244395A/en
Application granted granted Critical
Publication of CA1244395A publication Critical patent/CA1244395A/en
Expired legal-status Critical Current

Links

Landscapes

  • Fuel-Injection Apparatus (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)
  • Portable Nailing Machines And Staplers (AREA)

Abstract

ABSTRACT OF THE DISCLOSURE

A control system for a guided missile includes means for rotating the missile about its axis, a discharge nozzle so directed that its thrust exerts a lateral force on the missile and an associated reaction motor arranged to deliver, in response to a suitable signal, a thrust of suitable timing and duration to correct the missile trajectory. A suitable reaction motor has a combustion chamber in communication with the discharge nozzle by way of a relief valve, a compressible fuel tank pressurised by gases from the combustion chamber by way of a differential piston pump actuable by the combustion gases and controlled by a command operable, solenoid actuated valve, and means for initially heating and pressurising the combustion chamber.

Description

~.',2'~'~3~5 1 This invention relates to rocke-t missiles and is particularly concerned with a control system for a command to line of sight, guided missile.
~ control system in accordance wi-th the invention comprises, in a guided missile~ means for rotating the missile about its axis; a discharge nozzle so directed that the thrust therefrom has a lateral component relative to the missile and a reaction motor associated with said nozzle and arranged to deliver, in response -to a suitable signal, a thrust, appropriately timed in relation to the roll position of the missile and of appropriate duration~ for correcting the missile trajectory.
The rotation o~ the missile may be produced by known means such as a torque rocket or a rifled launcher and may be maintained by means of canted fins. Preferably the roll speed is approximately constant. The nozzle is preferably located so that the line of thrust therefrom passes -through or near the centre of gravity of the missile so that lateral, bodily movement is imparted to the missile while induced pitching or yawing is reduced to a minimum. This in turn improves the missile~s response to accelera-tion demands and reduces -the required beam angle and power of any -tracking beacon wi-th which the missile may be provided. The thrust may also have a forward component, parallel to the missile a~is to assist in overcoming aerodynamic drag. The required timing and duration of the thrust may be computed, in known manner from the observed posi-tion of the missile relative -to the required trajectory and a sui-table signal may be transmitted to the missile through a radio or trailing wire link by means of a sui-table pulse encoder. The techniques for achieving this are known and the specific arrangement required in this case does not form part of the present invention and will not be further described.
The invention further provides a reaction motor for use in -the control system, said mo-tor comprising a combustion chamber; a discharge nozzle to which -the combustion chamber has access by way of a relief valve; a coml~ressible fuel tank which can be pressurised by gases from the combustion chamber and which communicates with the combustion chamber -through an injection system in---1-- F'~ S.~

12~3~35 1 corporating an injector, a differential piston pump, actuable by pressure of gases from the combustion chamber, for feeding fuel to the injector and a valve operable on command, to control pressure on one side of the differential piston; and means for initially heating and pressurising the combustion chamber.
The relief valve may conveniently comprise a simple, spring closedvalve arranged to open, when the gas pressure in the combustion chamber rises above a predetermined value, to allow gas to discnarge through the nozzle.
The fuel tank may comprise an inner container, made wholly or partly of flex-ible material such as rubber or a plastics material, which is located within a rigid outer container and can be pressurised by combustion gases admitted into the outer container. Alternatively the inner container may be in the form of a bellows. A third form of tank may consist of a cylinder one end wall of which constitutes a piston to whose outer face the combustion gases have access. In this last form of tank the piston forming its end wall may constitute the differential piston pump though this may, of course, be a separate structure located elsewhere in the injection system. The command operable valve may, conveniently, be solenoid actuated and may control the passage of the combustion gases to the differential piston or may control an exhaust port communicating with the opposite side of the piston. The means for initially pressurising and hea-ting the combustion chamber may comprise an electrically initiated, solid propellant igniter the gases from whose combustion will serve to provide an initial working pressure in the chamber and other parts of the motor and will also be hot enough to ignite fuel entering the chamber via the injector. The initial pressurisation and heating may alternatively be achieved by igniting an initial charge of fuel by means for example of a spark plug.
Several forms of the invention will now be more particularly des-cribed, by way of example only, -~ith reference to the accompanying drawings in which:-Figure 1 is a partly diagrammatic, side elevation of a missile l'Z~4395 ~

1 incorporating a control system in accordance with the invention, Figure 2 is an enlarged axial section of a part of the missile show-ing the control system, Figure 3 is a cross section on the line III-III of Figure 2, Figure 4 is a section similar to Figure 2 showing an alternative form of control system, and Figure 5 is a diagrammatic drawing of a modified form of the motor shown in Figure 4.
The missile shown in Figure 1 has a body 1 of conventional form having-the usual tail fins 2 which may be canted to sustain the roll initially imparted in known manner by a torque rocket 3. Situated amidships in the body 1 is a control motor including a combustinn chamber 4, a fuel tank 5, a discharge nozzle 6 and an injection system 7 arranged to inject fuel, on command, into the chamber 4.
The construction and functioning of the control system will be better understood by reference to Figures 2 and 3 where they are illus-trated on a larger scale in greater detail. The combustion chamber 4, has, mounted internally on its cylindrical wall, a generally cylindrical nozzle housing ~
incorporating a valve 9 whose stem 9a is carried in a valve guide 10 supported by a cross-member 11 flxed in the housing ~. The end of the stem 9a remote from the valve carries a flange 12, and a spring 13 in compression between this flange and the cross member 11 urges the valve inwardly onto an out-wardly facing seating 14 at the inner end of the nozzle 6 which is thereby closed. The combustion chamber communicates with the interior of the nozzle housing, inwardly of the valve 9~ through orifices 15 so that gas pressure in the combustion charnber tends to open the valve 9.
The fuel tank 5 consists of a rigid outer container 16, whose walls may, though not necessarily, incorporate a part of the missile wall, and a flexible inner container 17 of a material such as rubber or a plasticO
The combustion chamber communicates with the interior of the outer container ~4~3~S

1 16, exteriorly of -the inner container 17, through a pipe lg which, as shown, runs longitudinally along the outer surface of the missile.
The injector system 7 comprises a solenoid actuated ball valve 19, a second stage pressure controlled valve 20 actuable by a differential piston 21, a differential piston pump 22 (best illustra-ted in Figure3) and an injector 23 with the necessary connecting tubes and channels. Details of the solenoid 19a, which actuates valve 18, are not shown since this may have any convenient constructinn and is actuable in known manner in response to a signal transmitted from a ground control station through trailing wires, a radio link or other convenien-t, known means. The combustion chamber 4 communicates -through channels 24, 25 with one side of the solenoid valve 19 which is actuable through a push rod 19b by means of the solenoid 19a. The other side of valve 19 communicates, through a channel 26, with the lower, larger area, side of a pis-ton 21 which controls the second stage valve 20. This valve opens or closes communication between the combustion chamber 4 and the pump 22 by way of channels 24, 27, 2g, and pipe 29. The pipe 29 provides access to the inter-space 30 between a bulkhead 31 and a differential piston 32 in the recipro-cating pump 22 which incorporates, below the piston 32, a fuel chamber 33.
An annular space 32a between the smaller cross-sectioned par-t of the piston 32 is vented to atmosphere through parts 32_. The combustion chamber 4 also communicates, by way of channels 24, 24a directly with the upper, smaller area, side of differential piston 21.
The fuel chamber 33 of the pump 22 receives fuelfrom the tank 5 by way of a connector 34, a pipe 35 (Figure 2) and a non return valve 36 (Figure 3), and is also connected through an outlet 37 and a pipe 3g wi-th -the injector 23. The injector 23 comprises a cylindrical casing 39 formed or mounted on the wall of the combustion chamber to which it has access through an injection orifice 40; and an injector piston 41 slidable in -the casing 39 and carrying, on the side thereof adjacent the injection orifice 40, a spigot 42 projec-ting axially therefrom. The spigot 42 has a conical tip which normally closes the 12~ 3~S

1 injection orifice 40, being so biased by an injector spring 43 lncompression between the injector piston 41 and a cap 44 which constitutes the end wall o:E
the casing 39. A splash plate 47 is provided adjacent the injection orifice 4o.
Before the missile is fired, the tank 5 and the pump chamber 33 and injector 23 are filled with mono-propellant fuel such as isopropyl nitrate ~hrough a filler valve 45. At launch, the combustion chamber 4 is preheated and pressurised by firing an igniter 46 of solid propellant or, alternatively, a priming charge of liquid propellant may be fired by means of a spark plug.
The pressure is immediately transmitted from the combustion chamber to the fuel tank by way of tube 1~ and also to the upper side (direct) and lower side (through the solenoid valve 19 which is open at this stage) of-the differential piston 21 which is thus moved upward, closing the second stage valve 20. The pressure applied at this stage (the working pressure) is insufficient to over-come the springs 13, 43 closing the relief valve 9 and injector 23 respect-ively. Roll is imparted to the missile by firing the torque rocket 3 and is maintained in flight by the canted fins 2. On receipt of the appropriate signal, the solenoid valve 19 is closed by operation of the solenoid 19a, cutting off the gas supply to the lower side of piston 21 and, at the same time venting the lower side to atmosphere through the solenoid valve, -thus allowing the piston 21 to move to its lower position (as shown in Figure 2) under the influence of the gas pressure applied to its upper surface. This movement allows the second stage valve 20 to open, admitting gas to the inter-space 30 above the pump piston 32. The gas pressure on the pump piston 32 applies an intensified pressure, through this differential piston, to the fuel in chamber 33 some of which fuel is forced through the outlet 37 causing fuel to be injected into the combustion chamber 4 through the injector 23 since the intensified pressure issuEficient to overcome the injector spring 43.
The injected fuel ignites in the hot combustion chamber and the increased pressure thus developed opens relief valve 9 whereupon gas is 1 discharged from the nozzle 6 to provide a trajectory-correcting thrust.
After the required duration, the solenoid valve 19 again opens allowing gas pressure to close the second stage valve 20 whereupon the interspace 30 of the pump is vented to atmosphere through valve 20 and orifice L~ allowing the pump piston 32 to rise again, the chamber 33 being refilled with fuel from the tank through non return valve 36. The pump 22 must clearly be of sufficient capacity to cater for the greatest thrust duration which is likely to be required.
The alternative form of motor shown in Figure 4 is somewha-t simpler in construction and has a combustion chamber 50 located on one side of a large, cup shaped, differential piston 51 on the other side of whose base is a fuel tank 52. The piston 51 slides in a cylinder ha-ving a s-tepped bore the smaller part of which constitutes the fuel tank 52 and accommodates the smaller, base end of the wall of the tank. The larger portion of the bore accommodates an enlarged por-tion 53 of the differential piston and encloses an annular chamber 5L~ betweenits inner surface and the outer wall of the piston 51 for most of the length of the latter. A nozzle 55, closed by a relief valve 56 whose stem 56a is carried in a guide 57 within a nozzle housing 5~ and which iB biased closed by a spring 59, is mounted in one wall of the combustion chamber 50 which has access to the inner side of the val~e 56 through orifices 60. This nozzle and valve are basically similar in construction and in opera-tion to those described with reference to Figure 2. In this alternative motor, an injector 61 basically similar in construction to that shown in Figure 2 is mounted on the end wall 62 of the piston 51 and com~unicates with the fuel tank through pipe 63. The injector has a piston 64 carrying a spigot 65 which normally closes an injection orifice 66 under the action of a spring 67.
The annular space 5L~ is vented to a pipe 6~ -through orifice 69 and the pipe 6~ is vented to atmosphere through a valve 70 normally closed by solenoid 71.

4~ 5 1In operation the missile has roll imparted in the manner previously described which roll is main-tained bycanted fins. The combustion chamber 50 is preheated and pressurised at launch by means of an igniter ~O, prior to which the fuel tank 52 and injector 61 will have been filled with fuel and the interspace 54 filled with a suitable pressure fluid. Gas pressure in -the combustion chamber 50 is, at this stage, insufficient to overcome the spring closure of the relief valve 56 and movement of the piston 51 is prevented by the pressure of the fluid in the annular space 54. On recelpt of a suitable signal, the solenoid valve 70 is opened allowing the fluid from annular space 1054 to bleed to atmosphere. The piston 51 now moves toward the fuel tank 52 and fuel is injacted into the combustion chamber 50 where the increased pressure resulting from its combustion overcomes the spring 59 of the relief valve 56 which opens allowing gas to discharge through nozzle 55. At the end of the required duration the solenoid valve 70 closes, movemen-t of the piston 51 ceases and fuel ceases to be injected into the combustion chamber 50. Sub sequent operation of the solenoid valve 70 will cause the piston 51 to continue its movement,the piston stroke merely being interrupted during closure of the valve.
The further modification, sho1~n diagrammatically in Figure 5, dispenses 20 with the annular space 54 and pressure fluid of the arrangement of Figure 4, the solenoid valve being incorporated with the injector in a communication link between the fuel tank and combustion chamber. In this modified arrange-ment, a quite differently shaped~ differential piston 72 constitutes the dividing wall between a combustion chamber 73 and a fuel tank 74 which constitu-te parts of a cylinder 75. The combus-tion chamber 73 is provided, as before, with a combination nozzle and relief valve 76 and the tank 74 and combustion chamber 73 are in communication by way of a pipe 77, through a solenoid valve and igniter which may be incorporated in a single unit 7~
mounted in the wall of the combustion chamber 73. Structural details of the 30 various items are not shown in this case, they may be similar to those already described.

~2'~3~33 1 It will be clear that many variations may be made in the above described systems within the scope o~ the present invention. The injector, for example may be replaced by a vortex type nozzle, the relief valve may be of any convenient construction as may also the solenoid valve and other items of the injection system. Spin may be imported by means of a rifled launcher instead of by a torque rocket and may be sustained by means of canted nozzles on the main driving motor.

3o _g_

Claims (7)

The embodiments of the invention in which an exclusive property or privilege is claimed are defined as follows:
1. A control system for a guided missile comprising;
a means for rotating the missile about its axis;
a discharge nozzle so directed that the thrust therefrom passes through the centre of gravity of the missile and placed in such a way that the thrust from the said nozzle has a lateral and a forward component relative to the axis of the missile;
a reaction motor associated with said nozzle and means for actuating said motor, in response to a suitable signal, to produce a thrust from the nozzle appropriately timed in relation to the roll position of the missile and of appropriate duration for correcting the missile trajectory.
2 A control system as claimed in Claim 1 wherein the means for actuating the motor comprises a valve for controlling the supply of fuel to the motor and.
solenoid means actuable in response to the suitable signal, for actuating the valve.
3. A reaction motor for a control system as claimed in Claim 1, comprising a combustion chamber; a discharge nozzle associated with said combustion chamber;
a relief valve through which the combustion chamber has access to the discharge nozzle; a compressible fuel tank; means for pressurising the fuel tank; an injection system by way of which the fuel tank communicates with the combustion chamber and incorporating an injection nozzle; a differential piston pump, incorporating a piston having larger area and smaller area sides and actuable by pressure of gases from the combustion chamber, for feeding fuel to the injection nozzle; a command operable valve for controlling the differential piston pump; and means for initially heating and pressurising the combustion chamber.
4. A reaction motor as claimed in Claim 3, wherein the relief valve incorporates a spring urging the valve toward its closed position whereby the valve opens against the action of the spring when the pressure in the combustion chamber rises above a predetermined value.
5. A reaction motor as claimed in Claim 3, wherein the fuel tank comprises an inner container made at least partly of flexible material and a rigid outer container surrounding the said inner container and to which gases from the combustion chamber have access to compress said inner container.
6. A reaction motor as claimed in Claim 3, wherein the fuel tank comprises a container and a piston constituting one end wall of said container and to whose outer face the gases from the combustion chamber have access to compress the fuel tank.
7. A control system for a guided missile as claimed in Claim 1 wherein the reaction motor comprises a combustion chamber; a discharge nozzle associated with said combustion chamber; a relief valve through which the combustion chamber has access to the discharge nozzle; a compressible fuel tank; means for pressurising the fuel tank; an injection system by way of which the fuel tank communicates with the combustion chamber and incorporating an injection nozzle; a differential piston pump, actuable by pressure of gases from the combustion chamber, for feeding fuel to the injection nozzle; a command operable valve for controlling the differential piston pump; and means for initially heating and pressurising the combustion chamber.
CA000097206A 1970-11-03 1970-11-03 Rocket projectiles Expired CA1244395A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA000097206A CA1244395A (en) 1970-11-03 1970-11-03 Rocket projectiles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CA000097206A CA1244395A (en) 1970-11-03 1970-11-03 Rocket projectiles

Publications (1)

Publication Number Publication Date
CA1244395A true CA1244395A (en) 1988-11-08

Family

ID=4087933

Family Applications (1)

Application Number Title Priority Date Filing Date
CA000097206A Expired CA1244395A (en) 1970-11-03 1970-11-03 Rocket projectiles

Country Status (1)

Country Link
CA (1) CA1244395A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115218730A (en) * 2022-08-02 2022-10-21 昆明理工大学 Guided ammunition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115218730A (en) * 2022-08-02 2022-10-21 昆明理工大学 Guided ammunition

Similar Documents

Publication Publication Date Title
US4762293A (en) Rocket projectiles
US4043248A (en) Liquid propellant gun (recoilless regenerative piston)
US6405653B1 (en) Supercavitating underwater projectile
US2406926A (en) System of jet propulsion
JPS628720B2 (en)
US4258546A (en) Propulsion system
US2965000A (en) Liquid propellant, regenerative feed and recoilless gun
EP0131573A1 (en) Ram air combustion steering system for a guided missile.
US4726184A (en) Rocket engine assembly
CA1244395A (en) Rocket projectiles
CA1316029C (en) Liquid propellant gun projectiles of different masses and velocities
CN117028065A (en) Single-chamber double-thrust solid rocket engine with large thrust ratio
EP0321102A2 (en) Liquid propellant weapon system
US4722185A (en) Double piston rocket engine assembly
US3120151A (en) Ejectable tail unit for the propelling launching charge of a projectile which is loaded through the muzzle of the firing means
GB1569889A (en) Training projectile
US4852459A (en) Liquid propellant weapon system
US4967638A (en) Liquid propellant weapon system
US4852458A (en) Liquid propellant weapon system
US3453828A (en) Rocket propulsion unit for operation by liquid monofuel
US6044746A (en) Projectile propulsion assembly that limits recoil force
US10570856B2 (en) Device for modulating a gas ejection section
US3380382A (en) Gun launched liquid rocket
US5533434A (en) Method and system for supplying a device with a volume of hydraulic fluid whose predetermined value according to operating conditions
US3104613A (en) Rocket projectile

Legal Events

Date Code Title Description
MKEX Expiry