CA1239004A - Apparatus for dispensing mollusks - Google Patents

Apparatus for dispensing mollusks

Info

Publication number
CA1239004A
CA1239004A CA000480750A CA480750A CA1239004A CA 1239004 A CA1239004 A CA 1239004A CA 000480750 A CA000480750 A CA 000480750A CA 480750 A CA480750 A CA 480750A CA 1239004 A CA1239004 A CA 1239004A
Authority
CA
Canada
Prior art keywords
hopper
mollusks
chute
further characterized
outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
CA000480750A
Other languages
French (fr)
Inventor
Robert Van Twuyver
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TWUYVER ROBERT VAN
Original Assignee
TWUYVER ROBERT VAN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TWUYVER ROBERT VAN filed Critical TWUYVER ROBERT VAN
Priority to CA000480750A priority Critical patent/CA1239004A/en
Application granted granted Critical
Publication of CA1239004A publication Critical patent/CA1239004A/en
Expired legal-status Critical Current

Links

Landscapes

  • Processing Of Meat And Fish (AREA)

Abstract

APPARATUS FOR DISPENSING MOLLUSKS
ABSTRACT OF THE DISCLOSURE

A reservoir and chute cooperate to deliver mollusks such as clams, oysters, scallops and the like, oriented in a row to a conveyor forming a part of an apparatus for removing their shells. The reservoir in which an appropriate supply of mollusks is stored and from which they are delivered to the chute is provided with elevator means for maintaining the top of the supply above the upper end of the chute so that mollusks are supplied from the top of the supply to the chute in which they are advanced toward the lower discharge end by a combination of gravity and controlled vibration.

Description

APPARATUS FOR DISPENSING MOLLUSKS
SPECIFICATION
The present invention relates generally to improvements in article dispensing apparatus but more particularly to such apparatus which is suited to the feeding in a single file of oriented mollusks, generally referred to in the course of this specification as bivalves or clams but intended to include all edible mollusks which are adapted to being processed by llapparatus for removing their shells automatically or for I performing other operations on them.
There is disclosed in United States Letters Patent No.
¦4,236,276, granted December 2, 1980 upon application filed in I the names of Puberty Van Twuyver and James M. Johnson, a method ¦ and apparatus for shucking bivalve mollusks. In the patented apparatus individual bivalves are introduced onto carriers from I¦ a hopper having a discharge conveyor chute "of conventional design In fact, various conventional hopper and chute combinations were tried with generally unsatisfactory results.
While the apparatus and method described in detail in the Van Twuyver et at patent functioned well for their intended purpose of shucking bivalves advanced through the apparatlls on carriers the supplying of clams and other bivalves by various hopper and ¦ chute combinations considered "conventional Al, usually failed to achieve the reliability of delivery which is essential to the efficient operation of the shucking apparatus In most instances, the failure to feed uninterruptedly was the result of either of two causes: first, the tendency of numbers of bivalves, having rough exteriors, to form a flow restricting dam akin to a logjam and seconds the fragile nature of the shells which usually caused an unacceptably high proportion of broken shells if excessive vibration or other force were applied in attempts to prevent or dissolve stoppages I

The result was that, in order to avoid excessive shell breakage, it was generally necessary to break up the dams manually when they occurred, a procedure which required excessive labor and resulted in inefficiencies in the use of the apparatus. The broken shells are objectionable in any apparatus in which bivalves intended to be raw after treatment, are subjected to high temperatures as part of the processing, because the broken shells result in at least partially cooked and hence down-graded bivalves.
It is accordingly a general object of the present invention I to feed clams and other mollusks from an adequately large supply to a processing apparatus, reliably and in a single file having ¦ a predetermined orientation.
Another important object is to accomplish the delivery of mollusks without subjecting them to damagingly high levels of vibration. I
Still another object is to provide a continuous flow of mollusks independently, within broad limits, of the quantity available in the supply.
In the achievement of the foregoing objects, a feature of the invention relates to the construction of a supply reservoir in the form of a hopper and its positional relationship to a discharge chute which delivers the mollusks to a downstream processing apparatus. The hopper is provided with an elevator means by which it is raised gradually from a low level when it is filled with a maximum supply of clams to a level such that the top of the clam supply is always maintained above the upper end of the chute. A suitably contoured opening in the front wall of the hopper together with back and side walls which slope downwardly toward the front wall opening, when combined with the action of the elevator means, causes delivery ox clams to the chute to be from the top of the supply regardless of the ox quantity of clams in the hopper.
According to another feature, the chute is mounted in slightly spaced relationship with the hopper and is provided with a controllable vibratory device, which may be switched on and off as needed to prevent the formation of dams or to eliminate such stoppages.
I; The foregoing objects and features, together with numerous advantages of the present invention, will be more fully understood and appreciated from the following detailed Description of an illustrative embodiment taken in connection with the accompanying drawings in which:
if Fig 1 is a view in side elevation and partly in cross Saxon of an apparatus for dispensing mollusks, according to the present invention and including a hopper and a delivery chute;
Fig. 2 is a view in perspective as seen from the upper left of Fig. 1, showing the interior of the hopper and the relationship of the the input end of the chute with the hopper and of the discharge end of the chute with a processing apparatus; and it. 3 is a detail view in perspective showing details of construction of the chute.
Turning now to the drawings, there is shown a supply apparatus according to the present invention, including hopper and chute assemblies indicated generally at 10 and 12 respectively, for supplying mollusks to a processing apparatus indicated generally at 14. As shown fragmentarily in the drawings, the apparatus 14 is a shucking apparatus according to the above identified Patent, which forms no part of the present invention but is shown for the purpose of providing a destination for the mollusks delivered by the chute 12. In practice, the present apparatus could be cooperatively I

associated with other apparatus requiring an uninterrupted supply of mollusks or other articles, if any, having similar characteristics.
The hopper assembly lo includes a stationary base in the form of a weldment comprising a set of four legs 16 interconnected by upper and lower stretchers 18 and 20 ; respectively to define a vertical Good in which a hopper or bin 22 is slid able. The bin 22 is formed with an open front or discharge side and with a sloping rear side 24 which cooperates with a pair of opposed inclined bottom panels 26 to center reduced quantities of mollusks for discharge to the chute assembly 12. The sides of the bin 22 are closed by vertical walls 28 and the front by a stationary wall 30, fixedly secured to the inside of the front legs 16. There is also provided a reinforcing framework for the bin 22, comprising short front and longer rear posts 32 and 34 respectively, rising from a base frame including longitudinal stretchers 36 and cross stretchers 38. There are also included in the reinforcing framework a vertical flat 40 extending upwardly from the central portion of the stretcher 38 to the upper edge of the rear side 24, and a horizontal plate 42 extending between the two cross stretchers 38 and forming a part of a connection between the hopper and an elevating mechanism to be described. The Good for the hopper 22 also includes a pair of opposed side plates, one of which is seen at 46, fixedly mounted on the legs 16.
When the hopper 22 is to receive a load of mollusks, it is in the position depicted in full lines in Fig. 2. In that position, if the hopper is full, mollusks are discharged from the top of the supply in the hopper into the chute assembly 12 I through a Vee-shaped notch 48 in the front wall 30. As the quantity of mollusks in the hopper 22 diminishes to a point where the top is not sufficiently above the notch 48 that the mollusks may feed by gravity, the hopper is raised in steps as needed and under the control of an operator, eventually reaching the level depicted in dot and dash lines in Fig. I. For this purpose, there is provided beneath the hopper 22, a power-operated jack comprising a vertical screw 50 journal led in lo plate 52~ fixedly supported on the stretchers 20. The screw 50 extends through the plate 52 and is provided at its lower end with a sprocket 54 driven through a chain 56 by a sprocket 58 mounted on the lower end of a vertical output shaft of a motor reducer 60. The screw 50 is coupled to the hopper 22 by a nut ~62 affixed to the interior of the lower end of a tube 64, fixedly depending from the plate 42. The motor of the reducer ¦60 is reversible in direction and upper and lower limit switches 66 and 68 respectively are connected in series with the appropriate windings of the motor to prevent any over travel of the hopper 22 in either direction. The energization of the reducer motor is accomplished by a manually operated switch, not shown, or alternatively the reducer motor may be energized automatically in a manner hereinafter to be described.
The chute assembly 12 includes a chute 74 which is suspended on a pair of screws 76 adjustable fixed in the upper front stretcher 18. The screws 76 pass loosely through a flange in the chute yo-yo thus allowing the chute to move up and down as will be explained, while maintaining the inlet or upper end of the chute aligned with the notch 48 in the front wall 30. The upper end of the chute is urged upwardly by a pair of tension springs 78 extending between both sides of the chute and the stretcher 18. At the underside of the chute 74 is an adjustable rubber headed bumper 80 which limits the motion of the chute toward the hopper 10 and also imparts a shock to the front of I the hopper to assist in dislodging clams which may form blockage as already indicated, because of their size and shape.

:

Inside the chute 74 is a pivotal mounted gate 82, which performs the two functions of aligning the clams in a single file at the lower end of the chute and of providing a signal when the movement of clams to the lower end of the chute is interrupted.
In order to assist gravity in causing clams in the chute to move toward the lower discharge end, there is provided a vibratory mechanism including a motor reducer 84 fixedly supported on a base plate 86~ secured to the the legs 16. The reducer 84 drives a crank disk 88 adjustable connectable to a pivot pin 90 which may be located at various distances from the center of rotation of the disk 88 to vary the effective throw of the pin 90. A connecting rod 92 is fitted to the pin 90 at one of its ends and at the other is pivotal connected at 94 to the underside of the chute 74. Depending on the type of product which is being processed, whether clams, oysters or scallops together with their size and other characteristics, the vibratory mechanism may ox operated either continuously or intermittently and the amplitude of vibration may also be adjusted. As already indicated, the pin 90 is adjustable fixable at varying distances from the center of the disk 88.
This is accomplished by securing the pin 90 at an appropriate distance from center in a radial slot in the disk. For providing continuous operation of the vibratory mechanism, a first energizing circuit for the motor reducer 84 includes a manually operable on-off switch, not shown but of conventional design. Alternatively, a second circuit includes a normally open switch 95 connected in series with the motor. The switch 96 is ! closed by an arm 98 which pivots in a clockwise direction when the gate 82, which is appropriately weighted for the purpose, swings to a vertical position when no clams are present to impede its movement. Thus, by the use of the alternative circuit, the motor reducer 84 may be energized automatically only when clams are not available at the lower end of the chute, an important factor in minimizing broken shells of fragile mollusks. A corresponding reduction in the vibratory amplitude of the chute is another factor in reducing the incidence of broken shells under certain conditions. In addition, the switch 96 may also be used to control the raising of the hopper 22 by employing a double pole single throw switch and connecting a I time delay device in series with the normally open contacts which provide an alternative circuit for energizing the motor reducer 60. When the alternative circuit for energizing the motor reducer 60 is employed, the motor is energized if no clams are present at the gate 82 after a brief time delay following the start of the vibratory mechanism From the chute 74, in the present environment, the clams are delivered to Y-shaped supports 100 of the shucking apparatus 14 in single file to be carried through the apparatus by a pair ! of successive supports 100 mounted on a chain 101 driven in the direction of the arrow over a sprocket 102, forming a part of a closed course with other sprockets, not shown. Guidance of the clams from the chute 74 to the supports 100 is accomplished by a stationary trough 104 mounted on the plate 86.
From the foregoing, it will be appreciated that a workable mollusk supply apparatus may comprise some parts of the present disclosure while others are omitted. For example, the automatic controls already described may be eliminated in a situation either requiring extreme care to avoid damaging the mollusks being processed or one in which the added labor involved in manual control is tolerable. The benefits to be derived from such considerations will be readily appreciated by those of ordinary skill in the art. It is therefore not intended that the foregoing description be taken in a limiting sense but Do rather that the scope of the invention be interpreted from the appended claims.
What I claim is:

Jo _

Claims (9)

The embodiments of the invention in which an exclusive property or privilege is claimed are defined as follows:
1. An apparatus for dispensing mollusks, comprising a hopper assembly including a hopper adapted to contain a quantity of mollusks, means defining an outlet for mollusks at the front of the hopper, a conveyor including a series of supports for carrying mollusks in a single file, an inclined chute having an upper end adjacent the outlet and a lower discharge end adapted to dispense the mollusks to the conveyor and means for raising the hopper to position the top of the supply of mollusks in the hopper above the outlet.
2. An apparatus according to claim 1 further characterized in that the hopper assembly comprises a stationary base defining a vertical guideway in which the hopper is slidable and in which the means for raising the hopper is power-driven.
3. An apparatus according to claim 2 further characterized in that the hopper raising means comprises a power-driven screw mounted on the base and a nut supported on the underside of the hopper and in threaded engagement with the screw.
4. An apparatus according to claim 1 further comprising a stationary front wall panel in which the outlet from the hopper is defined and further characterized in that the hopper is formed with two vertical sides, an inclined rear and sloping bottom panels for delivering mollusks to the outlet at the front of the hopper.
5. An apparatus according to claim 1 further characterized in that the chute has a Vee-shaped cross-section and is free to move with respect to the hopper assembly and further comprising vibratory means connected to the chute to assist gravity in propelling mollusks in the chute toward the discharge end.
6. An apparatus according to claim 5 further characterized in that the vibratory means is variable in the amplitude of vibration imparted to the chute and further comprising means for interrupting the action of the vibratory means while the remainder of the apparatus remains in operation.
7. An apparatus for dispensing mollusks in a single file, comprising a hopper assembly including a hopper adapted to contain a quantity of mollusks, an inclined chute having an upper end to which mollusks are supplied from the hopper, a conveyor including a series of Y-shaped supports for carrying mollusks in a single file and a lower discharge end adapted to dispense the mollusks to the conveyor, a prime mover, a crank having a variable throw and driven by the prime mover, and a connecting rod pivotal linking the crank to the underside of the chute.
8. An apparatus according to claim 7 further characterized in that the prime mover is an electrically powered motor reducer and further comprising means for interrupting power to the motor reducer.
9. An apparatus according to claim 7 further characterized in that the chute is formed with a Vee-shaped cross- section and further comprising a stationary Vee-shaped trough interposed between the chute and the conveyor.
CA000480750A 1985-05-03 1985-05-03 Apparatus for dispensing mollusks Expired CA1239004A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA000480750A CA1239004A (en) 1985-05-03 1985-05-03 Apparatus for dispensing mollusks

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CA000480750A CA1239004A (en) 1985-05-03 1985-05-03 Apparatus for dispensing mollusks

Publications (1)

Publication Number Publication Date
CA1239004A true CA1239004A (en) 1988-07-12

Family

ID=4130426

Family Applications (1)

Application Number Title Priority Date Filing Date
CA000480750A Expired CA1239004A (en) 1985-05-03 1985-05-03 Apparatus for dispensing mollusks

Country Status (1)

Country Link
CA (1) CA1239004A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8591296B2 (en) 2009-10-28 2013-11-26 Clearwater Seafoods Limited Partnership Mollusc processing apparatus and related methods
US11974582B2 (en) 2019-08-01 2024-05-07 Clearwater Seafoods Limited Partnership Apparatus and methods for mollusc processing

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8591296B2 (en) 2009-10-28 2013-11-26 Clearwater Seafoods Limited Partnership Mollusc processing apparatus and related methods
US11974582B2 (en) 2019-08-01 2024-05-07 Clearwater Seafoods Limited Partnership Apparatus and methods for mollusc processing

Similar Documents

Publication Publication Date Title
US4501382A (en) Apparatus for dispensing mollusks
US3587674A (en) Fruit-packaging apparatus
US3550752A (en) Automatic storage system for non-free flowing products
US4054970A (en) Apparatus for deheading shrimp
CA1239004A (en) Apparatus for dispensing mollusks
US4379669A (en) Tobacco handling apparatus
CA1059543A (en) Magnetic orienting and conveying device for closure flanges
US3900036A (en) Corn husking machine
US4534157A (en) Case lift outfeed apparatus
US3326351A (en) Pre-orienter aligner
WO2000012415A1 (en) Conveying system for loading into a bin
CN210544440U (en) Automatic material distributing mechanism for discharging of emulsifying machine
NZ215133A (en) Monorail trolley drive motor suspension
US3112732A (en) Feeder for cattle or the like
US3709351A (en) Automatic bulk feeding and distributing apparatus
CN205756958U (en) A kind of tumbler
US6216850B1 (en) Cyclically powered conveyor with flow leveler
US3927758A (en) Automatic material-handling apparatus
US4279562A (en) Bucket conveyor
JP2676316B2 (en) Ice vertical conveyor
US5183151A (en) Handling of fruit using dual plastic cup construction
JP3157333B2 (en) Cup conveyor for cup-type vending machines
JPH0890295A (en) Compressor for waste container
JP2005001861A (en) Transport device and crusher including it
CN211191046U (en) Screening plant for aquatic products

Legal Events

Date Code Title Description
MKEX Expiry