CA1234385A - Downhole drive apparatus - Google Patents

Downhole drive apparatus

Info

Publication number
CA1234385A
CA1234385A CA000535226A CA535226A CA1234385A CA 1234385 A CA1234385 A CA 1234385A CA 000535226 A CA000535226 A CA 000535226A CA 535226 A CA535226 A CA 535226A CA 1234385 A CA1234385 A CA 1234385A
Authority
CA
Canada
Prior art keywords
seal
mandrel
housing
piston
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
CA000535226A
Other languages
French (fr)
Inventor
Kenneth H. Wenzel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxi Torque Drill Systems Inc
Original Assignee
Maxi Torque Drill Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US06/791,217 external-priority patent/US4683964A/en
Application filed by Maxi Torque Drill Systems Inc filed Critical Maxi Torque Drill Systems Inc
Priority to CA000535226A priority Critical patent/CA1234385A/en
Application granted granted Critical
Publication of CA1234385A publication Critical patent/CA1234385A/en
Expired legal-status Critical Current

Links

Landscapes

  • Earth Drilling (AREA)

Abstract

ABSTRACT OF THE DISCLOSURE

The present invention provides an improved sealing configuration in a downhole drill bit drive apparatus being operable to seal a bearing chamber from drilling fluids in a fluid flow passage and maintain the pressure in the flow passage and in the chamber substantially at equilibrium, The seal configuration includes an annular piston chamber, a housing defining an outer wall of the piston chamber and a mandrel defining an inner wall of the piston chamber, one end of the piston chamber communicating with the fluid flow passage, the other end of the piston chamber communicating with the bearing chamber, an annular piston concentrically disposed within the piston chamber in sealing engagement with the inner and outer walls of the piston chamber, the piston being axially movable in the piston chamber in response to a pressure differential between the fluid pressure in the fluid flow passage and the fluid pressure in the bearing chamber to a position whereat the fluid pressures are substantially equal; and further including a roller bearing for rotatingly mounting the piston on the mandrel to permit rotation of the mandrel with respect to the piston.

Description

~343135 This in~7ention relates to an improved downhole drill bit drive apparatus assembly of ~the type employed in drilling through soil and rock formations.

B KGROUND OF _HE INVENTION
The use of downhole motors in drilling operations has had limited success due to the short functional life span of drill bits. The life of a drill bit is related to the rotational speed of the drill bit and, 10 heretofore, downhole motors arrangements have tended to rotatably drive the drill bit at relatively hi~h rotational speeds. As a result, premature drill bit failure would result and, each time a drill bit would become worn, valuable drilling hours would be lost as 15 the drill string would be removed from the borehole, the bit replaced and the drill string reinserted into the borehole. While the solution, reduction of the rotational speed of the drill bit, has been recognized for several years, downhole drill bit drive tools have 20 nevertheless failed to meet expectations. By way of background and as is well known in the this field, a drilling fluid, or "drilling mud" as it is known in th~
field, i5 pumped under pressure down the interior of the drill string to the drill bit and the fluid together 25 with cuttings are returned to the surface along the exterior of the drill string. The fluid pressure at the bottom of the bore hole is considerable.
In one prior downhole drill bit drive arrangement, a controlled amount of drilling mud was allowed to pass 30 through the bearing assemblies. However, the drilling mud was found to cause premature failure of the bearings and, accordingly, this approach was deemed an unsatisfactory solution to the problem. Various attempts at sealing the bearing and speed reduction 35 mechanism have had little success. The solution to the problem is known to lie in lubricated systems to prolong ~23 ~3~35 bearing life, however this will require an advance in seal systems technology.

SUMMARY OF THE INVENTION
___ _ __ The primary object of one aspect of the present invention is to provide an improved sealing arran~ement for the bearing assembly of a downhole drill bit drive apparatus.
Acrording to the present invention there is 10 provided an improvement in a downhole drill bit drive apparatus haviny a tubular housing adapted to be secured to the downhole end of a drill string, a mandrel concentrically disposed within the housing and having one end adapted to be secured to a downhole rotary drive - 15 means and an other end adapted to be secured to a drill bit, bearing means disposed between the housing and the mandre.l to permit rotation of the mandrel with respect to the housing and transmit axial and radial loads between the housing and the mandrel, the housing and the 20 mandrel defining a fluid flow passage for transmitting drilling fluid to a drill bit secured to the mandrel.
The improvement is comprised of a first seal means at one end of the bearing means, the first seal means defining one end of a bearing chamber for housing the
2~ bearing means and a lubricating fluid for lubricating the hearing means and being operable to seal the chamber from the fluid flow passage and maintain the pressure in the flow passage and in the chamber substantially at equilibrium; second seal means at the other end of the 30 bearing means, the second seal means de~ining the other end of the bearing chamber and being operable to seal the chamber from the exterior of the chamber. The first seal means includes an annular piston chamber, the housing defining an outer wall of the piston chamber and 35 the mandrel defining an inner wall of the piston chamber, one end of the piston chamber communicating with the fluid ~low passage, the other end of the piston chamber communicating with the bearing chamber, annular 1;~3~3135 piston means concentrically disposed within the piston chamber in sealing el~gagement with the inner and outer walls of the p:iston chamber, the piston means being axially movable in the piston chamber in response to a pressure differential between the flllid pressure in -the fluid flow passage and the fluid pressure in the bearing chamber to a position whereat the fluid pressures are substantially equal; and further including roller bearing means for rotatingly mounting the piston means on the mandrel to permit rotation of the mandrel with respect to the piston.

J~23~38S

BRIEF DESCRIPTION OF THE DRAWINGS
_,____ __,_ ___ __ __ These and other features of the invention will become more apparent from the following description in which reference i5 made to the appended drawings, wherein:

FIGUR~ 1 is a partially diagrammatic illustration of a downhole drive apparatus of the present invention secured to the downhole end of a drill string;

FIGURES 2a - 2e are longitudinal cross-sectional views of an embodiment of the downhole drive apparatus of the present without ~peed reduction;

FI~UR~S 3a - 3e are longitudinal cross-sectional 15 views of an embodiment of the downhole drive apparatus of the present invention with speed reduction;

FIGUR~ 4 is a partially broken, longitudinal cross-sectional view of an end cap; and ~ IGUR~ 5 is a cross--sectional view ta~en along line 5-5 of FIGUR~ 3.

~;23~38~

DETAILED _ESCRIPTION OF AN EMBODI_~NT
With reference to FIGURE 1 of the drawings, there i5 diagramma-tically illustrated a downhole, drill bit drive apparatus, generally designated by reference numeral 10. The apparatus i5 comprised of a tubular housing or casing 12 having a string end 14 adapted to be secured to the downhole end of a conventional drill string 18. A mandrel 20 is concentrically disposed within the housing and has a drill string end 22 adapted to be secured to a downhole rotary drive means (not 10 shown) and a bit end 24 adapted to be secured to a drill bit 25. Bearing means is disposed between the housing and the mandrel to permit rotation of the mandrel with respect to the housing and transmit axial and radial loads between the housing and the mandrel in a manner 15 explained more fully later. The drill string end 22 of the mandrel is formed with a plurality of radial fluid passages 26 for receiving, in a longitudinal internal channel 28 thereof, drilling fluid delivered by means of ~; surface pumps down the drill string 18 and into the 20 drill string end 14 of the housing. Channel 28 deliv0rs the drilling fluid to the drill bit secured to the mandrel, as is well known.
A first seal means 30 is provided at the drill string ends of the housing and mandrel to define the 25 drill string end of a bearing chamber 3~ which houses the bearing means, a lubricating fluid for lubricating the bearing means and a speed reducing mechanism, if the latter is provided~ As explained more fully later, the first seal means is operable to seal the bearing chamber 30 from the drilling fluid and maintain the pressure in the drilling fluid passage and in the bearing chamber substantially equal. A second seal means 34 is disposed at the bit end of the bearin~ means and defines the other end of the bearing chamber. The second seal means 35 is operable to seal the bearing chamber from the exterior of the chamber.

:I Z3~38S

With particular reference to FI~UR~S 2a - 2e, which illustrate an embodiment of the invention without speed reduction, the drill string end 14 of the housing 12 will be seen to be threadedly engaged with an adaptor suh 36 which, in turn, is secured to the downhole end of the drill string. To permit assembly of the ~earings and other internal components of the apparatus, the housing i5 formed in two parts including a top sub 40 and a bearing housing 42, threadedly secured together in 10 end-to-end relation, as shown. An end cap 44 is threadedly secured to the bit end of bearing housing 42 and houses the second seal means 34 referenced earlier.
The drill string end 22 of the mandrel is threadedly engaged with a coupling member 46 which, in 15 turn, is threadedly secured to the output shaft 48 of the downhole motor (not shown). The mandrel is constructed in two parts including a wash pipe 50 at the drill string end and a main mandrel 52 at the bit end threadedly engaged together in end-to-end relation.
With reference to FIGURE 2b, first seal means 30 will be seen as being comprised of an annular piston 60 disposed in a piston chamber 62 having an outer wall 64 formed in top sub 40 and an inner wall 66 formed by wash pipe 50 of mandrel 20. Drill string end 68 of the 25 piston chamber opens into the drilling fluid ~low passage while the bit end ~0 of the piston chamber opens into bearing chamber 32. The piston is formed with generally cylindrical cuter and inner walls 72 and 74, respectively, concentrically disposed in the pi~ton chamber in sealing engagement with the outer and inner walls of the piston chamber. The piston i5 axially movable in the piston chamber in response to a pressure differential between the drilling fluid flow passage and the bearing chamber whereby to e~ualize the pressure therebetween. A roller bearing 76 i5 disposed between the piston and the wash pipe to permit rotation of the mandrel with respect to the piston and maintain concentricity between the mandrel, piston and housing.

.

::L23~385 The bearing and its races are axially mo~able with the piston.
A first pair of axially spaced, inner floating seals 80 and 82 are respectively disposed in seal grooves 84 and 86 formed in inner wall ~4 of the piston for sealingly engaging piston chamber inner wall 66 while a second pair of axially spaced, outer floating ~eals 88 and 90, respectively, are disposed in seal grooves 92 and 94 formed in piston outer wall ~2 for sealingly engaging piston chamber outer wall 64. A pair of radial passages 96 (only one is shown) extend between piston inner wall ~4 and piston outer wall 72 between the seals 80 and 82 of the inner pair of seals and seals 88 and 90 of the outer pair of seals. A pair of axial passages 9S (only one is shown) extend from drill string end face 100 of the piston and each communicates with one of the radial passages. A grease nipple 102 is provided in end face 100 for feeding ~rease or like fluid under pressure into passages 98 and ~6, between adjacent inner walls 66 and 74 of the chamber and piston and ad~acent outer walls 64 and 72 of the chamber ~nd piston and into seal grooves 84, 86, 92 and 94 to urg2 the seals to the distal ends of their respective grooves. Once the grooves have been filled with an appropriate fluid, nipple 102 is replaced with a plug (not shown).
Thus, it will be seen that during the normal course of operation, a differential in pressure between the drilling Eluid passage and the bearing chamber will cause axial displacement of the piston within the piston chamber in the direction of lower pressure thus tending to equalize the pressure between the drilling fluid passage and the bearing chamber. This reduces the likelihood of leakage of drilling fluid into the bearing chamber. Further, as the pressure increases on either end oE the piston, such pressure will be transmitted to the axial outer faces of the inner and outer seals against the prea-~ure of the fluid on the inner sides Gf 123~3~3S
~ 8 --the grooves, thus enhancing the sealing effort of the seals.
With reference to FIGURE 2e, second seal means 34 will be seen to be housed within end cap 44 which is threadedly secured in the bit end of bearing housing 42 of housing 12. Seal means 34 is provided with, in bore 108 thereof, a first floating seal 110 disposed in seal groove 112, a second floating seal 114 disposed in a seal groove 116, a fixed seal 118 disposed in a seal ; 10 groove 120 and a third floating seal 122 disposed in a seal groove 124. A seepage passage 126 extends from seal groove 112 between the bore of the end cap and the outer surface of main mandrel 52 ~or communicating fluid under pressure from the exterior of the housing to bit 15 end face 128 of seal 110. The seals are packed with a suitable fluid or grease with the floating seals being urged thereby to the positions shown in FIGURE 2e.
Fixed seal 118 is intended to serve as the primary seal between the bearing chamber and the exterior of the 20 housing while the remaining floating seals are intended to serve aæ backup seals in the event that seal 118 fails. In addition, seals 110 and 114 are intended to keep fixed seal 118 properly lubricated by preventing drilling fluid from reaching and contaminating fixed 25 seal lla.
In lieu of the seepage passage, there may be provided, as shown in FIGURE 4, an additional groove 130 at the bit end of the end cap 44, a flow restrictor 132 po~itioned therein and a radial fluid passage 134 30 extending between channel 28 and the bit end of face 128 of seal 110. In this manner, drilling fluid under pressure is communicated directly to seal 110.
: With reference to FIGUR~ 2~, a series of five cylindrical roller bearings 140 are provided at the bit end of the b~aring chamber 30 between bearing housing ~2 and main mandrel 52 for transmitting radial forces between the housing and the mandrel. Each is provided with an inner race 142 and an outer race 144. Inner ~; :
~ ' , ~ ' :
3'~3~35 race 142 of the bit end bearing 140 i5 held against a shoulder 146 ~ormed by a profile on the outer surface of the main mandrel 52 while outer race 144 thereof is held against the string end of end cap 44. The inner and outer races of the other four of bearings 140 are held in end-to-end relation by the bit ends of an inner spacer sleeve 150 and an outer spacer sleeve 152. With reference to FIGURE 2d, a second serie~ of three cylindrical roller beari~gs 154 are provided generally 10 midway of the length of the housing and mandrel for transmitting radial forces therebetween. The inner and outer races 156 and 158 of the bit-end bearing 154 are held against the drill string ends of inner and outer spacer sleeves 150 and 152 while the inner race of drill 15 5tring end bearing 154 is held against a retaining ri~g 160 which, in turn, is held in position by a snap ring 162. The outer race of the string end bearing is held in position by the bit end of a spacer sleeve 164.
With reference to FIGURES 2b and 2c, a third series 20 o~ two cylindrical roller bearings 166 are provided at the string end of the apparatus between top sub 40 and wash pipe 50 to transmit radial forces therebetween.
Inner and outer races 168 and 170 thereof are spaced apart by inner and outer spacer sleeves 172 and 174, 25 re5pectively. The bit end of the outer race of the bit end bearing is held against a snap ring 176 while the inner race thereof is held against a shoulder 1~8 formed on the outer surface of wash pipe 50. The string end of the outer race of the string end bearing 166 i5 held 30 against a shoulder 180 formed on the inner surface of top sub 40 of the housing while the inner race thereof is held against a snap ring 182.
With reference to FIGURE 2d, there is provided a pair o~ spherical roller bearings 190 and 192 for 35 transmitting axial loads from the drill string and housing to the mandrel during drilling operations.
Bearings 190 and 192 are arranged in such a manner that the axial load~ are distributed substantially e~ually 1~23~3~5 between the two bearings. Bearing 190 i5 provided with an inner race 194 held against a shoulder 195 formed on the outer surface of main mandrel 52 and an outer race 196 held against the drill string end of spacer sleeve 164. Bearing 192 is provided with an inner race 198 and an outer race 200 held against a shoulder 202 formed on the inner surface of bearing housing 42. Disposed between outer race 196 of bearing 190 and outer race 200 of bearing 192 are a compression ring 204, which bears 10 against race 196, a pair of disc springs 206 and 208, and a sleeve 210, the string end of which bears against outer race 200. Similarly disposed between inner race 194 of bearing 190 and inner race 198 of bearing 192 are a compression ring 212, which bears against inner race 15 198, a pair of disc springs 214 and 216, and a sleeve 218, the bit end of which bears against inner race 194.
The compression rings serve to evenly and centrally distribute the spring loads against their respective races and ~aintain the bearings axially and 20 compressively loaded. A further spherical roller bearing 220 is provided to support the weight of the mandrel and associated components when the drill string is raised. Bearing 220 is provided with an outer race 222 held against the string end 224 of bearing housing 25 42 and an inner race 226 which i5 urged against the rollers by means of a compression ring 228 and pair of disc springs 230 and 232 compressed between the compression ring and the bit end of wash pipe 50.
;Reference will now be made to FIGURES 3a - 3e, 30 which illustrate an embodiment of the invention provided with a speed reducer. This embodiment, generally designated by reference numeral 300, i9 substantially the same as that of FIGURES 2a - 2e except for the inclusion of the speed reducing mechanism, generally 35 designated by the numeral 310. Thus, embodiment 300 is ; provided with a housing 312 which includes an adaptor sub 314, a top sub 316 and a bearing housing 318 and a ~ mandrel, generally designated by refer~nce numeral 320, : .

, ~;Z3438S

including a coupling member 322, a wash pipe 324, and a main mandrel 326. An annular piston 328 is concentri-cally disposed in an annular piston chamber 330 at the string end of the apparatus while an end cap 332, and associated seals, is provided at the bit end of the apparatus.
A first series of five cylindrical roller bearings 334 (FIGURES 3d and 3e), a second series of three cylindrical roller bearings 336 (FIGURF 3d) and a third series of two cylindrical roller bearings 338 (only one of which is shown in FIGURE 3a) are provided for transmitting radial forces between the housing and the mandrel. A pair of spherical roller bearings 339 (FIGURE 3d) are provided for transmitting drill string and housing axial loads to the mandrel during normal drilling operations. The components just referenced are identical to corresponding components in the embodiment of FIGURES 2a - 2e and, accordingly, will not be described in further detail.
With particular reference to FIGURES 3b and 3c, the housing will be seen to be further comprised of a stationary gear housing 340 and a barrel member 342 threadedly secured together in end-to-end relation. The string end of gear housing 340 is threadedly secured through the bit end of top sub 316 while the bit end of barrel member 342 is threadedly secured to the bit end of bearing housing 318.
Mandrel 320 further includes a gear mandrel member 344, the string end of which is threadedly secured to wash pipe 324 and, thus, is rotatably driven thereby.
Gear mandrel 344 is telescopically received within a gear cage 346 (FIGURES 3b and 5). A plurality of bushings 348 are disposed between the gear cage and the gear mandrel for transmitting radial forces therebetween while permitting relative rotation thereof. A spherical roller bearing 350 is positioned between string end 352 of the gear cage and bit end 354 of wash pipe 324. Bit end 356 (FIGURE 3c3 of the gear cage is threadedly , .
:. :
' . .

1~2343l3S

secured to a gear cage coupling 358 which, in turn, is threadedly secured to main mandrel 326. The cage csupling serves to transmit torque from the cage coupling to the main mandrel. A spherical roller hearing 360, a compression ring 362 and a pair of disc springs 364 and 366 are positioned between the string end 368 of bearing housing 318 and bit end 370 of gear cage 358.
As best shown in FIGUR~ 5, gear mandrel 344 is 10 formed with an external axial spline or gear 37~ which meshes with three driven planetary gear assemblies 3~6 while gear housing 340 is formed with an internal axial spline or gear 378 which also meshes with the gears assemblies. In order to transmit the high torque 15 required, each planetary gear assembly 3~6 is comprised of three coaxially aligned gear~ 380, 382 and 384 (see FIGURE 3b) suitably journaled in bearing blocks 386 slidably received in pockets 388 of gear cage 346 for rotation about their respective axis and epicyclic 20 movements about the axis of the mandrel. The speed reducer shown provides a speed reduction ratio of 3:1.
It will be understood that various modifications and alterations may be made to the above described embodiments of the invention without departing from the 25 spirit of the following claims.

Claims (9)

THE EMBODIMENTS OF THE INVENTION IN WHICH AN EXCLUSIVE
PROPERTY OR PRIVILEGE IS CLAIMED ARE DEFINED AS FOLLOWS:
1. In a downhole drill bit drive apparatus having a tubular housing adapted to be secured to the downhole end of a drill string, a mandrel concentrically disposed within said housing and having one end adapted to be secured to a downhole rotary drive means and an other end adapted to be secured to a drill bit, bearing means disposed between said housing and said mandrel to permit rotation of said mandrel with respect to said housing and transmit axial and radial loads between said housing and said mandrel, said housing and said mandrel defining a fluid flow passage for transmitting drilling fluid to a drill bit secured to said mandrel, the improvement comprising:
first seal means at one end of said bearing means, said first seal means defining one end of a bearing chamber for housing said bearing means and a lubricating fluid for lubricating said bearing means and being operable to seal said chamber from said fluid flow passage and maintain the pressure in said flow passage and in said chamber substantially at equilibrium; and second seal means at the other end of said bearing means, said second seal means defining the other end of said bearing chamber and being operable to seal said chamber from the exterior of said chamber;
said first seal means including an annular piston chamber, said housing defining an outer wall of said piston chamber and said mandrel defining an inner wall of said piston chamber, one end of said piston chamber communicating with said fluid flow passage, the other end of said piston chamber communicating with said bearing chamber, annular piston means concentrically disposed within said piston chamber in sealing engagement with said inner and outer walls of said piston chamber, said piston means being axially movable in said piston chamber in response to a pressure differential between the fluid pressure in said fluid flow passage and the fluid pressure in said bearing chamber to a position whereat said fluid pressures are substantially equal; and further including roller bearing means for rotatingly mounting said piston means on said mandrel to permit rotation of said mandrel with respect to said piston.
2. The improvement of claim 1, said piston means having an inner wall adjacent the inner wall of said piston chamber and an outer wall adjacent the outer wall of said piston chamber and further including a first pair of axially spaced, inner floating seals disposed in respective seal grooves formed in said piston means inner wall sealingly engaging said piston chamber inner wall, a second pair of axially spaced, outer floating seals disposed in respective seal grooves in said piston means outer wall for sealingly engaging said piston chamber outer wall, said grooves being adapted to receive a fluid in such a manner than their respective seals of each said pair of seals are axially urged apart.
3. The improvement of claim 2, further including first port means extending between said piston means inner wall and said piston means outer wall between said seals of each said pair of first and second seals, and second port means extending from said first port means to an end of said piston chamber, said first and second port means being operable to communicate a lubricating fluid into each said groove.
4. The improvement of claim 3, said first port means comprising at least two radial fluid passages extending between said inner and outer walls of said piston means and said second port means comprising at least two axial fluid passages, each communicating with one of said radial fluid passages.
5. The improvement of claim 1, said second seal means including a fixed seal between said housing and said mandrel.
6. The improvement of claim 1, said second seal means including at least one seal groove at the bit end of the bore of said housing, a floating seal disposed in said seal groove and sealingly engageable with said mandrel, said floating seal having an exterior end face facing the bit end of said housing and an interior end face facing said bearing chamber, a fixed seal between said housing and said mandrel, said fixed seal being axially spaced from said floating seal toward the drill string end of said housing, a seepage passage extending from said seal groove to the exterior of said housing for communicating fluid under pressure from the exterior of said housing into said seal groove and exposing said exterior end face thereto, said floating seal being axially movable in said seal groove in response to a pressure differential across said floating seal to reduce said pressure differential.
7. The improvement of claim 6, further including a second seal groove disposed between said first mentioned floating seal and said fixed seal, a second floating seal disposed in said second seal groove, said second seal having an exterior face adjacent said inner face of said first mentioned floating seal and an inner face remote from said inner face of said first mentioned floating seal, said second floating seal being axially movable in said second seal groove in response to a pressure differential across said second floating seal whereby to reduce said pressure differential.
8. The improvement of claim 7, further including a third seal groove axially disposed on the side of said fixed seal remote from said second floating seal, a third floating seal disposed in said third seal groove for sealing engagement with said housing and said mandrel, said third floating seal being axially movable in response to a pressure differential thereacross whereby to reduce said pressure differential.
9. The improvement of claim 1, further including speed reducing means disposed in said bearing chamber, said speed reducing means comprising:
an internal axial spline formed on an interior surface of said housing;
said mandrel including a driving mandrel section rotatably mounted in said housing, said driving mandrel section having one end adapted to be secured to rotary drive means at the downhole end of said drill string and an opposed end having an external axial spline thereon, said opposed end being disposed in radially opposed relation with respect to said internal spline of said housing;
a driven mandrel section rotatably mounted in said housing, said driven mandrel section being coaxially aligned with said first mandrel section and having one end adapted to be secured to a drill bit for rotatingly driving said drill bit, and an opposed end adapted to telescopically receive said opposed end of said driving mandrel section and be disposed intermediate said internal and external splines; and planetary gear means rotatably mounted in said opposed end of said driven mandrel section for meshing engagement with each said internal and external splines, said splines and said planetary gear means being dimensioned such that the angular rotation of said driven mandrel section is less than the annular rotation of said driving mandrel section.
CA000535226A 1985-10-25 1987-04-21 Downhole drive apparatus Expired CA1234385A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA000535226A CA1234385A (en) 1985-10-25 1987-04-21 Downhole drive apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US06/791,217 US4683964A (en) 1985-10-25 1985-10-25 Downhole drill bit drive apparatus
US791,217 1985-10-25
CA000500365A CA1224456A (en) 1985-10-25 1986-01-24 Drill bit downhole drive apparatus
CA000535226A CA1234385A (en) 1985-10-25 1987-04-21 Downhole drive apparatus

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CA000500365A Division CA1224456A (en) 1985-10-25 1986-01-24 Drill bit downhole drive apparatus

Publications (1)

Publication Number Publication Date
CA1234385A true CA1234385A (en) 1988-03-22

Family

ID=25670900

Family Applications (1)

Application Number Title Priority Date Filing Date
CA000535226A Expired CA1234385A (en) 1985-10-25 1987-04-21 Downhole drive apparatus

Country Status (1)

Country Link
CA (1) CA1234385A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5217080A (en) * 1991-01-08 1993-06-08 Wenzel Kenneth H Sealing system for a sealed bearing assembly
US5248204A (en) * 1992-02-14 1993-09-28 Canadian Downhole Drill Systems, Inc. Short stack bearing assembly

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5217080A (en) * 1991-01-08 1993-06-08 Wenzel Kenneth H Sealing system for a sealed bearing assembly
US5248204A (en) * 1992-02-14 1993-09-28 Canadian Downhole Drill Systems, Inc. Short stack bearing assembly

Similar Documents

Publication Publication Date Title
US4683964A (en) Downhole drill bit drive apparatus
US7802638B2 (en) Drive system
CA2825027C (en) Oil-sealed mud motor bearing assembly with mud-lubricated off-bottom thrust bearing
CA2518146C (en) Bearing assembly for downhole mud motor
US5385407A (en) Bearing section for a downhole motor
CA1126721A (en) Radial force anti-extrusion device for sealed drill string unit
CN111852334B (en) Reactive torque automatic balancing device for screw drill, drilling pipe string and method
CA2766159A1 (en) Sealing system and bi-directional thrust bearing arrangement for a downhole motor
US9546518B2 (en) Power section and transmission of a downhole drilling motor
US12055014B2 (en) Sealing system for downhole tool
GB2073285A (en) Direct drive system for rotary drill bits
US4222445A (en) Reduction unit of drilling motor
US6361217B1 (en) High capacity thrust bearing
US4170441A (en) Speed changer for in-hole motors
CA1098110A (en) Reduction unit of drilling motor
US4320929A (en) Sealed bearing system for hydraulically operated devices
CA1234385A (en) Downhole drive apparatus
US4462472A (en) Marine bearing for a downhole drilling apparatus
US10900284B2 (en) Downhole motor bearing pack
CA2843023C (en) Pressure compensation system for a motor bearing assembly
US9915097B2 (en) Bearing section of a downhole drilling motor
US20200291725A1 (en) Floating Plug Anti-Leak
US7240745B1 (en) Drill bit lubrication apparatus and method
WO2007117242A1 (en) Drill bit lubrication apparatus and method

Legal Events

Date Code Title Description
MKEX Expiry