CA1231295A - Disposable prevacuum steam sterilizer test device - Google Patents

Disposable prevacuum steam sterilizer test device

Info

Publication number
CA1231295A
CA1231295A CA000454828A CA454828A CA1231295A CA 1231295 A CA1231295 A CA 1231295A CA 000454828 A CA000454828 A CA 000454828A CA 454828 A CA454828 A CA 454828A CA 1231295 A CA1231295 A CA 1231295A
Authority
CA
Canada
Prior art keywords
test
disposable
sheets
sterilization
porosity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
CA000454828A
Other languages
French (fr)
Inventor
Thomas A. Augurt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Propper Manufacturing Co Inc
Original Assignee
Propper Manufacturing Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Propper Manufacturing Co Inc filed Critical Propper Manufacturing Co Inc
Priority to CA000454828A priority Critical patent/CA1231295A/en
Application granted granted Critical
Publication of CA1231295A publication Critical patent/CA1231295A/en
Expired legal-status Critical Current

Links

Landscapes

  • Apparatus For Disinfection Or Sterilisation (AREA)

Abstract

DISPOSABLE PREVACUUM STEAM STERILIZER TEST DEVICE

Abstract A test device for determining proper operation of a prevacuum steam sterilizer is fabricated with a printed test sheet surrounded by selected layers of disposable sheet material having predetermined porosities and other characteristics.
Examination of the test sheet after an appropriate test cycle in the sterilizer reveals flaws in the sterilizer's performance.
The test pack is designed to replace prior practices which used folded surgical towels of specific characteristics for sterilizer testing.

Description

~.Z~ 35 DISPOSABLE _REVACUUM STEAM STERILIZER TEST DEVICE
This invention relates generally to the sterilization of medical and surgical products and more specifically to a dis-posable test pack adapted to be processed through a conventional sterilization cycle in a prevacuum steam sterilizer to check the proper operation of the sterilizer.
In the sterilization of medical dressigns and instru-ments by steam, such dressigns or instruments are conventionally assembled in bundles or packs and placed in a steam sterilization chamber which is sequenced through an appropriate sterilization cycle. Individual packages may contain stacks of towels, dres-sings, sponges and similar materials or may contain desired com-pliments of surgical instruments or eqùipment for specific sur-gical procedures.
A current method of steam sterilization practice involves the placement of such packs in a sterilizer, the evacuation of air from the sterilizer and the introduction of saturated steam at a desired pressure to produce a desired temperature for a selected period of time. Prevacuum sterilizers operating in this manner have frequently replaced the downward displacement or gravity air discharge sterilizers previously used The significant advantage of the prevacuum method is that removal of air before introduction of steam permits the rapid penetration of steam throughout the surgical pack. Elimination of air is necessary in all steam sterilizers since air trapped in the packages would prevent sterilization of the portion of the packs interior where it collected. With the prevacuum method, the time required for steam penetration in a typical sterilization cycle is greatly reduced and prevacuum sterilizers currently operate on a rela-tively short cycle (with an exposure time in the order of 3-4 minutes at 134C.). The operation of such sterilizers is well described in, John J. Perkins, Principles and Methods of Sterilization, 3~3S

in the Health Sciences published by Charles C. Thomas, Springfield, Illinois, Chapter VI, "Prevacuum High Temperature Sterilization."
The ability to sterilize instruments in a shortened time, however, is dependent on the assumption that air is prop-erly evacuated from the sterilizer. This includes the expec-tation that the vacuum system is functioning properly to evacuate the chamber initially and that there are no air leaks in the sterilizer or the vacuum lines which would permit introduction of air after the vacuum is drawn. During routine use, wear on certain sterilizer parts will eventually result in air leaks and there is a need to test the sterilizer on a periodic (daily) basis to ascertain that the vacuum system is functioning properly.
In 1961, a test procedure was proposed by J. Dick et al. and discribed by J. H. Bowie, et al. of the Department of Microbiology, Royal Infirmary, Edenborugh, Scotland in an article appearing in The Lancet, March 16, 1963, pp. 58~-587, which sug-gested a protocol for determining that the sterilizer was in proper working order, and that the vacuum system was operating properly. As indicated in the article, residual air in the sys-tem at the time steam is introduced will be swept by the steam pressure into the pack, usually to the pack center. Trapped air in the pack inhibits proper steam penetration.
According to the Bowie and Dick protocol, sterilization indicating tape was used in combination with a stack of surgical towels to test the working order of the sterilizer on a daily basis. Sterilizer indicating tape is an adhesive tape having printed on its top surface stripes of a sterilization indicator material which has the property of changing coloe, for example from white to black, upon exposure to steam at an appropriate temperature for an appropriate period of time. According to the Bowie and Dick protocol, such tape was placed on a fabric sheet in a cross configuration and the fabric sheet was placed within Z~ 9~

a stack of folded surgical towels. Thç entire assembly was placed within the sterilizer. The sterilizer was run through its usual cycle with an exposure time of three and one-half minutes at 133-134C, after which the tape cross was examined to deter-mine whether steam had completely penetrated the towel stacks effectively. A uniform color change was indication of a pass and the presence of incompletely changed indicator color was a failure.
This protocol is currently in widespread use and is described in the Association For the Advancement Of Medical In-strumentation ~AAMI) Recommended Practice: Good Hospital Prac-tice for Steam Sterilization and Sterility Assurance published by the AAMI, 1901 North Ft. Myer Drive, Suite 602, Arlington, Vir-ginia 22209. As indicated in Paragraph 7.8 of that publication entitled "Prevacuum Sterilizer Residual Air Test" the test in-volves the use of 100% cotton huckaback towels, freshly laundered but not ironed (in view of the fact that excess dryness may affect the test results) folded in a 9" x 12" configuration and piled 10" - 11" high. The details of the Bowie and Dick procedure are described in the above-referenced Recommended Practice.
The testing of prevacuum sterilizers according to the Bowie and Dick protocol involves a number of important short-comings. Firstly, the test is subject to individual execution by the sterilization section of the hospital on a daily basis and the various requirements of the Bowie and Dick protocol, namely the type of towels or other fabrics used, their condition, age and the like (all of which affect the significance of the test result) may very widely from day to day and from institution to institution. Secondly, the performance of the Bowie and Dick protocol is relatively inconvenient and costly in that the expense of laundering towels (which cannot be thereafter used wi~-hout relaundering) assembling the test arrangement and the like in-volve costly hospital labor. Additionally, certain hospitals ~.23~ 5 have elected to eliminate laundry facilities entirely, utilizing only single use disposable fabrics for their procedures making the proper conduct of the Bowie and Dick protocol more incon-venient.
It is an object of the present invention to provide a test pack for use in prevacuum steam sterilizers to determine whether the sterilizer is functioning in accordance with proper standards. A related object of the invention is to provide a test pack which suitably simulates air evacuation and steam penetration conditions of the conventional pack described in the Bowie and Dick protocol so as to define an appropriate challenge for a residual air test in a prevacuum sterilizer.
A further object of the invention is to create a test pack for prevacuum sterilizers which provides a repeatable and consistent standard for testing the working order of the sterilizer from day to day and sterilizer to sterilizer. It is a further object of the invention to provide such a test pack which is inexpensive and disposable after a single use, and does not require assembly by hospital personnel, nor the use of hospital linen or laundries.
In accomplishing these and other objects in accordance with the present invention, a disposable test pack is composed of a sterilization test sheet having defined areas adapted to change color in response to the presence of steam under selected exposure conditions, surrounded by a set of disposable nonwoven porous sheets of material arranged in overlying relation above and below the test sheet. The innermost sheets of material form an inner core region around the test sheet and the remaining sheets form an outer shell region, with the porosity and bulk of the inner core region and the porosity of the outer shell region being selected so as to define a desirable challenge to the sterilizer.

3.~

The test pack is designed to be used according to the accepted Bowie and Dick protocol and to be placed in an otherwise empty sterilization chamber, sequenced through a predetermined cycle and removed. The pack is then opened and the interior test sheet examined for evidence of inadequate steam penetration, air bubbles and like defects. The presence of such defects indicates faults in the vacuum or other systems within the sterilization unit which require evaluation and repair. The test is intended to be performed on a daily basis with the interior test sheet forming a permanent record of such testing. The nonwoven sheet material and the remainder of the pack are disposed of after a single use.
Further objects, features and advantages of the present invention will be more fully appreciated by reference to the following detailed description of a presently preferred embodi-ment in accordance with the invention, when taken in conjunction with the appended drawings, wherein:
Figure 1 is a perspective view, partially cut away, of a test pack in accordance with the present invention;
Figure 2 is a partial sectional view on line 2-2 in Figure l;
Figures 3 and 4 are graphic showings of the relation-ship between test results conducted with applicant's test pack and test results conducted in accordance with the conventional test pack of the Bowie and Dick protocol.
Applicant's test pack 10 includes a sterilization test sheet 12 of a type known in the art. This sheet is generally a rectangular sheet of relatively porous paper which has printed on its top surface a steam sensitive ink in a test pattern designed to cover a substantial portion of the sheet surface. An ap-propriate test sheet for this purpose is the Once-A-Day test sheet manufactured by Propper Manufacturing Co., Inc. ox 36-04 Skillman Avenue, Long Island City, New York. This test sheet is shown in U.S. Patent No. D-222,516.

~.23~ S

The ink areas of this sheet are adapted to change color from white to black upon exposure to steam at a desired temperature for a desired period. The color change from white to black occurs over a period of time so that insufficiency of steam exposure may result in only partial development of the ink from white to black. This partial change may result in white or brown or lightened areas, visible on the test sheet. Test sheets of this type are generally known in the art and have been used in place of the cross sterilization tape strips described in the initial Bowie and Dick test procedure.
Applicant's new test pack 10 is designed to permit the use of a test sheet such as the Once-A-Day sheet without the use of the conventional stacks of cotton towels in accordance with the Bowie and Dick protocol. As indicated on the literature on the Bowie and Dick protocol, various types of defects are most frequently found in sterilization equipment. Principal among these are (1) inadequacy of initial vacuum, leaving residual air within the packs and (2) air leaks within the chamber or vacuum system which permit the re-entrainment of air after a vacuum has been drawn. In designing a test pack to evaluate both these types of flaws, as well as others, it was discovered that there are a variety of different constraints operating.
For example, to the extent a flaw is present in the vacuum system which prevents a sufficient vacuum from being formed in the first instance, a test pack having a low porosity and/or high bulk is more likely to reveal a flaw of this type than one having a high porosity and/or lower bulk. As the vacuum is drawn, the air within the test pack tends to be drawn out of the pack. Low porosity and/or very bulky material surrounding the test sheet would tend to increase the difficulty of removal of such air and increase the likelihood that the test pack would indicate a flaw.

3.~

On the other hand, flaws caused by leaks involve the introduction of air into the sterilizer after the vacuum has been drawn. In this situation, the relationship between the porosity of the material surrounding the test sheet and sensitivity of the test is the reverse. The less porous and/or more bulky the material surrounding the test sheet, the less likely it is that air introduced into the sterilizer after the vacuum has been drawn (as in the case of a leak) will re-enter the test packO
Accordingly, with respect to a flaw resulting from air leaks after a sufficient vacuum has been drawn, low porosity material surrounding the test sheet would tend to make it more difficult for air from such leak to enter the pack and decrease the likelihood that such a test pack would indicate a flaw.
In order to properly test the sterilizer, a test pack must balance these conflicting needs and provide appropriate challenge to either common type of flaws. Such a proper test pack is the currently accepted standard based on 10 - 11 inch stacks of folded cotton huchaback towels ln accordance with the Bowie and Dick protocol. It is desirable to design a relatively small, inexpensive and disposable test pack which achieves a challenge to the sterilizer comparable to the challenge provided by the accepted Bowie and Dick protocol.
Applicant has found that a test pack can be fabricated which provides detection of the common sterilizer flaws in a manner comparable to the Bowie and Dick protocol by establishing a package of individùal sheets of disposable material above and below an appropriate test sheet. Such sheets are assembled to form an inner core region adjacent the test sheet, and a shell region above and below the core region, with the thickness and porosity of the core region and the porosity of the shell region being selected according to desired parameters.

The preferred construction of applicant's test pack shown in Figure 1 includes a conventional test sheet 12 sur-rounded by stacked sheets of nonwoven material of selected weight and porosity. In the preferred embodiment two types of material are used, with the first type forming the inner core region 14 and the second forming the shell region 16.
The entire package is then wrapped with an appropriate porous wrapping material 18 and taped 20 to form a sealed unit.
The porosity of the wrapping material is such that it does not affect the test.
In the preferred embodiment, the shell region (16) is composed of five sheets of filter paper having an appropriate basis weight of 214 lbs. (per 3,000 square feet) and an ap-propriate thickness of .0~ inches per sheet. This material has a Frazier porosity of approximately .5-1.5 cu. ft./sq. ft./min. per sheet.
Frazier porosity is the measure of air permeabili.v of sheet material as measured by the Frazier Differential Pressure Air Permeability Measuring Machine manufactured by Frazier Precision Instrument Company, Inc. of 210 Oakmont Avenue, Gaithersburg, Maryland 02760. These measures of porosity are based on the differential pressure principle as measured by manometers. The porosity measure is given in cubic feet of air per square foot per minute at .5 inches of water pressure.
Another common measure of porosity of sheet material is the Gurley method which provides a measure of the time required for 100 ml. of air to pass through one square inch area of the specimen material at a pressure. Obviously, the Frazier porosities given herein in cubic feet per square foot per minute could be expressed by other standards of measurement.
The sheets in the core region (14) of the preferred embodiment of Figure 1 include 11 sheets above and 11 sheets 3~ S

below the test sheet, each sheet comprising filter paper having an approximate basis weight of 64 lbs. (per 3,000 sq. ft.) and a thickness of approximately .02 inch. This material has a Frazier porosity of 75-95 cu. ft./ sq. ft./min.
In the preferred example, the height of this core region is .22 inch above and .22 inch below the test sheet and the total porosity of the sheets in the core region on each side of the test sheet is approximately 6.9-8.7 cu. ft./sq. ft./min. In the preferred example, the shell region has a thickness of 0.1 inch on each side of the core region and a Frazier porosity of approxi-mately 0.1-0.3 cu. ft./sq. ft./min. on each side of the core.
The test pack, sheets and test sheet are preferably 9" x 12", although other dimensions could be employed with possible alteration in other parameters.
Applicant has found that the porosity of stacked material of the type herein used is substantially linear so that if an individual sheet of material has a Frazier porosity of 90 cu. ft./sq.
ft./min. a stack of ten sheets of such material will have a porosity 1/10 that of the individual sheet or 9 cu. ft./sq. ft./min.
Applicant has found that by forming a shell area havins a relatively low porosity as compared with the core area, the number of sheets and height of the test pack can be significantly reduced with attendant economies of material and reduction in cost. Applicant has found that it is preferred that the stacked sheets of material in the core regicn of the pack on each side of the test sheet have a combined Frazier porosity of greater than 1.5 cu. ft./sq. ft./min. Applicant has also found that it is preferred that the stacked sheets of material in the core region of the pack on each side of the test sheet have a height of at least 0.03 inch. Applicant has also found that a shell area having a Frazier porosity of less than .S cu. ft./sq. ft./min is desirable.

. . ,~,~3~?~,S

As indicated previously, it is desirable that the disposable test pack respond to faults in the sterilizing equipment in a manner comparable to cotton towels prepared in accordance with the Bowie and Dick protocol. Applicant's preferred embodiment accomplishes this desired objective.
Specifically, tests have been conducted in a specially modified prevacuum steam sterilizer altered to create conditions equivalent to sterilizer defects in a controlled and reproducable manner. The prevacuum steam sterilizer included a manually controlled vacuum pump, permitting alteration in the degree of vacuum drawn in the system, and an adjustable volume piston driven air injector. Incomplete air removal was simulated by evacuating the chamber up to 60 millimeters of mercury in a single step and omitting any subsequent evacuation. Air leaks in the sterilizer were simulated by adjusting the stroke of the injector piston to deliver a specified amount of air into the chamber during a normal steam exposure cycle following a satisfactorally complete evacuation of air.
The test sheet of applicant's preferred test pack is intended normally to be evaluated visually in the normal manner for such devices employed in the Bowie and Dick protocol. For purpose of quantifying applicant's tests, color changes in the chemical indicator sheet were evaluated by a reflectometer with a 10 millimeter orifice setting (Model XL-20 Gardener/Neotec Instru-ment Division of Pacific Scientific, Silver Spring, Maryland).
Using a green filter this instrument measured reflectance of color changes from white to black and was used in accordance with methods prescribed by The American Society For Testing And Materials (AST~I 1977). The upper limit of the reflectant scale was measured at 79 for an unexposed white sheet using the commercial Propper, Once-A-Day test sheet and 8.5 for a completely exposed black sheet. Surface area of the incompletely 3~ S

exposed portion of the test sheet was measured by calculating the area of the ellipse that best described the perimeter of the incompletely exposed area.
Applicant's tests revealed that in the range of reaction of primary interest, the effects of the two common flaws on the test sheets were substantially the same for applicant's disposable test pack and a test sheet prepared in accordance with the conventional Bowie and Dick protocol. Applicant gathered data with respect to the surface area of the undeveloped portion of the test sheet and the reflectance at the center of the indicator sheet within the undeveloped area. Measured data are as follows:

Applicant's Pack Towel Pack Partial Vacuum Test Area Color Area Color 55 mm Hg. 0 8.5 t; 8.5 60 mm Hg.1.25 9.4 2.375 9.9 70 mm 1.75 12.2 2.625 14.8 80 mm 4.38 13.8 3.375 25.8 90 mm 6.80 14.7 4.70 25.7 100 mm 72025 42.9 8.44 69.4 Applicant's Pack Towel Pack Air Injection TestArea Color Area Color (Moles Of Air Injected/leter of sterilizer volume 8.8 x 10-6 1.2 11.4 1.2 10~3 17.5 x 10-6 2.4 12.2 1.7 10,3 38.2 x 10_6 3.2 12.9 2.0 13.8 55.6 x 10-6 5.1 13.5 4.9 11.4 78.2 x 10-6 6.6 16.5 5.85 20.5 101 x 10-6 10.3 19.3 6.9 32.8 l ~3~5 As the above data indicates, the product of the rneasured surface area of the faults in applicant's tests multiplied by the re-flectance of the test sheet center for the disposable test pack is equivalent to the same product for the conventional of Bowie and Dick protocol. This relationship is shown in Figures 3 and 4. Figure 3 shows reflectance multiplied by area plotted versus the degree of vacuum (indicated in millimeters of mercury) in the sterilizer before the introduction of steam. Figure 4 shows a similar comparison for the data gathered based on simulated air leaks with the reflectance times area being plotted against the volume of air injected in Moles per liter if sterilizer volume times 106.
As indicated in the data presentation of Figures 3 and 4 the refelctance multiplied by area measure for applicant's test pack and the conventional Bowie and Dick protocol closely follow one another.
The f,oregoing is considered as illustrative only of the principles of the invention. Further, since numerous modifications and changes will readily occur to those skilled in the art, it is not desired to limit the invention to the exact construction and operation shown and described and accordingly all suitable modifications and equivalents may be resorted to falling within the scope of the invention as defined by the following claims.

Claims (6)

WHAT IS CLAIMED IS:
1. A disposable test pack for evaluation of prevacuum steam autoclaves comprising a sterilization test sheet having defined areas adapted to change color in response to the presence of steam under preselected sterilization conditions, variations in degree of said color change indicating variations in sterilization parameters, a first set of disposable nonwoven porous sheets arranged in overlaying relation positioned above and immediately adjacent the upper face of said sterilization test sheet, a second set of disposable nonwoven porous sheets arranged in overlaying relation and positioned below and immediately adjacent the lower face of said sterilization test sheet, the inner most sheets of said first and second sets forming an inner core region of said test pack adjacent said sterilization test sheet having a selected height and porosity, and means for retaining said first and second sheet sets in close proximity above and below, repsectively, said test sheet.
2. Apparatus in accordance with Claim 1 wherein said inner core region constitutes material having a combined Frasier porosity of greater than 1.5 cubic feet of air and a height of at least 0.03 of an inch.
3. Apparatus in accordance with Claim 1 wherein said disposable nonwoven porous sheets outside of said core area constitute a shell region of said disposable test pack, the sheets of said shell region having a combined Frasier porosity of less than 0.5 cubic feet of air.
4. Apparatus in accordance with Claim 1 wherein said sheets of disposable nonwoven porous material include sheets having different individual porosity.
5. Apparatus in accordance with Claim 4 wherein the sheets forming said inner core region have a first porosity and the sheets forming said outer shell region have a second porosity.
6. A disposable test pack for evaluation of prevacuum steam autoclaves comprising a sterilization test sheet having defined areas adapted to change color in response to the presence of steam under preselected sterilization conditions, variations in degree of said color change indicating variations in sterili-zation parameters, a first set of disposable porous sheets arranged in overlaying relation positioned above and immediately adjacent the upper face of said sterilization test sheet, a second set of disposable porous sheets arranged in overlaying relation and positioned below and immediately adjacent the lower face of said sterilization test sheet, the inner most sheets of said first and second sets forming an inner core region of said test pack adjacent said sterilization test sheet, the outer sheets of said first and second sets forming a shell region of said disposable test pack, the overall porosity of said shell region being lower than the overall porosity of said core region, means for retaining said disposable test pack as an assembled unit.
CA000454828A 1984-05-22 1984-05-22 Disposable prevacuum steam sterilizer test device Expired CA1231295A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA000454828A CA1231295A (en) 1984-05-22 1984-05-22 Disposable prevacuum steam sterilizer test device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CA000454828A CA1231295A (en) 1984-05-22 1984-05-22 Disposable prevacuum steam sterilizer test device

Publications (1)

Publication Number Publication Date
CA1231295A true CA1231295A (en) 1988-01-12

Family

ID=4127910

Family Applications (1)

Application Number Title Priority Date Filing Date
CA000454828A Expired CA1231295A (en) 1984-05-22 1984-05-22 Disposable prevacuum steam sterilizer test device

Country Status (1)

Country Link
CA (1) CA1231295A (en)

Similar Documents

Publication Publication Date Title
US4486387A (en) Disposable prevacuum steam sterilizer test device
EP0553519B1 (en) Compact prevacuum steam sterilization test pack
CA2029488C (en) Prevacuum steam sterilization test pack
US4692307A (en) Adjustable test pack
EP0297098B1 (en) An indicator sheet for an autoclave test pack
US5422276A (en) Sterilizer test method and apparatus
US4576795A (en) Disposable sterilizer vacuum test pack
CA2033710C (en) Sterilization biological test pack
US4579715A (en) Disposable sterilizer vacuum test pack
JP3349157B2 (en) Test instrument for pH of aqueous liquid samples and its application to diagnosis of vaginal infection
IL148108A (en) pH SENSOR FOR INDICATING THE pH OF A SAMPLE AND THE FABRICATION AND USE THEREOF
CA2986746A1 (en) Indicator panels for incontinence products
US6077222A (en) Method and device for detecting edema
CA1231295A (en) Disposable prevacuum steam sterilizer test device
JP3169957B2 (en) Method of forming record keeping test tool and record keeping test tool
WO1999020178A1 (en) Layer of material for use with tissue examination device
JP3247712B2 (en) Small pre-vacuum steam sterilization test pack
EP0428245A1 (en) Integrator test pack for steam sterilization
JPH0128584B2 (en)
CA2388058C (en) Sterilizer vacuum test pack
JPH01166759A (en) Indicator pack for testing pre-vacuum of high pressure steam sterilizer
CN113164637B (en) Tapered indicator for use in a process challenge device
US4366144A (en) In vivo method of determining leucocyte migratory activity levels
DE69226508T2 (en) Compact pre-vacuum steam sterilization test kit
IE70604B1 (en) Test cell

Legal Events

Date Code Title Description
MKEX Expiry