CA1229711A - Method and system for detecting solid obstacles between confronting surfaces of pressure plates - Google Patents

Method and system for detecting solid obstacles between confronting surfaces of pressure plates

Info

Publication number
CA1229711A
CA1229711A CA000459367A CA459367A CA1229711A CA 1229711 A CA1229711 A CA 1229711A CA 000459367 A CA000459367 A CA 000459367A CA 459367 A CA459367 A CA 459367A CA 1229711 A CA1229711 A CA 1229711A
Authority
CA
Canada
Prior art keywords
pressure
gas
confronting surfaces
confronting
inlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
CA000459367A
Other languages
French (fr)
Inventor
William Mcdowall
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hull Corp
Original Assignee
Hull Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hull Corp filed Critical Hull Corp
Priority to CA000459367A priority Critical patent/CA1229711A/en
Application granted granted Critical
Publication of CA1229711A publication Critical patent/CA1229711A/en
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/58Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/56Compression moulding under special conditions, e.g. vacuum
    • B29C2043/566Compression moulding under special conditions, e.g. vacuum in a specific gas atmosphere, with or without pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/58Measuring, controlling or regulating
    • B29C2043/5833Measuring, controlling or regulating movement of moulds or mould parts, e.g. opening or closing, actuating

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

ABSTRACT OF THE DISCLOSURE
In combination with a pair of pressure members having confronting surfaces movable one toward and away from the other, means for detecting solid impurities between the confronting surfaces of the pressure members, comprising, a gas pressure inlet tube mounted on and spaced outwardly of the outer side of one of the pressure members and terminating in a plane representing the plane of the confronting surface of the one pressure member, a gas pressure outlet tube mounted on and spaced outwardly of the outer side of the other pressure member and terminating in a plane representing the plane of the confronting surface of the other pressure member, the ends of the gas pressure inlet tube and outlet tube being in axial alignment, means connected to the inlet tube for supplying thereto a gas under a predetermined super-atmospheric pressure, and means connected to the outlet tube for detecting the presence of gas delivered thereto from the inlet passageway means, a drop in a gas pressure indicating that the confronting surfaces are spaced apart.

Description

~L~Z97~L

--1~
A SYSTEM FOR DETECTING SOLID OBSTACLES
BETWEEN CONFRONTING SURFACES OF P~ES~URE PLATES
BACKGROUND OF THE INVE~TION
This invention relates to plastic molding presses and other types of pressure plates, and more particularly to novel means by which to ensure against application of high closure pressure to the mold sections of a press when a solid impurity is on one of the con-fronting moLd surfaces.
Molds employed in the high pressure molding of synthetic resins, elastomers and other materials are very expensive, and therefore every effort generally is made to ensure against, or at least minimize damage to them.
For example, it is a frequent occurrence that tiny bits of flash or other impurities adhere to one or both of the confronting surfaces of the mold sections, or tiny insert ~trips or wires become misaligned and thereby overlie a mold face. It has belen found that under the high closing pressure utilized with such molds, such obstacles or other impurities literally hob and therefore damage the hardened tool surfaces of the molds.
-2- ~
In view of the foregoing, it has been the practice heretofore to provide for initial closing of the mold sections under very low pressure and to utilize sensitive limit switches to detect whether the mold surfaces are fully closed or are spaced apart due to some intervening obstacle or other impurity, the limit switches under the latter condition functioning ta prevent the application of high final closure pressure and thus prevent damage to the mold.
However, it is generally recognized that limit switches as heretofore employed are not sufficiently accurate as a sensing element and they are incapable of being set with sufficient accuracy to detect the presence of impurities of minute size which nevertheless are capable of damaging the mold.
SUMMARY OF THE INVENTION
I~l its basic concept, this invention involves the pas;sage of a gas under a predetermined superatmospheric pressure from an inLet opening in the plane of the con-fronting surface of one of a pair of pressure plates toan aligned outlet opening in the plane of the confronting surface of the other of the pair of pressure plates, and - - the detection of the air pressure in ~he outlet opening, a drop in air pressure indicating that a solid obstacle 25 or other impurity between the confronting surfaces has prevented closure of the pressure plates.

9~ ~L

It is by virtue of the foregoing basic concept that the principal objective of this invention is achieved;
~namely, the avoidance of the aforementioned limitations and disadvantages ~ttending the prior use of limit switches to control the closure of a pair of pressure plates.
Another objective of this invention is the provision of a method and system for detecting solid impurities between the confronting surfaces of pressure plates which ensures substantially 100% contact of the 10 confronting surfaces of such pressure plates before high closing pressure may be applied.
Still another object of this invention is the pDvision of a method and system of the class described which affords precise control of the closing of the 15 confronting surfaces of diverse forms of machine parts in a variety of industrial applications.
A further objective of this invention is the provision of a system of the class described which is a simplified c:onstruction for economical manufacture, is 20 adaptable to a wide variety of end uses, requires a minimum of maintenance and repair and is capable of reproducible precision over a long operating life.
The foregoing and other objects and advantages of this invention will appear from the following detailed 25 description, t~lken in connection with the accompanying drawing of a p~eferred embodiment ~22~7~

BRIEF DESCRIPTIO~I OF T~IE DRAWING
Fig. 1 is a schematic diagram oE a plastic molding ~press incorporating a surface impurity sensing system embodying the features of this invention, Fig, 2 is a fragmentary sectional view of the press molds of Fig, 1 showing an arrangement of passages therein providing aligned openings in the con~ronting surfaces o~ the mold sections, the arrows indicating the directions of passage of air under pressure resulting 10 from ~he mold sections being spaced apart, Fig. 3 is a fragmentary sectional view similar to Fig, 2 showing an alternative arrangement for the air passageways, DESCRIPTION OF TH~ PREFERRED EMBODIMENT
Although this invention has utility in detecting solid obstacles or other impurities between the confront-ing surfaces of a wide variety of types of pressure plates, the drawing ilLustrates such a pair of pressure pLates in the form of a pair of mold sections associated with a plastic molding press. In the schematic illustration, one mold section 10 is stationery, being mounted on a platent 12 fixed to a stationery frame component 14 of the press, The companion mold section 16 is mounted on a platen 18 which is movable relative to the fixed section, 25 whereby the confronting surfaces of the mold sections are movable one toward and away from the other.
In tb~e embodiment illulstrated, the movable platen 18 of the press is connected to a plurality oE
piston rods 20 which extend fromthe piston 22 of a high pressure clamp cylinder 24 which functions to provide high closing pressure for the molds. The clamp cylinder is connected to the piston rod 26 of a low pressure cy-linder 28 which also is secured to a fixed frame compo-nent 14 of the press. The low pressure cylinder functions to effect full opening of the molds, for ejecting of mold pieces f~om the mold, for installing inserts of various types in the mold for subsequent embedding in plastic, and for various other functions such as main-tenance and repair of the mold components.
The low pressure cylinder 28 also functions to effect movement of the mold section 16 to closed position.
Then,ii the detection system to be described indicates that the confronting surfaces o the mold sections are free o~E impurities, the high pressure cylinder 24 operates to apply high closing pressure to the mold sections pre-liminary to the injection of plastic or other material into the mold.
In accordance with this invention, air or other suitable gas under low superatmospheric pressure is utilized to detect whether the confronting surfaces of the mold sections are fully closed or whether they are 25 separated by virtue of the presence of some form of solid impurity between them.

~ 2 9 In the embodiment illustrated in Figs, 1 and 2, the movable mold section 16 is provided with at least one, and preferably two or more spaced apart inlet passage-ways 30 each terminating at the confronting surface of the movable mold section, In Fig. 1 there is shown two such inlet passageways, one adjacent the top end of the mold section and the other adjacent the bottom end of the mold section, These passageways may be centered between the lateral sides of the mold section, or at 10 opposite corners, or at any other desirable location, An inlet passageway may be provided at each of the ~our corners of the movable moLd sections, if so desired, Each of the inlet passageways is connected through a solenoid operated valve 32 to the output of a 15 pressure regulator valve 34 the input of which is connected to the output of an air pump 36 or other source of gas under superatmospheric pressure. Although the regulator valve may be chosen or adjusted to reguLate the gas pressure to any desired magnitude, it has been found 20 that an air pressure regulated to not more than about 7 psi is quite satisfactory.
Also associated with the mold sections is a low pressure limit switch 3& which is adjusted to close the associated contacts when the confronting surface of 25 the movable mold section 16 is spaced from but in close -7- , proximity to the confronting sur-face of -the ~ixed mold section 10, Upon such closure of the limit switch, an electric circuit is completed for the solenoid 32' of the valve 32 in the outlet line rom the pressure regulator 5 valve 34. The vaLve thus is moved to the position in which the outlet of the regulator valve communicates with the inlet passageways 30 in the movable section 16 of the mold. Air or other gas under regulated low pressure thus is delivered through the inlet passageways, A gas outlet passageway 40 is provided in the Eixed mold section 10 for association with each of the inlet passageways 30 provided in the movable mold section 16. Each outlet passageway terminates at the confronting surface of the fixed mold section in alignment with the confronting end of the associated inlet passageway, Accordingly, when the confronting surfaces of the mold sections are fully closed against each other, the associat-ed inlet ancl outlet passageways form a single, contlnuous, uninterrupted passageway, Thus, the gas under pressure delivered through the inlet passageway to the outlet passageway remains constant, On the other hand, ancl with particular reference to Fig, 2 of the drawing, if an obstacle or other impurity is present on one or both of the confronting surfaces of the mold sections, preventing complete closure of the ... .. . . . . . .

confronting surfaces, gas pressure from the inlet passage-way is allowed to escape to the resul-ting space between the confronting surfaces. Accordingly, the gas pressurè
in the outlet passageway 40 is dimin^'shed.
Each out]et passageway in ~he fLxed mold section is coupled to the inlet of a pressure switch 42 illustrated diagramatically in Fig. 1. The switch functions under the influence of a predetermined but adjustable gas pressure to extend and retract an electrical contact ~4 10 into and out o engagement with a pair of spaced electrical contacts 46.
The electrical contacts of each pressure s~itch are connected in series in an electric circuit of the solenoid 48' of a solenoid valve 48. An inlet port of the valve is connected through a conduit 50 to t~e output of an hydrauLic pump 52. The input of the pump communicates through a conduit 54 with the sump reservoir 56. The valve also includes an exhaust port which communicates throug~ conduit 58 with the reservoir. The valve also 20 includes an outlet port which is coupled through high pressure flexible hydraulic line 60 with a high pressure cylinder, In the pos-ition of the ~valve i-llustrated in Fig. 1, the outlet-port and exhaust port of the valve-25 are in communication, whereby hydraulic fluid pressure ~2?,9~7~
. g in the high pressure clamp cylinder 2~ is exhausted tothe reservoir. Upon activation of the solenoid 48' the valve 48 is shifted to the leEt to the alternate position in which the inlet port communicates with the outlet port to provide high pressure hydraulic fluid from the pump 52 to the high pressure clamp cylinder 24.
This effects clamping of the movable mold section 16 against the fixed mold section 10 under high pressure.
It is to be noted from Fig. 1 that the plurality 10 of pressure switches 42 are connected in series in the electric circuit of the valve solenoid 48'. Accordingly, it is required that all areas of the confronting surfaces of the mold sections be closed against each other in order to effect closing all of the pressure switches, before the solenoid valve 48 can be activated to apply high pressure to the clamp cylinder 24.
In the event an obs~acle or other impurity is present bet:ween the confronting surfaces of the mold sections, preventing complete closure of said conf~ronting surfaces, gas pressure is allowed to leak into the space between the confronting surfaces (Fig. 2). This prevents delivery of that predetermined gas pressure to the asso-ciated pressure switch 42. Since the pressure switch is adjusted to close the electrical contacts 46 only upon application to the switch of subs~tantially the same gas pressure exiting the regulator valve 34, it will be apparent that the drop in gas pressure resulting from the leakage of gas into the space between the conronting surfaces o~ the mold sections will provide the pressure ~switch with insufficient gas pressure to close the electrical contacts.
However, in the event the confronting surfaces of the mold sections are free of impurities, the low pressure cylinder 28 operates to move the confronting surfaces into mutual contact Accordingly, the associated inlet and outlet passageways are joined to form a continu-ous, uninterrupted, single passageway which serves ~o deLiver to the pressure switch 42 substantially the same gas pressure as set by the pressure regulator 34. As a result, the electrical contacts associated with each pressure switch are closed, completing the electric 15 circui.t of the solenoid 48' of the control valve 48 and mc)ving the latter to the alternate position from Fig. .L Accordingly, hydraulic fluid under high pressure is deLivered to the high pressure cylinder 24. The mold sections th.us are clamped together under high pressure, enabling the injection of synthetic plastic or other - appropriate molding material to the molds.
In the event it is preferred to provide operator control of closing the press mold, the pressure switches 42 may be.replaced with conventional gas pressure gauges.

~9~

Thus, unless the operator finds the gauge reading to be substantially the same as the pre-set regulated pressure, the high pressure clamp cylinder would not be actuated to clarnp the mold sections In the embodiment illustrated in Figs. 1 and 2, the inlet and outlet passageways 30 and 40, respectively, are shown to be formed directly in the mold sections 10 and 16, respectively. In Fig. 3 the inlet and outlet passageways are shown to be provided by inlet and outlet tubes 62 and 64, respectively, mounted outwardly of the side surfaces of the moid sections by means of brackets 66 secured to said mold sections. The outwardly projecting portion of each bracket is aperatured to receive the associated tube therethrough, and the latter is threaded 15 externally for the reception of a pair of adjustment nuts 68 located on opposite sides o the bracket. By appropriate rotation o:E the adjustment nuts, the terminal end of the inlet tube 62 may be adjusted to terminate at the plane 16' of the confronting surface o the movable mold section 20 16. In similar manner, the aligned terminal end of the outlet tube 64 may be adjusted to the plane 10' of the confronting surface of the fixed mold section 10. In this manner the aligned confronting openings have the same relationship as the confronting openings of the inlet and outlet passageways formed in the mold sections in Figs. 1 and 2.

9~

As previously mentioned, the present invention has particular utility in association with the mold sections of molding presses However, the invention also has utility in a wide range of industrial applications in which it is necessary to sense the very close position-ing of two pairs oi confronting surfaces before a next step in an operation is allowed to happen. Such industrial applications are to be found in the machine tool industry, the metal stamping industry and many others.
It wilL be apparent to those skilled in the art that varlous changes may be made in the size~ shape, type~
number and arrangement of parts and in the method steps described hereinbefore, without departing from the spirit of this invention and the scope of the appended claims.
Having now described my invention and the manner in which it may be used, I claim:

.

Claims

THE EMBODIMENTS OF THE INVENTION IN WHICH AN EXCLUSIVE PROPERTY OR
PRIVILEGE IS CLAIMED ARE DEFINED AS FOLLOWS:
1.
In combination with a pair of pressure members having confronting surfaces movable one into contact with the other first under low closing pressure and second under high clamping pressure, means for detecting solid impurities between the confronting surfaces of said pressure members, comprising:
a) gas pressure inlet passageway means associated with one of the pressure members and terminating in a plane representing the plane of the confronting surface of said one pressure member, b) gas pressure outlet passageway means associated with the other of the pressure members and terminating in a plane representing the plane of the confronting surface of said other pressure member, c) a source of gas under a predetermined pressure communicating with the inlet passageway means, d) a valve member between the source of gas and the inlet passageway means operable upon movement under low closing pressure of the confronting surfaces one to a predetermined spaced distance toward and in close proximity to the other to communicate the source of gas under pressure with the inlet passageway means, e) valve control means mounted on the pressure members for movement therewith toward and away from said predetermined spaced distance for controlling said operation of the valve member, and f) means connected to the outlet passageway means for detecting the presence of gas delivered thereto from the inlet passageway means, a drop in gas pressure indicating that said confronting surfaces are spaced apart.
2.
The combination of claim 1 wherein the valve member is a solenoid operated valve, the solenoid of which is in an electric circuit, and the valve control means comprises an electric switch in said electric circuit mounted on the pressure members arranged to be operated by movement of said confronting surfaces one to said predetermined spaced distance toward and in close proximity to the other to activate the solenoid to move the valve to communicate the source of gas under pressure with the inlet passageway means.
3.
The combination of claim 2 wherein one of the pressure members is movable relative to the other under high clamping pressure by a source of high hydraulic pressure controlled by an electric solenoid valve having an electric circuit, and the gas pressure detecting means includes an electric switch in said electric circuit operable by said predetermined gas pressure in the outlet passageway means to close said electric circuit and apply high hydraulic clamping pressure to move said one pressure member toward the other.
4.
The combination of claim 3 wherein the electric circuit for the solenoid valve controlling the high hydraulic pressure includes a plurality of electric switches arranged in series and each switch is associated with a separate pair of inlet and outlet passageway means located at spaced apart positions on the pair of pressure members.
5.
In combination with a pair of pressure members having confronting surfaces movable one toward and away from the other, means for detecting solid impurities between the confronting surfaces of said pressure members, comprising:
a) a gas pressure inlet tube mounted on and spaced outwardly of the outer side of one of the pressure members and terminating in a plane representing the plane of the confronting surface of said one pressure member, b) a gas pressure outlet tube mounted on and spaced outwardly of the outer side of the other pressure member and terminating in a plane representing the plane of the confronting surface of said other pressure member, the ends of the gas pressure inlet tube and outlet tube being in axial alignment, c) means connected to the inlet tube for supplying thereto a gas under a predetermined superatmospheric pressure, and d) means connected to the outlet tube for detecting the presence of gas delivered thereto from the inlet passageway means, a drop in gas pressure indicating that said confronting surfaces are spaced apart.
CA000459367A 1984-07-20 1984-07-20 Method and system for detecting solid obstacles between confronting surfaces of pressure plates Expired CA1229711A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA000459367A CA1229711A (en) 1984-07-20 1984-07-20 Method and system for detecting solid obstacles between confronting surfaces of pressure plates

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CA000459367A CA1229711A (en) 1984-07-20 1984-07-20 Method and system for detecting solid obstacles between confronting surfaces of pressure plates

Publications (1)

Publication Number Publication Date
CA1229711A true CA1229711A (en) 1987-12-01

Family

ID=4128359

Family Applications (1)

Application Number Title Priority Date Filing Date
CA000459367A Expired CA1229711A (en) 1984-07-20 1984-07-20 Method and system for detecting solid obstacles between confronting surfaces of pressure plates

Country Status (1)

Country Link
CA (1) CA1229711A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117817135A (en) * 2024-03-05 2024-04-05 鑫业诚智能装备(无锡)有限公司 Automatic laser marking device and marking method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117817135A (en) * 2024-03-05 2024-04-05 鑫业诚智能装备(无锡)有限公司 Automatic laser marking device and marking method
CN117817135B (en) * 2024-03-05 2024-05-31 鑫业诚智能装备(无锡)有限公司 Automatic laser marking device and marking method

Similar Documents

Publication Publication Date Title
US4473345A (en) System for detecting solid obstacles between confronting surfaces of pressure plates
HK1036952A1 (en) Automated molding technology for thermoplastic injection molding
EP0769336B1 (en) Method for bending with press brake and press brake for use therein
US4501291A (en) Relief valve arrangement
EP0192484B1 (en) Method of controlling the opening/closing of a mold in an injection molding machine
US4936126A (en) Press brake with a displacement sensor of electric signal output
US5478520A (en) Process for injection molding and apparatus therefor
JP4745473B2 (en) Continuous casting mold
EP0947305B1 (en) Injection mold clamp pressure optimization system and method
CA1229711A (en) Method and system for detecting solid obstacles between confronting surfaces of pressure plates
EP0386265A1 (en) Injection press composite molding machine
EP0425060A2 (en) Process for injection molding and apparatus therefor
EP0333856A1 (en) Toggle type die-fastening apparatus
GB2063516A (en) Control means for adjusting members
JPH0363927B2 (en)
JP2004136506A (en) Injection molding machine and its control method
US5639487A (en) Mold core-pin deflection transducer
JPH0522563B2 (en)
JPS61205111A (en) Compression molding method based on injection
JPS6137360A (en) Casting press
CA2464123A1 (en) Mould sealing unit for an injection moulding machine
JPH05131257A (en) Device for detecting abnormality in die clamping
JPS6240094B2 (en)
JP3350783B2 (en) Compressed core position detection device in injection compression device
JP3131490B2 (en) Method and apparatus for detecting indirect resin pressure of injection molding machine

Legal Events

Date Code Title Description
MKEX Expiry