CA1228578A - Shipping bag - Google Patents

Shipping bag

Info

Publication number
CA1228578A
CA1228578A CA000451106A CA451106A CA1228578A CA 1228578 A CA1228578 A CA 1228578A CA 000451106 A CA000451106 A CA 000451106A CA 451106 A CA451106 A CA 451106A CA 1228578 A CA1228578 A CA 1228578A
Authority
CA
Canada
Prior art keywords
bag
laminated
density polyethylene
low density
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
CA000451106A
Other languages
French (fr)
Inventor
Ray E. Harrison
Charles R. Murray
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Smurfit Stone Container Canada Inc
Original Assignee
At Plastics Inc.
Ray E. Harrison
Charles R. Murray
Smurfit-Stone Container Canada Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by At Plastics Inc., Ray E. Harrison, Charles R. Murray, Smurfit-Stone Container Canada Inc. filed Critical At Plastics Inc.
Priority to CA000451106A priority Critical patent/CA1228578A/en
Priority to US06/631,540 priority patent/US4576844A/en
Priority to AU33857/84A priority patent/AU571895B2/en
Priority to NZ209830A priority patent/NZ209830A/en
Priority to FI844198A priority patent/FI79275C/en
Priority to DE8484308013T priority patent/DE3472545D1/en
Priority to EP84308013A priority patent/EP0146270B1/en
Priority to DK550084A priority patent/DK158504C/en
Priority to BR8405963A priority patent/BR8405963A/en
Priority to US06/830,858 priority patent/US4681781A/en
Application granted granted Critical
Publication of CA1228578A publication Critical patent/CA1228578A/en
Expired legal-status Critical Current

Links

Landscapes

  • Bag Frames (AREA)

Abstract

Abstract Shipping Bag A thermoplastic heavy duty shipping bag having walls formed of cross-laminated outer plies of uni-axially oriented polyethylene and inner walls of low density polyethylene, heat sealed thereto. The bag provides improved puncture and snag resistance.

Description

I I

Sllippln~ sag - 1 C-I-L 671 This invention relates to thermoplastic shipping bags and, particularly, to said bags for heavy duty use having one or more plies of a uni-axially oriented cross-laminated polyethylene.
Thermoplastic shipping bags are an economical means for the packaging, transportation and storage of a wide variety of products in granular, bead, pellet or powder form. These bays may be either open ended, requiring separate provision for closing, or fitted with a valved opening. The most commonly used type of thermoplastic bags are manufactured from film made by blown film processes using low density polyethylene and rubber modified high density polyethylene resins and coextruded versions of these resins and allied copolymers. The film may be subsequently converted to bags by a variety of sealing techniques. Some of these simple thermoplastic films may be converted to bags by sewing but this has the disadvantage of badly weakening the films and introducing unwanted holes in the bag through which moisture or other contaminants can enter or allow environmental contaminants to exit. Other bags may be manufactured by the multiple folding and gluing of the bag end, but this has the serious disadvantage of requiring very expensive converting equipment, as well as the use of expensive and difficult to control two component glue systems.
cause of these drawbacks the use of heat sealing is the desired method of manufacture of thermoplastic bags.
At the present, heat sealed thermoplastic bags are commonly used for the packaging of low cost, non-hazardous products. Their use for higher cost and hazardous products, however, has been badly restricted because of the poor juncture and snag resistance of the bags compared with multi-wall paper or woven plastic backs of related composition structures.
It is known in the art that the required level ox 357~3
- 2 - C-I-L 671 puncture and snag resistance can be built into a thermoplastic film manufactured from linear ethylene polymers such as high density polyethylene or linear low density polyethylene, by uni-axially cold drawing such film and subsequently laminating two of these layers in such a manner that the draw-incluced orientation of one web typically is go to that of the other web. Thus, the uni-axially oriented sheets of polyethylene are laminated one to the other in such a manner -that the directions of orientation cross each other. The resulting composite laminated film, generally known as a cross-plastic, cross-laminate, or cross-laminate ply has high puncture and snag resistance compared to an equivalent gauge non-oriented blown film. Films of this type have thus been used for sewn and glued shipping bags for high value and hazardous materials.
however, these materials have one serious drawback in that they cannot reliably be heat sealed on conventional bag making machinery to provide bags for heavy duty use. this has seriously impeded their utility and acceptability in the market place notwithstanding the aforementioned advantages of heat sealed bags.
Surprisingly, we have now found that this unacceptable heat seal drawback can be overcome to produce an improved heavy duty shipping bag by interposing a double layer of low density polyethylene, which has not been cold drawn (i.e., has not been uni-axially oriented), between the two cross-laminated films to be heat sealed together to form the walls of the bag. We have surprisingly found that these layers of low density polyethylene in the heat seal area can be welded to each other and to the cross-laminated film or ply without heat build up sufficient to cause serious loss of cold draw-induced film strength. Thus, an acceptable bridge between the high strength cross laminated film and the Cody of the heat seal is formed. this is to be contrasted with :~2;~1357i~
- 3 - C-I-L 671 the fact that although two cross-laminated films in -the absence of interposed low density polyethylene film could be melted and fused together to produce welded bonds, the cross-laminated film immediately adjacent to the welded mass has its cold draw orientation destroyed by the heat from the seal with consequent loss of film strength in this margin area; whereby the seals so produced are weak and brittle in the margin area, rendering them unacceptable for use in Levi duty shipping bags.
It has thus now been found that a suitable thermoplastic shipping bag having improved puncture and snag resistance can now be reliably manufactured by heat sealing techniques using suitably modified conventional equipment.
Thus, in its simplest form the invention provides a thermoplastic shipping back having a front wall and a back wall, each wall comprising a cross-laminated ply comprising at least two sheets of uni-axially oriented polyethylene bonded together, said laminated plies heat sealed one to the other to provide a heat seal area and wherein interposed between said laminated plies in said heat seal area are two layers of low density polyethylene.
Each of the interposed layers of low density polyethylene may constitute simply a sheet of polyethylene laminated to a surface of a cross-laminated ply and being of sufficient thickness in the heat seal area to effect an acceptable bridge between the two laminated plies in this area to form a scam. flowerer, these interposed layers of low density polyethylene may extend beyond the heat seal area to on represent a laminated layer on the full surface of each of tune laminated plies. Thus, each of the cross laminate piles comprisinc3 the walls of the shipping back have a layer of low cleanest polyethylene laminated thereto. Such a structure, of course, aloes not cletrclc~ from the requirement that the laminated plies need only be heat sealed at designated heat ~2~7B
- 4 - C-I-L 571 seal areas. These areas constitute those parts of the jag, generally parts of the periphery, where the front and back walls are joined by heat sealing during manufacture.
Where the layers of low density polyethylene are represented as outer laminated sheets on the cross-laminated plies, each of -the sheets must be of sufficient thickness to effect an acceptable bridge between the two cross-laminated plies. We have found that a mere coating of low density polyethylene on each of the cross-laminated plies is not sufficient, and that a minimum thickness of 0.5 mix of low density polyethylene is required, preferably ~1.5 mill We have also found that each of the cross-laminated plies constituting the walls of the bag must have a laminated sweet of low density polyethylene to provide an acceptable heat seal for heavy duty bag use. For reasons hereinafter discussed, a single interposed layer of low density polyethylene, represented either as a laminated sheet or as a distinct ply, is not satisfactory. Thus, a double layer of polyethylene is required.
In a much preferred form of a bag according to the invention the interposed layers of low density polyethylene represent full and distinct piles constituting part of the walls of the bag.
accordingly, the invention further provides a bag as herein before described wherein each of said layers of low density polyethylene constitutes an inner ply of the bag.
In this preferred form of bag each of the walls comprising a cross-laminated ply has an interposing ply of low density polyethylene associated therewith. In this arrangement, each of the interposing plies may be considered as being an inner wall of the bag while the two cross-laminated plies considered as being the two outer walls.
Accordingly, the invention further provides a thermos plastic shipping bag comprising a front wall and a back wall -~Z~357~3 - s - C-I-L 671 heat sealed thereto each of said walls comprising a cross-laminated outer ply comprising at least two sheets of uni-axially oriented polyethylene bonded together and heat sealed thereto an inner wall formed of low density polyethylene.
When a bag containing a fluid product is dropped a major amount of the kinetic energy from the product is transmitted to the bag wall upon impact as the walls prevent the product lo) from flowing outward. This energy is absorbed by the bag walls stretching. The peak force build-up in the bag walls during this energy absorption is dependent on the elasticity of the bag walls. If the peak force build-up on impact is greater than the tensile yield strength of the bag walls the bag will be permanently stretched. When this peak force is greater than the ultimate tensile strength of the walls the bag will rupture at the weakest points. when a heat seal is introduced into a bag walLsthe ultimate tensile strength of the heat seal at its weakest section should be greater than the tensile yield strength of the bag walls to maximize the impact strength of the heat seal.
In uni-axially oriented cross-l~minated cold drawn films such as V~L~RO~ high density polyethylene the yield tensile strength of tile film is hither than the ultimate tensile strength of the plastic resin mass from. which it is made. When the film is heat sealed the orientation of the film is destroyed in the heat seal margin which results in a drastic reduction in both the yield tensile strength and the ultilnclte tensile strength.
I A laminated seal is understood in the art to be a seal wherein the joining interfaces of the films can be separated by the physical pulling apart of the bonded film without the destruction of the film and thus effecting a relatively clean separation. On the other hand a 'heat seal' in the art is understood to be a seal produced under a Trade Clark combination of pressure and heat, at or above the films' crystalline melting points, applied to the films in order that they are truly welded at their interfaces such that a clean separation cannot be effected by physical or chemical means.
We have surprisingly found that a heat seal as hereinbeore defined when integrally formed with an adjacent laminated seal has improved seal strength. Thus, by the term 'heat seal' as used in this specification and claims is meant a heat seal as herein before defined having an adjacent laminated seal integral therewith. the adjacent laminated seal has a length of at least 2 no.
We have found that i31 order to prevent stress from lo building up only in the heat sealed junction of the oriented and non-oriented fits these layers must be laminated sealed together adjacent the heat seal mass so that the stress is also taken up by the adjacent multi-ply laminate. It will be realized that film stretching is a two dimensional effect, i.e. if a film is stretched only in one direction it tends to neck down in the other if unrestrained. Therefore, if the inner non-oriented layer is totally amounted to the less elastic oriented outer layer it will take on the neck down characteristics of the total laminate. While each pair of oriented and non-oriented layers may be laminated one to the other optionally the full lenc3th of the bag walls, it is nonetheless necessary that laminations extend between the layers in close proximity to the heat seal. A length of only
5-10 mm for the adjacent laminated seal integral with the heat seal mass is the most desirable length. Further, we have found that a single layer of non-oriented polyethylene between the two oriented layers reduces the utility of this invention since that laminated section of the seal between ~Z2~7~3 the single ply and the double ply peels away under the constant pressure exerted when bags are loaded and stacked.
By the term "thermoplastic", as used heroin is meant S any -thermoplastics material capable of providing a film, ply or layer of suitable thickness and strength for a heavy duty skipping bag. Of particular use are thermoplastics of the polyethylene and polybutadiene family of polymers. As examples, high density and low density polyethylene and 1,2 polybutadienes may be mentioned.
The term "low density polyethylene" includes ethylene homopolymers and copolymers, such as the linear low density . . ._ . .

7~3 polyethylene, vinyl acetate copolymers, and blends thereof.
The term "inner wall" is mean-t not to be restricted solely to the actual or true inner wall of the bag which contacts product when the bag is filled. The term also includes the situation, ton example, where one or more plies of non-oriented low density polyethylene constitute plies in a multi-wall bag which plies may or may not be adjacent the true inner wall. Similarly, the term "outer ply" is meant lo not to be restricted solely to the most external ply.
Thus, it should be understood that the principles of the invention are applicable also to the fabrication of bags having walls individually comprising more than two plies.
Thus, the invention embraces bags having three plies, four plies, etc. The important and essential feature is that there must be either a laminated layer or at least one ply of non-oriented low density polyethylene constituting each of the inner surfaces ox the bag such thaw a eross-laminated ply of polyethylene does not contact another cross-laminated ply of polyethylene at a designated heat seal area of an inner surface such as to weaken a heat seal.
In preferred embodiments of the bags according to the invention as herein before and hereinafter defined the interposed layer of low density polyethylene represented either as a laminated sheet on the cross-laminated ply or as a distinct inner ply or inner wall, is formed of blown linear low density polyethylene. However, it is readily apparent that cast films are also suitable for this application.
Preferably each of the cross-laminated plies comprises at least two sheets of unwell oriented low density polyethylene, more preferably linear low density polyethylene and yet, more preferably, high density polyethylene.
Where the cross-laminated ply comprises sheets of uni-axially oriented high density polyethylene, the sheets may be bonded together, for example, with a layer of ~2~3578 non-oriented high density polyethylene. Where the laminated ply comprises sheets of uni-axially oriented low, or preferably, linear low density polyethylene, -these may be bonded together with non-oriented low density polyethylene or, preferably, linear low density polyethylene.
In one form, bags according to the invention comprise two inner linings or walls of non-oriented low density polyethylene film, heat sealed at their peripheries to plies Lo of cross-laminated polyethylene film. The low density polyethylene inner lining or wall may, however, be also heat sealed to the cross-laminated ply intermittent over other parts of their respective facing surfaces, provided that there is not sufficient heat build-up to cause serious 15 loss of film strength in the cross-laminated ply. Generally, the inner wall and cross-laminated outer ply are heat sealed at and around all, or part of, their peripheries; these being the principal heat seal areas. The arrangement and positions of the heat seal areas will depend on the type of 20 shipping bag, and it is well within the skill ox the rut for such areas to be identified.
While it is generally accepted that all polyethylene film is generally uni-axially oriented to some degree, the term "uni-axially oriented" when used with reference to 25 polyethylene in this specification and claims means polyethylene film that has been blown and cold drawn to at least a 2.5-fold extent, preferably to a 4-fold extent, but also up to a 6-fold extent. The orienting and cross-laminating of the films may be carried out according to 30 well-known methods.
A typical uni-axially oriented cross-laminated ply may be made by extrudinc3 respective tubular haggle density ~22~3S78 polyethylene or low density polyethylene film and cold drawing this tubing down by a factor of four times in -the machine direction to produce film with extremely high MD
tensile and To tear properties. The tubing is then subsequently spirally split into sheeting whereby the film orientation is typically at an angle of 45~ to the new web machine direction. two sheets of this sheeting may then be extrusion laminated with a thin layer of non-oriented hlc3h density polyethylene or low density polyethylene as is appropriate.
The cold drawn cross-laminated film may be made from low density and high density polyethylene resins and blends thereof, and can be used in a variety of thicknesses. One particular blend of use in the practice of the invention comprises linear low density and high density polyethylene in the ratio of 9:1. Increasing the relative amount of high density polyethylene in such a blend enhances the puncture resistance and tensile strength of the film.
It is not necessary that all plies of the bag be made of the same materials as those of use in the practice of the invention. with the ability to introduce compatible but dissimilar materials, specially designed awakes can ye produced with plies allowing the packaging of fine powders, oil-bear.inc~
materials, materials that are hot at the point of packaging, to Thus, the bags according to the invention may also comprise one or more plies formed of other thermoplastic compatible packaging materials without detracting from the principles of the invention.
lo Kit will be understood that the scope of the invention as claimed also embraces those therrlloplastic backs wherein only a part of -the manufactured bag incorporates the important and essential feature of the invention as herein before set forth and wherein other parts of the bag are joined in an alternative manner, for example, by hot melt or adhesive bonding. The arrangement and positions of those other parts joined in an alternative manner may be readily selected by the skilled man.
A two-ply bag is the simplest embodiment of this invention. However, in some instances it is advantageous to have more than two inner plies of non-oriented film constituting the inner layers of the bag, i.e., between the front and back cross-laminated outer sides of the jag. An example of this would be a bag of the simplest embodiment with an additional thin true inner ply of linear low density polyethylene in the form of a fine filter mesh to allow air to be filtered from powdered products, as described in our cop ending Canadian Application Serial No. 438,484, filed October 6, 1983.
In other instances it may be preferred Jo have additional plies of film outermost of the cross-laminatecl ply.
Such an outer ply could give the benefit resulting from introducing blown low density polyethylene film between the gusted surfaces of cross-laminated plies to give -the same improvements in seal quality as created on the innermost parts of the bag. The squarecl-off appearance of the final packacJe resulting from this gusting improves its performance for poulticing and stacking.
on additional benefit to be gained from such an outer layer is tilt the surface can be suitably roughened my the addition of high molecular weicJht granules to the film durinc3 Him extrusion; thus, imparting additional improved hanclliny properties to the bag. As well, the inner surface of this outer ply can be printed and the resulting message thus I locked between plies to escape abrasion and distortion during ~2Z13~7~3 the handling of filled packages. It can readily be seen that the utility of -this outer ply can be expanded by usinc3 a laminate or coextrusion film to impart special properties to the bag, i.e., oil barrier or grease resistant layers.
The utility of this invention thus lies in the fact that by the introduction of a double layer of a non cold-drawn low density polyethylene film between the mating surfaces of two uni-axially oriented crisply polyethylene Ellrns both open top and valved top type heavy duty shipping bags, suitable for the packaging of expensive or hazardous materials, can be reliably manufactured using commonly available heat seal bag making equipment The resulting heat seals induced by the technique according to the invention have been found to have the strength required for heavy-duty shipping bags.
Accordingly, in a further feature the invention provides a thermoplastic shipping bag ox the open-top type comprisinc3 a front side and a back side characterized in that each of said front side and said back side comprises a cross-laminated outer ply comprising at least two sheets of uni-axially oriented polyethylene bonded together, and heat sealed thereto, an inner wall wormed of low density polyethylene.
An open-top shipping bay according to the invention may be made by feeding a web of the uni-axially oriented cross-laminated film in conjunction with an inner web of blown low density polyethylene through commercial side-weld, heat sealed or back scanned and bottom heat sealed bag maying ecluipment-One particularly useful type of thermoplastics shippinc3bag is that Nina as a valved bag. One SEIKO embodiment is described in our United States Patent No. 3,833,166. These bags possess the important commercial advantage of being easily filled throucJh a valve structure with the sel~-closing Sue of this valve structure after filling.
Accordingly, in a further feature the invention provides a thermoplastic shipping bag of the valved bag type comprising a front side and a back side joined together around -the entire periphery of the bag and a filling aperture characterized in that each of said front side and said back side comprises a cross-laminated outer ply comprising at least two sheets of uni-axially oriented polyethylene bonded together, and heat sealed thereto, an inner wall formed of low density polyethylene.
In a more preferred feature the invention provides a thermoplastic valved bay of the type comprising a front side and a back side joined together around -the entire periphery lo of the bag, said front side consisting of a first panel and a second panel, of greater combined width than the width of said back side, said first panel at least partially overlapping said second panel throughout the length of the bag and said panels in their common axe being joined together along a line substantially parallel with and at a distance from one end of the bag, thus forming a tubular self-closing filling sleeve having inner and outer walls and extending transversely of the bag adjacent to said one end thereof, with said first panel forming -the outer wall and said second panel forming the inner wall of said filling sleeve, and being also joined together along at least one line extending from said first-mentioned line substantially to the opposite end of the bag, said second panel consisting ox at Least two plies that are non-coextensive with each other so that at least the inner end portion of the inner wall of said filling sleeve is formed of a number of plies that is less than the total number of plies in said second panel, characterized in that each of said frorlt side and said back stale comprises a cr4ss-laminated outer ply comprising at least two sheets of uni-axially oriented polyethylene bonder I

together, and heat sealed thereto, an inner wall formed of low density polyethylene.
In a further feature the invention provides a thermos plastic material suitably for use in a heavy duty shipping bay which Material comprises a laminate of at least two sheets of uni-axially oriented polyethylene bonded together, and a sheet of low density polyethylene of at least 0.5 mix thickness bonded thereto.
Preferably the sheet of low density polyethylene is at least 1.5 mix thick and the uni-axially oriented polyethylene is low density polyethylene, more preferably linear low density polyethylene and yet more preferably high density polyethylene.
Several embodiments of this invention will now be more particularly described by way of example only with reference to the accompanying drawings, in which:
Figure 1 it a front elevation Al view of an open-top bag according to the invention;
Figure 2 is a sectional view along line II-II of Figure l;
Figure 3 is a front elevation Al view of a valved bag according to the invention;
Figure 4 is a sectional view along the line IV-IV of Figure 3;
Figure 5 is a diagrammatic view of a section through a heat seal as herein before defined of use in the practice of the invention;
Flyer 6 us a cross-sectional view of a preferrer laminate of a thermoplastic material according to the invention, Figures 1 and 2 show a generally rectangular two-ply pillow-type bag 1 having an inner wall 2 formed of blown linear low density polyethylene film I mill manufactured fl-om'~045"1inear low density polyethylene resin tow Chemical Co.), and an outer ply 3 ~3.5 mill of uni-axially oriented cross-laminated linear low density polyethylene film, ~;~'2~57~3 commercially available under the trade mark "VA~ERON"*.
The bag 1 has thus a two-ply back wall 4, and à two-ply front wall 5 made up of first and second partially overlapping panels 6 and 7. The outer ply 3 of back wall 4 is continuous with the outer wall 3 of front wall 5 except where separated and joined together by heat sealing with layer 2 in the overlapping panels 6 and 7. Thus, the walls 4 and 5 are integral and form a two-ply tube. One end of the tube 8 is heat sealed to form a simple two-ply open-top bag.
The bag was made by feeding a web of 37" film 3 into a longitudinal folding frame with a web of film 2 and foxing a two-ply tube 18" wide with a 1" overlapping portion. The four plies of the overlapping area were then heat sealed longitudinally to consolidate the two-ply tubing which was then passed to a transverse heat seal unit which made the bottom seal 8. A 26" length of tube with the heat seal present was cut from the web by a guillotine to form the open top bag 1.
To test the strength of the heat seals, the bag 1 was filled with 5C pounds of granular salt, heat sealed at its open end by a "Dough Betty sealer, and drop tested on each side, edge and butt from a height of 10 feet. There was no rupture of any film or seal The open top of the bag is generally heat sealed after filling with product to produce an airtight and watertight package. Because it is extremely difficult to exclude all air from the filled package prior to the heat sealing operation, it it preferable to perforate the walls of the bags with pinholes typically 0.025" in diameter to facilitate air release, the number of holes required depending on the amount of air left in the bag and the type of product being packaged. In those cases where it is critical that the package retains its maximum value for air tightness and moisture protection, the perforation holes in the inner and outer plies are offset typically by I to * trade mark A

I

create an indirect path to air product mixes during the venting period.
Although the inner ply 2 of the bag is described as a single ply of sheeting it can be readily appreciated that a two-ply tube of 1.5 mix could also be used instead. Indeed ions tubing may be less expensive to manufacture the tube could be a preferred option. Again, although the outer wall is described as a linear low density polyethylene cross-laminated film, high density polyethylene cross-laminated film would be the preferred embodiment for applications where extra heat resistance is required of -the package.
Egress 3 and 4 show a generally rectangular three-ply pillow type bag lo having a front side 11 and a back side 12 joined together around the entire periphery of the bag.
Front side if consists of an inner wall 13 and an outer wall 14 formed of blown linear low density polyethylene (3 mix), and a middle wall 15 of uni-axially oriented cross-laminated linear low density polyethylene illume (3.5 molehill' Dow Chemical Carson. sack side 12 is of an identical construction.
Front side if has partially overlapping panels 16 and 17 heat sealed together loncJitudinally to form a three-ply tube open only to form a self-closing filling sleeve 18~ The tube is 'neat sealed at both ends lo to form a complete valved back of the type illustrated in our tJnited States Patent Noah. In the embodiment shown the bag has its lateral edges 20 tucked in and heat sealed in the longitudinal region 21 through twelve layers of film.
to will be noted that in all the heat seal arias the uni-axially oriented cross-laminat~d film is never sealed to itself but always has a double layer of non-oriented film between mating sell surfaces oven in the twelveh-ply heat seal ureas 19.
It is, of killers, desirable to have this tuckèd~in ~Z~57~3 multiple seal area to give the filled bag a squared configuration.
Again, it will be appreciated that tubing could be substituted for sheeting in layers 13 and 14.
Besides the advantage of allowing the bag to be gusset sealed, the outer ply can be reverse printed to jock the print between plies I and 15 to protect it from abrasion in transit. Additionally, a small amount (0.5~) of 40 mesh high Lo molecular wicket high density polyethylene resin can be incorporated in layer 14 during extrusion to produce a pebbled surface to confer excellent handling properties on the filled bags.
Figure 5 shows a polyethylene heat seal in a bag loaded with product wherein the seal is under tension due to the product acting in a manner tending to separate the plies.
The figure shows a polyethylene heat seal mass 50 resulting from the fusion of part of the two oriented high density polyethylene films 51 and the two non-oriented linear low density polyethylene films 52. Integral with heat seal mass 50 at heat seal margin 54 are laminated seals 54, extending along each of the two adjacent plies 51 and 52. There is a relatively minor lamination seal 55 between the two plies 52.
The presence of the laminated seal integral with the heat seal can be accomplished by the application of a gradient heat seal bar unit to the films whereby the lamination is effected at the same time as the heat seal.
Alternatively, it can be accomplished in a two stuck operation wherein a laminated seal is first made, typically of a 1"
width, by joining the plies at a temperature lower than the malting point of the cross laminated polyethylene (to prevent destruction of the orientation), typically, 240F.
Subsequently, a side weld heat seal is made through the laminated section by the application of temperature and So pressure.
Figure 6 shows a laminate 110 of oriented high density polyethylene sheets 111 and 112, each of 1.5 mix thickness, extrusion laminated together in which -the direction of orientation in the two sheets form a right angle to each other. Laminated sealed to laminate 110 by extrusion lamination is a linear low density polyethylene sheet 113, (0.25 mix).
It is preferred that the low density polyethylene in contact with the cross laminated ply has as low a melting joint as possible and be as fluid as possible when melted.
'Issue characteristics are generally achieved using low density polyethylene polymers with relatively low tensile yield strength. It is, therefore, desirable that the inner layer of the two-ply structure be a coextrusion with only a thin layer, typically 0.25 mix thick, of low melt temperature, high melt index film on the layer in direct contact with the cross laminated film.
We have found that the thickness of the inner layers of low density polyethylene required to produce an acceptable heat seal will depend greatly on the elasticity of the cross amount film to be used, i.e. the less elastic the cross laminate film the thicker the low density polyethylene film must be. Relative thicknesses of all the polyethylene layers can be readily determined by the skilled man

Claims (4)

The embodiments of the invention in which an exclusive property or privilege is claimed are defined as follows:
1. A thermoplastic shipping bag having a front wall and a back wall, each wall comprising a cross-laminated ply comprising at least two sheets of uni-axially oriented polyethylene bonded together; said laminated plies heat sealed one to the other to provide a heat seal area and wherein interposed between said laminated plies in said heat seal area are two layers of low density polyethylene constituting distinct inner plies of the bag, said low density polyethylene plies being heat sealed together and serving as a bridge to permit the effective heat sealing of the laminated plies to each other without significant loss of draw-induced film strength in and around the heat sealed area.
2. A bag as claimed in Claim 1 wherein said cross-laminated ply comprises at least two sheets of uni-axially oriented high density polyethylene bonded together.
3. A bag as claimed in Claim 1 wherein said cross-laminated ply comprises at least two sheets of uni-axially oriented low density polyethylene bonded together.
4. A bag as claimed in Claim 1 wherein said cross-laminated ply comprises at least two sheets of uni-axially oriented linear low density polyethylene bonded together.
CA000451106A 1983-11-28 1984-04-02 Shipping bag Expired CA1228578A (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
CA000451106A CA1228578A (en) 1984-04-02 1984-04-02 Shipping bag
US06/631,540 US4576844A (en) 1983-11-28 1984-07-16 Shipping bag
AU33857/84A AU571895B2 (en) 1983-11-28 1984-10-05 Shipping bag
NZ209830A NZ209830A (en) 1983-11-28 1984-10-09 Thermoplastics bag: double layer of low density polyethylene in heat sealed areas
FI844198A FI79275C (en) 1983-11-28 1984-10-25 Transportation bag.
DE8484308013T DE3472545D1 (en) 1983-11-28 1984-11-20 Shipping bag
EP84308013A EP0146270B1 (en) 1983-11-28 1984-11-20 Shipping bag
DK550084A DK158504C (en) 1983-11-28 1984-11-20 SHIPPING BAG, ISAIR FOR APPLICATIONS WITH HARD Wear
BR8405963A BR8405963A (en) 1983-11-28 1984-11-23 THERMOPLASTIC BAG FOR PACKAGING AND THERMOPLASTIC MATERIAL SUITABLE FOR USE IN THE SAME
US06/830,858 US4681781A (en) 1983-11-28 1986-02-19 Shipping bag

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CA000451106A CA1228578A (en) 1984-04-02 1984-04-02 Shipping bag

Publications (1)

Publication Number Publication Date
CA1228578A true CA1228578A (en) 1987-10-27

Family

ID=4127561

Family Applications (1)

Application Number Title Priority Date Filing Date
CA000451106A Expired CA1228578A (en) 1983-11-28 1984-04-02 Shipping bag

Country Status (1)

Country Link
CA (1) CA1228578A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5288531A (en) * 1991-08-09 1994-02-22 The Dow Chemical Company Pouch for packaging flowable materials

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5288531A (en) * 1991-08-09 1994-02-22 The Dow Chemical Company Pouch for packaging flowable materials
US5364486A (en) * 1991-08-09 1994-11-15 The Dow Chemical Company Pouch for packaging flowable materials

Similar Documents

Publication Publication Date Title
US4576844A (en) Shipping bag
EP0260791B1 (en) Thermoplastic sack
US5823683A (en) Self-seaming produce bag
EP1017592B1 (en) Open mesh bag and process for making it
CA2050737C (en) Improved laminated multilayer film composite and heat sealed bag made therefrom
EP0184362B1 (en) Thermoplastic sack
US9758279B2 (en) Side-gusset bag made of a plastic fabric composite, and method for the production thereof
JPH0249629B2 (en)
PL178877B1 (en) Polymeric fibre fabric bag in particular that of polyolefin fibre fabric and method of making same
CA2775805C (en) High strength packages and packaging materials
US11667439B2 (en) Synthetic mesh reinforced multilayer material and bags made therefrom
WO2008045712A2 (en) Package with folded handle and method for making same
CA1228578A (en) Shipping bag
JP2933667B2 (en) Composite sheet for filling and packaging
US20050069231A1 (en) Box bottom composite sack
JP2501670B2 (en) Multi-layer stretch tape, woven fabric for flexible container and processed fabric for manufacturing flexible container
CA3068309C (en) Bag with multi-layer seam structure
WO2010122579A1 (en) Polymeric tape woven fabric bag and method for making thereto
US20120093441A1 (en) Bag with handle and method of manufacture thereof
CA2114658A1 (en) Thermoplastic film and sacks made therefrom
WO2022251682A1 (en) Low temperature sealable bag
JPH03240532A (en) Bag for wrapping skimmilk powder

Legal Events

Date Code Title Description
MKEX Expiry