CA1216516A - Method for scale removal and scale inhibition in a well penetrating a subterranean formation - Google Patents

Method for scale removal and scale inhibition in a well penetrating a subterranean formation

Info

Publication number
CA1216516A
CA1216516A CA000460562A CA460562A CA1216516A CA 1216516 A CA1216516 A CA 1216516A CA 000460562 A CA000460562 A CA 000460562A CA 460562 A CA460562 A CA 460562A CA 1216516 A CA1216516 A CA 1216516A
Authority
CA
Canada
Prior art keywords
formation
well
scale
improvement
scale inhibitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
CA000460562A
Other languages
French (fr)
Inventor
Kevin O. Meyers
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Atlantic Richfield Co
Original Assignee
Atlantic Richfield Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Atlantic Richfield Co filed Critical Atlantic Richfield Co
Application granted granted Critical
Publication of CA1216516A publication Critical patent/CA1216516A/en
Expired legal-status Critical Current

Links

Abstract

ABSTRACT

Step declines in the production rate from a well following an acid treatment, and a scale inhibitor treatment are reversed by use of an EDTA treatment.

Description

~65~

AN IMPROVED METHOD FOR SCALE REMOVAL AND SCALE INHIBITIO~
IN A WELL PENETRATING A SUBTERRANEAN FORMATION

This invention relates to the removal of precipitates of multi valent cations and scale inhibitor compounds.
In the production of fluids from subterranean formations through a well penetrating the formation, it is necessary that the well and the formation around the well be kept free of materials which would plug either the formation or the well. Some such plugging materials may comprise drilling fluids, cement filtrates and the like used during the drilling and completion of the well.
Methods are well known to the art for preventing the entry of these materials into the formation or recovering them from the formation or both so that the formation is not plugged~
After completion of the well and the initiation of the production of fluids from the well plugging or partial plugging o~
the well, perforations through the well casing or the formation can result from the formation of scale as fluids are produced from the formation. Such scale formation can occur as a result of incompatible fluids in the well, i.e, fluids which when mixed produce precipitates, or from the formation fluids during production.
Since the use of incompatible fluids can usually be avoided, the problem of greatest concern is the formation of precipitates from the formation fluids during production One precipitate which is frequently encountered as scale is calcium carbonate~
Calcium carbonate is readily formed in such environments by reactions such as (HC03 ) + Ca -~ CaC03 ~ H20 ~ C2~
Such reactions are favored by reductions in the pressllre on the formation fluids. Accordingly, in formation Eluids which contain soluble carbonates and/or bicarbonates and calcium or other multi-valent cations such as magnesium, barium, iron and the like which form relatively insoluble carbonate compounds, precipitates tend ~2:~i5~

to form at the point at which the pressure in the formation fluids is reduced. Such points tend to be in the formation adjacent the well or in perforations in the well casing. In either instance the production of fluids from the formation is restricted as such scale forms.
In the production of fluids from Eormations which are suscep-tible to such scale forma-tion, the production of fluids rom such wells tends to decline steadily as the scale forms~ To restore the production rates from such wells, various methods have been used.
Such wells can he re-perforated by opening new perforations through the well casings and exposing new formation surfaces.
Such methods can be used to restore production rates, but are subject to plugging by the formation of additional scale. These methods are relatively expensive and are of limited value in form ations where rapid scale formation occurs.
~ cid treatments have been used effectively for the removal of such scale. while the use of acid treatments is effective in many instances it does require the removal of the well from production Eor the acid treatment process which is disadvantageous especially le the formation is subject to rapid scale formation. Further, the production rate begins to decline after tha treatment as more scale is formed so that during much of its producing life the well is producing fluids at a reduced rate.
EDTA, ethylenediamine tetraacetic acid salts have been used to remove such scale. The EDTA is generally used in aqueous solution to contact the zone of interest to dissolve such scale.
The process is similar to that used with acid treatments and suffers many of the same disadvantages.
To overcome the disadvantages of reduced production rates scale inhibitors have been used. Such scale inhibitors are known ~2:~5~
to the art as discussed in Water-Fo ~l 6 ~ , Jack C.
Cowan and Donald J~ Weintritt, Gulf Publishing Company, Hous-ton, Texas 1976, Chapter 7, "Scale and Deposit Prevention and Control". Scale inhibitors such as phosphate esters, polyac-rylamides and phosphonic acid derlvatives have been used for such purposes~ Such scale inhibitors may be used by: (a) acid cleaning the well, well perforations and the formation surround-ing the well, (b3 removing the cleaning fluids and (c) inject-ing the scale inhibitor into the formation. The scale inhibi-tor is then retained in the formation and released slowly with the produced fluids. The presence of small amounts of scale inhibitor in the produced brine (less than 50 ppm) is effective to inhibit the formation of scale in the well, well perfora-tions and in the formation surrounding the well.
In some instances it has been found that a step de-cline in production rates from such wells occurred immediately after the scale inhibitor treatment. The step decline is typ~
ically followed by a long period of stable production rates.
Since this step decline in production rates is undesirable, but the stable production rates resulting from the use of scale inhibitors is desirable, a continuing effort has been directed to the development of a method by which such losses in the production rate can be avoided when scale inhibitors are used.
It has now been found that such step declines can be reversed and the initial production rates after well clean-ing with acid restored by an improvement comprising: treating the well with EDTA.
The Figure is a schematic diagram of a cased well penetrating a subterranean formation.

-3~

5~

In the Figure a subterranean formation 10 is shown beneath an overburden 12. A wellbore 14 pene~rates formation 1~
from the surface 160 Wellbore lA includes a casing 18 cemented in place by cement 20 from surface 16 through formation 10~ Wellbore 1~ as shown has been completed to a depth greater than the bottom of formation 10, but has not been cased to its full dep~h. Casing 18 has bean perforated in ~he zone of formation 10 by a plurality of perforations 26 which extend through casing 18 and cement 20 and via extensions 28 into forma~ion 10. Such perforations permit the flow of formation fluids into casing 18. A tubing 22 is positioned in casing 18.
In practice, after wellbore 14 has been drilled and completed as shown, production occurs from formation 10 by the flow of fluids through perforations 26 into the wellbore with the fluids then being recovered through casing 22 if the formation pressure is sufficient. A variety of other well-known techniques can be used for the recovery of fluids from such formations such as pumping, gas lift, and the like. Further, in some instances, the casing may not extend through formation 10 but rather gravel packs, screens and the like may be used or the formation may be produced open hole, etc., as known to the art~ The present invention is effective with such variations. In the production of fluids from formation 10 in many instances scale tends to be deposited in zones where the formation pressure is reduced as the fluids flow into the wellbore. Such zones typically are the perforations 26 or the formation in an area 30 adjacent the wellbore~ Since these are zones of flow constriction the formation of scale in these zones results in a reduction in the production of fluid from formation 10. ~s discussed, such deposits, in many instances, can be removed 3~ by mineral acid treatments. The acid treatment can he accomplished by pumping a material which is desirably immiscible with the acid through tubing 22 and into the annulus of casing 1~ and thereafter pumping a quantity of acid through tubing 22 into the vicinity of perforations ~. The mineral acid i5 used as an aqueous solution in an amount effecti~e to remove scale from the well casing 18, casing perforation 26 and the portions of formation 10 to be contacted;
and, is maintained in contact with the well casing 18, casing perforations 26 and the contacted portions of formation 10 for an effective time to remove the scale. Contact times from about 0 (i.e., the acid is pumped into and immediately produced from the well) to about 8 hours are typical. The acid is normally removed from the well by the resumption of production of fluids from the well.
In many instances, such mineral acid solutions comprise a~ueous solutions of hydrochloric acid or nitric acid with hydrochloric acid being greatly preferred. The solution may also contain a corrosion inhibitor to prevent reaction of the acid with the casing, tubing, and other metallic components of the well. Typical acid concentrations are from about to about 5 to about 28% acid in aqueous solution. The use of such acid treatments is well known to those skilled in the art. In many instances~ the acid treatment is used to treat the wellbore and the perforations and zone 30 adjacent wellbore 1~ and is controlled to avoid pushing any substan-tial amount of the acid into the formation. In other instances, it may be desirable to treat the formation with the acid and if such is the case, then pressure i5 used to force the acid into the formation. If the well is not cased through the ~one of interest the formation is similarly treated.
When EDTA treatments are used r a similar procedure is followed.
When scale inhibitors are used, the scale înhibitor is pumped into the formation a substantial distance shown as zone 32 in the Figure. The scale inhibitor i~ at least partially retained in the formation ancl slowly released into the produced ~luids as prodlJction o~ Eluids Erom the formation occurs. Scale inhibitors are not eEEective to remove scale, but are ef~ective to prevent futur~ sca1e formation.
[n some instances, it has been observed that after an acid treatmerlt, followed by a suitable interval of production to remove acidic componerlts from the formation and we]l~ore, upon completion of a scale inhibitor injection, a step decline ln the production rate of the well occurs immediately ~ith the production rate falling to a lower rate than the production rate aEter acidizing which is then relatlvely stable at the lower pro-duction rate over relativ~ly long period~ of time. While the stable production rate is highly desirable, it is undesirable that the ~tahle rate be at the lower level.
It has now been found that much of the step decline can be reversed by the use of a EDTA contacting step. The EDTA is placod in contact with perforations 26 and/or formation 10 as a aqueou~ solutiorl by a process similar to that u~ed for the acid treatm~nt. The EDTA is injected as an aqueous solution in an amount and Eor a time eE~ective ~o dissolve precipitates of multi-valent cations and scale inhibitor. Typical EDTA concentrations are Erom about 0.1 to about 0.8 pounds per gallon of solution and typically contact times will vary Erom about 0 (i.e., the EDTA i5 pumpe~ into and immediately produced from the well) to about 3 hours. The volume of .solution u~ed will vary widely ba~ed upon the thickness of ~ormation 10 and other ~actors known to the art.
volumes ~rom about 5 to about ~0 gallons per foot of perforated xone or profluction zons are typical~ Larger volumes are required if the ED'rA is to fill 20ne 32 or the like. EDT~ has been found to restore the step decllne in production rates~

Various scale inhibitors are ~now to those skilled in the art, such as phosphate esters, polyacrylamides, phosphonic acid derivatives and the like.
While Applicant does not wish to be bound by any particular theory, it appears that when scale inhibitors are used, these materials tend -to precipitate in the presence of multi-valent cations such as calcium, magnesium, barium, iron and the like~
These precipitates of multi-valent cations and scale inhibitor are relatively insoluble in the formation environment and are also relatively insoluble in acids. As a result, such materials are not removed by acid treatments and are very slowly removed by the continued production of fluids from the formation. It has now been found that the use of EDTA is effective to remove these precipitates. It is believed that the EDTA operates to remove these precipitates by reaction with the multi-valent cations thereby removing them from the precipitates, thus restoring the solubility of the scale inhibitors. In any event the use of EDTA has been found to be extremely effective in restoring the procluctivity rates in such wells~
The precipitates may occur at substantial distances from the wellbore since the scale inhibitor is injected a substantial distance into the wellbore as shown by zone 32 in -the Figure. It may be necessary in some instances if plugging occurs in the forma-tion, to use EDT~ injection into the formation to remove the precipi-tates. The formation of precipitates in the formation may not be a problem if the formation is not plugged since the presence of these materials in the ~ormation for very slow release is not undesirable. If however, plugging occurs, the use of EDTA injection to substantially the same distance as the scale inhibitor can be ~2~6~

used to remove the precipitates. In most instances it is believed contacting with EDTA will be by substantially the same procedure used for the acid wash since the precipitates normally consti~ute a problem in the perforations and/or zone 30 adjacent the wellboreO
Having thus described tha invsntion by reference to of its preferred embodiments, it is noted that the embodiments described are illustrative rather than limiting in nature and that many variations and modiEications are possible within the scope of the present invention. Many such variations and modi-fications may be considered ohvious and desirable by those skilled in the art upon a review of the foregoing description of preferred embodiments.

Claims (11)

The embodiments of the invention in which an exclusive property or privilege is claimed are defined as follows:
1. In a method for removing scale and inhibiting the formation of scale in a well penetrating a subterranean formation for the production of fluids from said formation, said method including; cleaning said well by injecting an aqueous solution of a suitable mineral acid into said well in an amount and for a time effective to remove scale from said well and thereafter injecting a scale inhibitor into said formation about said well through said well so that said scale inhibitor is thereafter slowly released from said formation to inhibit the formation of scale, an improve-ment comprising: injecting an aqueous solution of a chelating agent into said well in an amount and for a time effective to remove precipitates of multi-valent cations and said scale inhibitor.
2. The improvement of Claim 1 wherein said scale comprises calcium carbonate.
3. The improvement of Claim 2 wherein said mineral acid is hydrochloric acid.
4. The improvement of Claim 2 wherein said scale inhibitor comprises a phosphonic acid derivative.
5. The improvement of Claim 2 wherein said scale inhibitor comprises a phosphate ester.
6. The improvement of Claim 2 wherein said scale inhibitor comprises polyacrylamides.
7. The improvement of Claim 2 wherein said multi-valent cations comprise ions of calcium, magnesium, barium and iron.
8. The improvement of Claim 2 wherein said chelating agent is EDTA.
9. The improvement of Claim 2 wherein said aqueous solution of said chelating agent is injected after a step decline in the production of fluids from said well.
10. The improvement of Claim 2 wherein said injection of said aqueous solution of said chelating agent is controlled to contact the wellbore, wellbore perforations and portions of said formation near said well.
11. The improvement of Claim 8 wherein said aqueous solution of said chelating agent is controlled to contact the wellbore, wellbore perforations and said formation about said well into which said scale inhibitor was injected.
CA000460562A 1983-10-14 1984-08-08 Method for scale removal and scale inhibition in a well penetrating a subterranean formation Expired CA1216516A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US52424983A 1983-10-14 1983-10-14
US524,249 1983-10-14

Publications (1)

Publication Number Publication Date
CA1216516A true CA1216516A (en) 1987-01-13

Family

ID=24088410

Family Applications (1)

Application Number Title Priority Date Filing Date
CA000460562A Expired CA1216516A (en) 1983-10-14 1984-08-08 Method for scale removal and scale inhibition in a well penetrating a subterranean formation

Country Status (1)

Country Link
CA (1) CA1216516A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021134120A1 (en) * 2019-12-30 2021-07-08 Petróleo Brasileiro S.A. - Petrobras Method for the combined application of scale remover and inhibitor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021134120A1 (en) * 2019-12-30 2021-07-08 Petróleo Brasileiro S.A. - Petrobras Method for the combined application of scale remover and inhibitor
CN115605559A (en) * 2019-12-30 2023-01-13 巴西石油公司(Br) Method for combined use of scale remover and scale inhibitor
US11952534B2 (en) 2019-12-30 2024-04-09 Petróbras Brasileiro S. A.—Petrobras Method for the combined application of scale remover and inhibitor

Similar Documents

Publication Publication Date Title
US4485874A (en) Method for scale removal and scale inhibition in a well penetrating a subterranean formation
US4883124A (en) Method of enhancing hydrocarbon production in a horizontal wellbore in a carbonate formation
US4602683A (en) Method of inhibiting scale in wells
US4495996A (en) Method for scale removal and scale inhibition in a well penetrating a subterranean formation
EP1278939B1 (en) Well treatment fluids comprising chelating agents
US4681164A (en) Method of treating wells with aqueous foam
Vetter Oilfield scale---can we handle it?
US5224543A (en) Use of scale inhibitors in hydraulic fracture fluids to prevent scale build-up
US7073587B2 (en) System for increasing productivity of oil, gas and hydrogeological wells
WO2008092078A1 (en) Fracture acidizing method utilizing reactive fluids and deformable particulates
US8124571B2 (en) Process for treating an underground formation
MXPA05005159A (en) Selective stimulation with selective water reduction.
US4741400A (en) Method for scale inhibition in a well penetrating a subterranean formation
US20060142166A1 (en) Method using particulate chelates to stimulate production of petroleum in carbonate formations
US3481400A (en) Treatment of solids plugged wells with reversibly adsorbable inhibitor
US4630679A (en) Method for treatment and/or workover of injection wells
US4648456A (en) Method for acidizing siliceous formations
US5327973A (en) Method for variable density acidizing
CA1216516A (en) Method for scale removal and scale inhibition in a well penetrating a subterranean formation
EP0612914A2 (en) Reducing scale deposition in an aqueous phase producing wellbore
US3523582A (en) Inhibition of scale deposition during secondary recovery
US3704751A (en) Method for stimulating well production
Gidley et al. An improved method for acidizing oil wells in sandstone formations
US3768561A (en) Method for controlling unconsolidated sand in an oil well with permeable cement
US5377758A (en) Method for effective placement of a long life scale inhibitor

Legal Events

Date Code Title Description
MKEX Expiry
MKEX Expiry

Effective date: 20040808