CA1212394A - Apparatus for delivering and depositing sheets - Google Patents

Apparatus for delivering and depositing sheets

Info

Publication number
CA1212394A
CA1212394A CA000487989A CA487989A CA1212394A CA 1212394 A CA1212394 A CA 1212394A CA 000487989 A CA000487989 A CA 000487989A CA 487989 A CA487989 A CA 487989A CA 1212394 A CA1212394 A CA 1212394A
Authority
CA
Canada
Prior art keywords
wheel assembly
stacker
sheets
stacker wheel
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
CA000487989A
Other languages
French (fr)
Inventor
John Di Blasio
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Brandt Inc
Original Assignee
Brandt Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US06/288,646 external-priority patent/US4474365A/en
Application filed by Brandt Inc filed Critical Brandt Inc
Priority to CA000487989A priority Critical patent/CA1212394A/en
Application granted granted Critical
Publication of CA1212394A publication Critical patent/CA1212394A/en
Expired legal-status Critical Current

Links

Landscapes

  • Sheets, Magazines, And Separation Thereof (AREA)

Abstract

ABSTRACT OF THE DISCLOSURE

Appdratus is provided for delivering sheets received from a sheet advancing source and for depositing such sheets in an outfeed stacker.
The apparatus includes a stacker wheel assembly having a plurality of flexible resilient arms joined to a rotating member, such arms being curved so that adjacent arms form curved pockets, each pocket being adapted to receive a sheet and to urge such sheet into a curvature generally conforming to the curvature of the thin, flexible arms. A stripper assembly is provided to cooperate with the arms and is arranged to engage one edge of sheets deposited in the pockets for stripping sheets from, the pockets as the stacker wheel assembly rotates. A stacker plate is provided for receiving sheets stripped from the stacker wheel assembly. Finally a flywheel is mounted upon a common shaft with the stacker wheel assembly to move through a particular angle. That angle is sufficient to assure that any sheets delivered into the pockets of the stacker wheel assembly are stripped from the stacker wheel assembly and are deposited from the stacker plate, even in the event that the means for rotating the stacker wheel assembly is abruptly halted.

Description

I` ~21239~
This invention relates to apparatus for delivering sheets received from a sheet advancing source and for depositing such sheets in an outfeed stacker, and is part of document handling and counting apparatus. This application is a division of co-pending application Serial No. 408,240 filed July 28, 1982.
Document handling and counting apparatus finds widespread use in industrial, commercial and institutional areas. For example, it is extremely desirable to provide such apparatus for accurately counting paper currency for both counting and batching purposes for example. Obviously, high speed equipment is extremely de-sirable, but not at the expense of a reduction in counting accuracy.
The handling of sheets, for example, paper currency, at high speed can be accommodated by present-day apparatus in a rather straightforward manner when the paper currency is brand new or has been in circulation for only a short period of time. On the other hand, paper currency which has been in circulation for quite a while and/or has been roughly treated, mistreated or even mutilated, creates problems during the feeding and stripping operations. For example, the feeding apparatus may cause a sheet with a curled or bent-forward edge to experience further bending or curling, causing the sheet to misfeed or possibly create a jam condition in the handling apparatus. It is also possible that - sheets being delivered from -the fanning and stripping apparatus to the sheet separation apparatus can be misfed or misdirected due to folds or curling causing a jam condition and/or misfeed of sheets, as well as errors in the accumulated count, which may be attributed to the free space region through which the sheets pass in moving from the stripping and feeding apparatus to the ; acceleration appparatus.
2~23~4 According to one aspect of the invention, apparatus is provided for delivering sheets received from a sheet advancing source and for depositing such sheets in an outfeed stacker. The apparatus includes a stacker wheel assembly having a plurality of flexible resilient arms joined to a rotating member, the arms being curved so that adjacent arms form curved pockets, each pocket being adapted to receive a sheet and to urge such sheet into a curvature generally conforming to the curvature of the thin, flexible arms. Stripper means cooperate with the arms and are arranged to engage one edge of sheets deposited in the pockets for stripping sheets from the pockets as the stacker wheel assembly rotates. A stacker plate is provided for receiving sheets stripped from the stacker wheel assembly. Finally flywheel means are mounted upon a common shaft with the stacker wheel assembly. The flywheel means is adapted to allow the shaft and hence its stacker wheel assembly to move through an angle sufficient to assure that any sheets delivered into the pockets of the stacker wheel assembly are stripped from the stacker wheel assembly and are deposited upon the stacker plate, even in the event that the means for rotating the stacker wheel assembly is abruptly halted.
It is preferred that such apparatus further comprise one-way clutch means arranged between the common shaft and the stacker wheel assembly to cause the stacker wheeL assembly to rotate when the means for rotating is energized and for enabling the stacker wheel assembly to rotate relative to the common shaft when the means for rotating the stacker wheel assembly is deenergized.
According to another aspect of this invention, apparatus is provided for delivering sheets received from a ~2~239~

sheet advancing source and for depositing such sheets in an outfeed stacker, such apparatus includes a stacker wheel assembly having a plurality of flexible resilient arms joined to a rotating member, the anms being curved so that adjacent arms form curved pockets, each pocket being adapted to receive a sheet and to urge such sheet into a curature generally conforming to the curvature of the thin, flexible arm stripper means are provided for cooperating with the arms and are arranged to engage one edge of sheets deposited in the pockets for stripping sheets from the pockets as the stacker wheel assembly rotates. A stacker plate is provided for receiving sheets stripped from the stacker wheel assembly. The outfeed stacker including flywheel means mounted to rotate about a shaft. The outfeed stacker means for rotating the stacker wheel assembly through an angle sufficient to assure that any sheets delivered into the pockets of the stacker wheel assembly are stripped from the stacker wheel assembly and deposited upon the stacker plate, even in the event that the means for rotating the stacker wheel assembly is abruptly halted. The apparatus preferably includes one-way clutch means arranged between the means for rotating the stacker wheel assembly and the stacker wheel assembly to cause the stacker wheel assembly to rotate under control of the means for rotating when the means for rotating is energized, and for enabling the stacker wheel assembly to rotate under control of the flywheel means and independently of the meahs for rotating when the means for rotating said stacker wheel assembly is deenergized.
In the accompanying drawings, Figure 1 is a perspective view showinq the document handling and counting apparatus incorporating one embodiment of this invention designed in accordance with the principles of the present invention.

- 2 a -~2~L2394 Fig. la shows a p]an view of the control panel of the apparatus of Fig. 1.
Figure 2a shows a sectioncll side elevation of the document handling apparc?t-ls of ligurc 1.
Figure 2b shows a sectional rear elevation of che appa-~;3tus of Fig- l,-looking in the direction of arrows 2b-2b' of Fig.2a.
Figure 3 shows a perspeccive view of the sWillgable plate worming pc3rt of thc in-~eed scacker 03r the app.3raLlJs of Figure 1.
lo ligure 4a shows a detailed perspective view Oî the feeding, stripping and acceleration rollers employed in Lhe apparatus of Figure 1.
Figure 4b shows a rear view of the assembly of Figure 4a.
Figure 4c shows a detailed view of the front portion of the assemblies of Figures 4a and 4b further showing the mounting arms for mounting the stripper shoes shown in Figure 4a and 4b.
Figure 4d shows a detailed view of one feed roller an(l stripper shoe showillg the manner in whicll a sheet moves ~herebetween.
Figure 4e shows a detailed elevational view of one of ~2~23~g~

the stripper mounting arms of Figure 4c.
Figure 4f shows an end view of one feed roller and its associated snipper shoe and the manner in whicn they cooperate to handle sheets.
Figure 5a is a p]an view silowing the guides mounted to the stripper support arms of Figure 4c in greater detail.
Figure Sb is an elevacional view showing one stripper shoe support arm in greater detail.
Figure 5c shows the top portions of the stripper shoe mounting arms partially seccionalized, further showing the manner in which a com,~on coupling rod is connected therebetween.
Figures 5d, Se and 5f show side elevation, front lS elevation and rear elevation views of the stripper show shown, for example, in Figure 4e.
Figures 6a and 6b show side and end views of one portion of a eed roller.
Figures 7a and 7b show side and end views of a second member of the feed roller which cooperates with the member shown in Figures 6a and 6b to collectively form a feed roller.
Figure 8a shows an elevational view of a dancer rol] assembly which may be employed in the apparatus of Figure 2.
Figure 8b shows the dancer assembly of Figure 8a.
Figure 8c shows an exploded perspective view of the dancer assembly of Figs. 8a and 8b.
Figure 9 shows a simplified plan view of the power train cmployed in the apparatus of Figure 2.
I`igure 9a shows a side clcvational view of the power train of Figure 9.

1~L239~

Fig. I shc)ws a dclcument hdnclling ancl counting appar.ltus 10 incorporatillg one embocliment of this invention embodying the principles c,f the present invention ancl comprising a hc)usirlg 12 for the apparatus 10 whicll inclucles left: ancl right hancl side walls 12a ancl 12b, rear wall 12c ancl a tc.p surfclce 12cl. frcnt 12e is comprised of a forwarcl wall 12f at the lower encl.
curving inwardly at 12g to form a substantially V-shaped recess 12h defined by wall surfaces 12h-1 and 12h-2. The forward end of surface 12h-2 termin-ates at its outer end where it joins with a diagonally aligned surface 12j whose upper end merges with top surface 12d.
The top surface 12d is provided with a recess defined by a down-wardly sloping top surface 12d-4 joined on three sides by sidewalls 12d-1 and 12d-2 and rear wall 12d-3. Smaller recess 12d-5 defines a region in which an operator may place the fingers of one hand in either depositing or, as desired, removing a stack of sheets from the input stacker 14 defined by the surfaces 12d-1 through 12d-5.

2~
3~4 Swingably mounted plate 16 (see also Figure 3) which forms a part of the input stacker 14, is provided with a major planar surface 16a which engages and supports the leading edges of sheets deposited within infeed stacker 14. The upper end of planar surface 16a is bent at 16a-1 to form a flange 16b which extends diagonally away from major surface 16a.
A pair of projections 16c and 16d are integrally joined to major surface 16a and extend in a direction perpendicular to surface 16a and are integrally joined thereto along bends 16a-2 and 16a-3. Open-ings 16c-1 and 16d-1 are provided in projections 16c, 16d for receiving the pins swingably supporting plate 16.
As shown in Fig. 1, plate 16 is arranged in the operative position. however, plate 16 may be swung downwardly in the clockwise direction to occupy the dotted line position 16' as shown in Fig. 2a, reducing the height of apparatus 10 for carrying or storage purposes.
Surface 12j functions as the control panel 200 upon which the control switches, for example, the switches 202-216 are mounted, as shown in detail in Figure la.
Curved surface 12g is provided with openings 12g-1 and 12g-2 I-through which flexible blades 18a and 20a of stacker wheels 18 and 20 extend. Stacker wheels 18 and 20 will be described in greater detail hereinbelow. For present purposes, it is sufficient to understand that the flexible blades 18a, 20a cooperate with the curved plate 12g havinq openings 12g-1 and 12g-2 to strip sheets delivered thereto lZ12394 by the acceleration means SO, to be more fully described, to deliver the stripped sheets to the e~tendable outfeed stacker plate 22.
Turning now to a consideration of Figs. 2a and 2b, the internal structure of the document handling and counting apparatus 10 is shown with greater particularity and is comprised of a pair of eccentric jogging wheels 24 and 26 mounted for rotation upon shaft 28. Eccentric rollers 24 and 26 extend through an opening 30 in surface 12d-4. The surfaces of rollers 24, 26 are provided with a relatively high friction bearing sleeve for advancing lo the bottom sheet in the feed direction represented by arrow 32. The eccentric mounting also causes the picker rollers 24 and 26 to "jog" the stack once per revolution to loosen the sheets within the stack and thereby greatly facilitating smooth and ,accurate handling and feeding of the sheets.
The bottom sheet, having been moved by the picker rolls 24 and 26, advances in the direction shown in by ; arrow 32 toward feeding and stripping assembly 34 comprised of a pair of stripper shoes 36 and 38 and cooperating pair of feed rollers 40 and 42 mounted for rotation upon shaft 44. Note especially Fig. 4a.
The feed rollers 40 and 42 are secured to shaft -I:
44 and rotate in synchronism therewith. Shaft 44 further rotatably supports idler roller 46 which is mounted upon shaft 44 by bearings 48 (see Figs. 4a and 4b) enabling acceleration idler 46 to rotate in a freewheeling manner relative to shaft 44.
eed rollers 40 and 42 each cooperate with an associated curved guide plate 72 and 74 respectively, which guide sheets entering in the region between guide p]ates 72 3~
and 79 and feed rollers 40 and 42 respectively, to cause the shf~ets to move along a path which defines substantially a half-circle.
Sheets which are advanced to~"ard the guide plates 72 and 74 and feed rollers 40 and 42 first enter into a tapering throat portion T (see Fig. 4e) defined by a stationary stripper shoe 36, 38 respectively associated with each of the feed rollers 42 and 44. Each striper shoe 36, 38 is provided with a stripper surface (36b - see Fig. 5d) to be more ful-ly described hereinbelow, which surface imparts a frictional drag upon ` sheets entering into the region between stripper shoes 36 and 38 and feed rollers 40 and 42.
Each of the feed rollers 40 and 42 as will be described herein-below in greater detail, is provided with a portion of its periphery having a low coefficient of sliding friction while the remaining peripheral por-tion, significantly less than a half circle, has a higher coefficient of sliding friction. the aforesaid peripheral portion of the feed rollers 40 and 42 having a higher coefficient of sliding friction cooperate with the stripper shoes 36 and 38 to strip sheets and advance them along the curved path defined by the feed rollers 40 and 42 and the curved guide ; plates 72 and 74 in the following manner:
(a) The coefficient of friction of the feed rollers 40 and 42 is greater than the coefficient of friction of the stripper shoes 36 and 38, so that when a single sheet passes therebetween, -the feed rollers 40 and 42 exert the dominant influence upon a single sheet, causing the sheets to move along the curved feed path represented by arrow 32a.
(b) In the event that two sheets are fed between the stripper shoes 36 and 38 and the feed rollers 40 and 42, the coefficient of friction of the feed rollers 40 ~lZ394 and 42 is greater than the coefficient of friction between the engaging surfaces of the sheets. Similarly, the coefficient of friction of the stripper shoes 36 and 38 is greater than the coefficient of friction be-tween the engaging surfaces of the two sheets. Thus, the bottom sheet is advanced in the feed direction by the feed rollers 40 and 42, while the top sheet is substantially restrained from movement due to its engagement with the stripper shoes 36 and 38. Thus the bottom sheet is advanced along the curved feed path until its trailing edge is out of the region of influence between the stripper shoes 36 and 38 and the feed rollers 40 and 42. At this time, the sheet restrained by the stripper shoes 36 and 38 is now engaged by the higher frictional portion of the feed rollers 40 and 42, causing the advancing action described in operation (a) de-scribed hereinabove.
(c) In the case where multiple sheets greater than two are in-troduced between the stripper shoes 36 and 38 and the feed rollers 40 and 42, the operation is substantially the same as that described in connec-tion with the feeding of a pair of sheets, except that, for example, in the case where there are three such sheets, the bottom-most sheet will be fed first, followed by the middle sheet and thereafter followed by the top-most sheet.
Sheets advanced through the nip defined by the stripper shoes 36 and 38 and the feed rollers 40 and 42 are guided along the curved quide path shown by arrow 32a. As can best be seen from a consideration of jig. 2a, the upper end 72a of curve guide plate 72 is furthest removed from the surface of feed rollers 40, 42. However, the confronting sur-faces are gracually closer to the surface of feed rollers 40, 42 moving downstream from the upper end, whereupon the intermediate region 72c of curved guide _ g _ Z~23~4 plate 72, which is upstream relative to the lower end 72b, is closest to the surface of feed rollers 40, 42. thus, the curved guide plate 70, causes the force exerted upon sheets by the feed rollers 40, 42 gradually to increase, with the maximum force exerted upon sheets along the aforesaid curved guide path being in the region of portion 72c of guide plate 74 cooperates with its associated feed roller 42 to exert sub-stantially the identical influence upon that portion of the same sheet being fed between guide plate 74 and feed roller ~2.

The idler roller 46, shown best in Figs. 4a and lo 4b, is freewheelingly mounted upon shaft 44 and is caused to rotate by acceleration roller S0 which is fixed upon shaft 52, which shaft is arranged to rotate under control of the power drive train to be more fully described hereinbe-low in connection with Figs. 9 and 9a.
As was mentioned hereinabove, sheets move in single file fashion between the curved guide plates 72 and 74 and cooperating rollers 40 and 42 at a linear speed substan-tially established by the tangential velocity of the feed rollers 40 and 42. The driving force exerted upon each sheet by feed rollers 40 and 42 increases in magnitude due to the gradually reducing width of the guide path region described hereinabove. Thus, sheets continuously remain under the influence of the feed rollers 4~ end 42 as they first move between the stripper shoes 36 and 38 and the feed rollers 40 and 42 and as they ?ass beyond the stripper shoes 36 and 38 and move into the region between curved guide pees 72 and 74 and feed rol]ers 40 and 42.

~3L;Z3~4 The leading edges of sheets moving along the curved feed path eventually enter into the r'ip N formed by the acceleration roller 50 and the acceleration idler 46, whereupon the sheet is abruptly accelerated toward5 a linear velocity of significantly greater magllitude than the linear velocity of the sheet prior to entering into the nip N
between the acceler~ n r--ll 50 and acceleration idler 46.
This significant increase in linear velocity causes trailing edge of the sheet moving through nip N, note especially Fig. 4e, to move increas-ingly further away from the leading edge of the next sheet being fed to-ward nip N, thereby forming a significant gap of finite length, measured in the feed direction, which greatly facilitates counting of sheets.

15The coefficient of friction at the peripheries of the roller 50 and idler 46 determines the pulling force as well as the amount of compression which roller 50 and idler 46 experience. At least the peripheral portion of roller 50 and idler 46 is formed of a resilient compres-sible material having a desired coefficient of friction.
In one example, roller 50 and idler 46 were formed of a suitable resilient compressible material and having equal diameters of 1.015 inches. The centers of roller 50 and ; idler 46 were fixed so that their separation distances totalled 1.00 inches in order to obtain a degree of com-pression to achieve the desired pulling force on a sheet.
As shown best in Fig. 2a, document handling and counting apparatus 10 is provided with a substantially J-shaped mounting plate 85. Light source 78, for example, a light emitting diode (LED) mounted upon plate 85. Plate 85 is provided with a hole which is coincident with LED 78, allowing LED 78 to direct light across the afore-mentioned curved guide path and toward curved guide plate 72, which is Z39~

provided with a ].ight sen.si.tive element 80, Jar examplc, a photo diode or phototransistGr and which is mounted to curvec`i guide plate 72 and is coincident with the hole provided therein enabling the light from lid 78 to be S directed toward light sensitive element 80. The light intensity reaching light sensitive element 80 is maximum in the absence of a sheet moving therebetween, i.e. in the presence of a gap between adjacent sheets. The transmissivity of sheets moving between elements 78 and 80 is sufficient to cause a significant drop in the intensity of light reaching light sensitive element 80, thereby enabling sheets to be accurately counted due to the ability of the elements 78 and 80 to distinguish between sheets and gaps between sheets.
accelerated sheets are advanced along curved guide plates 72 and 74 and are advanced toward a guide plate 76 whose end 76a adjacent curved guide plates 72 and 74 is substantially flat. A portion 76b forms a curved convex surface which partially surrounds stacker wheel assemblies 18 and 20. Thereafter, plate portion 76b merges with a substantially planar portion 76c, which is diagon-ally aligned relative to an imaginary vertical axis and which extends downwardly and merges with base 12k of housing 12 and is joined thereto by suitable fastening means (not shown for purposes of simplicity).
Each sheet advanced along the curved guide plates 72 and 74, engages planar portion 76a of guide plate 76 and enters into a pocket P between a pair ox adjacent flexi.ble blades 18a (20a) which collective].y cooperate to form a substantially curvec`i shape pocket which serves to decelerate a sheet entering into a pocket Y, so that when its leading edge engages the extreme inner end of a pocket, defined hy the radi.al portiorl fat of each Llexib~.e blade 18a, the sheet is ciecelerated by a signiicant amount so that it wi.ll he prevented from striki.ng a radial eclgc l~a-~, rcboullding thei-efrom, and either paltiall.y, significantly or coillpletel.y moving out of its pockct P.

~L21Z394 Stacker whecls 18 allCI 20 carry each sheet ovcr an ang~llar path greatcr than 90 I)uc ].ess than lX(), Jo a point where the blades ~8a, 20a move from thc rigllt-han~
side of curved plate portion 76c through plate 76c and emerge on the left hand side of plate 76c.
Each sheet is moved by the stacker wheels 18, 20 so that its leading edge engages the right-hancl surface ox plate portion 76c and is prevented from movi.ng through the plate portion 76c. Plate portion 76c serves a "stripping" function in that it serves to strip sheets from their associated pockets P as the resilient flexible blades 18a, 20a forming pockets P pass through plate portion 76c, whereupon sheets are deposited upon an outfeed stacker assembly 22 defined by a linearly slidable plate having a first major substantial-ly planar portion 22a whose free end is bent diagonally .--upwardly to form a sheet supporting end portion 22b.
Leading edges of sheets stripped from the pockets P of stacker wheels 18 and 20 are engaged and supporced by planar portion 22a of the output stacker assembly 20 22. The first sheet fed to the output stacker assembly 22 has its right hand surface engaged by sheet supporting plate portion 22b, which becomes the right-hand-most sheet of the.stack of sheets S collected on scacker plate assembly 22.
The resilient flexible blades lea and 20a, after having released sheets from the pockets P formed thereby, further serve to beat against the last sheet fed to the stacker assembly 22 urging sheets towards plate portions 22a and 22b, causing a neat, compact stack of sheets to be formed 3~ in the outfeed stacker assembly 22. ~.s the size of the stack increases, the stacker assembl.y 22 which i.s spring-loa(led by means of helical spring 88~ is urged to movc against the force of spring 88 from the solid line position 22 shown in : jig. 2a toward the dotted line position 22', also shown in jig. 2a, to accommo~atc a steal of sheets of increasing si.zc.

_ 13 -1~23~4 It can thus be seen from the relatively brie de.~jcrip-tion set forth hereinabove, that the apparatus 10 is designed to receive a stack of sheecs in infeecl stacker 14, advance said sheets by means of pi.cker rolls 24, 26 toward a cooperating stripper shoe (36)/feed roll (40) assembly which permits sheets to be advanced toward the outfeed stacker assembly 22 in a single file one-at-a-time fashion and which further provides acceleration means (50) for creating a gap between the adjacent edges of successively 10 fed sheets to assure accurate counting of sheets which are being handled at high speed.
The most significant feature of aspects of the present invention resides in the novel arrangement of the feeding and stripping ---assemblies and the acceleration assembly 46, 50 which are 15 physically arranged so that the feed rollers 40, 42 do not relinquish driving control upon sheets until the instant upon which the leading edges ox sheets driven by the feed rollers 40, 42 enter into the nip N between the acceleration roll 50 and acceleration idler 46, rendering it a practical impossib-20 ility for sheets to be diverted away from the acceleration roll 50 and idler 46 as they leave the influence of the feedrollers 40 and 42, which undesirable operation eon occur in prior art arrangements in which the feed (40, 42) and stripper (36, 38) assemblies are separated from the accelera~
25 tion assemblies (46, 50) by a finite distance, enabling sheets to move through a "free space" region, the result of which may be an unsatisfactory feeding operation.
In adclition to the above, sheets which are extremely light and flufy, as well as sheets having a residual 3~ curve or crease tend to be diverted away from the desired fce(l direction or, alternativel.y, tend to experience unstable and/or unreliable movement through a "free space"

~2~239~
region. Their movement toward an acceleration assembly tends to be nonuniform, erratic, and even faulty, leading to possible jamming of the apparatus, as well as the introduction of counting errors.
The feed roller assemblies are shown in greater detail in Figs. 4a through 4c, while Figs. 6a through 7b show the detailed construction of a feed roller 40. Since feed rollers 40 and 42 are substantially identical in both design and function, a detailed ciescription of only one such feed roller will be provided herein for purposes of simplicity.
Considering Figs. 6a through 7b, it can be seen that each Eeed roller, for example feed roller 40, is comprised of feed roller portions 60 (see jigs. 6a and 6b) and 62 (see Figs. 7a and 7b). Portion 60 is a substan~
tially circular member having a truncated portion defined by vertical sidewalls 60h and 60m, horizontal surface portions 60f and 60g, and a pair of diagonally aligned walls 60j and 60k respectively cooperating with horizontal surfaces 60f and 60g to form a pair of cooperating, undercut grooves. The circular periphery of member 60 has an angular recess 60c, bordered on opposite sides by the angular flanges 60d and 60e.
Member 62 shown in jigs. 7a and 7b is designed to be interfitted with member 60 and is comprised of a solid 25 block of material having a coefficient of friction which -is substantially greater than the coefficient of friction of toe materia] from which member 60 is formed. Member 62 is provided with a curved surface 62a having a plurality of spaced parallel grooves 62a-1 cut into surface 62a ac regularly spaced intervals. Curveci surface G2a termirlates on opposite ends in a pair of vertical sidewal]s 62f ~Z~3~

allCI 62g. Bottom surface 6~b is provided with a double undercut groove define(1 by a pair of cliagonally aligned sidewalls 62d and 62e joined wich a flat surface 62c in the base of the double undercut groove. Member 62 is interfitted with member 60 by sliding the substantially wedge-shaped projection defined by sidewalls 60j and 60k into the double undercut groove provided in member 62. The members 60 and 62 are pressed tc,gether until surfaces 60n and 62h are coplanar. Since members 60 and 62 are substantially equal in thickness, side surfaces 62j and 60p are likewise coplanar when surfaces 60n and 62h are in coplanar relationship.
When the members 60 and 62 are interfitted in the manner described hereinabove, vertical side surfaces 62f and 62g (see Fig. 7a) are engaged by cooperating vertical side surfaces 60h and 60m (see Fig. 6a). In order to permanently secure members 60 and 62 to one another, in addition to the interlocking arrangement as shown, the engaging surfaces of members 60 and 62 2() are preferably coated with a suitable glue or epoxy, (not shown) to ensure permanent securement between members ; 60 and 62.
Member 62 may be formed or premachined in order to provide a recess which is coextensive with the recess 60c provided in member 60. A].ternatively, member 62 may toe formed so that its curved surface 62a lies a greater radial distance from the center of opening 60a than the perip!leries of flanges 60d ancl 60e. The feed roller may then be machined on a machiTle tool, such as, for example, a lathe (not shown), an(1 is initia1ly machined to reduce the outer periphery of surtace ~2a anc1 is subsequently mac11ined to form a recess C~a--2, (llOt~' especia]]y Fig.

Z~L239~
4d), coextensive with recess 60c.
The feed wheels 40 and 42 may be joined to the driving shaft 44 by the central opening 6a provided therefor. In order to lock each feed wheel to shaft 44, each body portion 60 is provided with a radially aligned opening 60b which is comprised of an opening portion 60b-1 of a first diameter, which communicates with a second opening portion 60b-2 of slightly greater diameter for communication between central opening 60a and peripheral recess 60c. A set screw F is placed within opening 60b so that its threaded portion F-l threadedly engages tapped opening 60b-1 and so that its head F-3 is prevented from moving beyond shoulder 60b-3 arranged between threaded opening 60b-1 and larger diameter opening 60b-2. The free end F-2 of set screw F is arranged to bear against the surface of shaft 44 in order to lock its feed roller to common shaft 44.
The stripper shoes 36 and 38 are shown in detail in Figs 5d through 5f. Only one such stripper shoe 36 is shown for purposes of simplicity, it being understood that both stripper shoes 36 and 38 are substantially identical in both ç design and function.
Stripper shoe 36, shown in Figs. 5d through 5f, is comprised of a mounting portion 36a having a substantially trapazoidal shape so far as side faces 36a~6 and 36a-7 are concerned. Top surface 36a-5 is provided with a double undercut groove 36a-1, which cooperates with a projection provided in stripper mounting arm 66 to be more fully described in connection with Figs 4e and 5b.
Diagonally aligned surface 36a-2 of mounting member 36a has secured thereto the frictional shoe portion 36b, preferably by means of a suitable glue or epoxy. The stripper shoe portion 36b is a rather slender member having a planar rear surface 36b-6 engaging and secured to surface ~2~;~3~4 36a-2 and having an opl~osed curved surace comprised of a convey surface portion 36l~-3, joined with a concave curved surface portion 36b-4. The right-hand end of convey surface portion 36b-3 meets vertically aligned surface 36b-1 while Lhe left-hand encl of concave curved surface portion 36b-4 terminates in a flat, horizontally aligned surface 36b-5 which in turn terminates with vertically aligned short surface portion 36b-2. The convex curved surface portion 36b-3 cooperates Wittl its associated feed roller, for example, feed roller 40, to form a tapering entrance throat T (see Fig. 4e).
As was mentioned hereinabove, stripper shoe assembly 36 shown in Figs. 5c through 5f3 is adapted to be slidably mounted upon stripper mounting arm 66 which is comprised of a substantially cylindrical portion 66a having a central opening 66a-1 for receiving shaft 67 (see Fig.2) which pivotally mounts stripper arm 66. As shown best in Figs.
2b and 4c, clips 69 are provided on opposite sides of the pair of stripper arms 66 and 66' to prevent the stripper arns 66 fromexperiencing any linear movement along the axis of shaft 67. The upper encl of arm portion 66b which extends from cylindrical,l)ortion 66a, is providecl with elongated slow 66f. Slot 66f is defined by arm 66b-1 which is arranged to be inserted within the recess 36a-1 while arms 36a-8 and 36a-9 are arranged to be inserted within elongated slot 66f, as shown best in Fig. 5f. A diagonally aligned threaded opening 66d is provided in arm 66b . The left-hand end of threaded opening 66cl communicates with the left-hand edge 66b-2 of arm portion 66b. The right-hand end of threaded opening 66d terminates in an enlarged opening 66e. A threaded set screw 7~, shown best in Fig.
4e, thr~adedly engages tapped opening 66d and has its - 1~3 - I

39~

right-hand end extending throu~ll opening 66e so that tip 71a engages the rear surface 36a-4 of the upper porcion 36a of stripper shoe assembly 36. The striper shoe is retained within the portion arm 66b by virtue of the feeding operacion. Set screw 71 is adjustable to move stripper shoe assembly 36 in either of the directions shown by double-headed arrow 73 of Fig. 4e in order to properly orient and align the stripper shoe 36 relative to its associated feed roller 40.
The upper end of arm 66b is provided with a narrow diameter opening 66g which terminates on opposing sides with larger diameter openings 66h-1 and 66h-2, as can best be seen in Fig. 5c, which shows the upper portion of stripper arms 66 and 66', partially sectionalized.
lS A common rod 70 has a narrow diameter which is less than the inner diameter of openings 66g and 66g', enabling common rod 70 to slidably extend through the stripper mounting arms 66 and 66' in the manner shown in Figs.
5c and 4c. Clips 83, 83 are arranged respectively along the left and right-hand sides of stripper arms 66 and 66' to prevent common rod 70 from becoming dislodged from mounting arms 66, 66'. The larger diameter openings 66h-1 through 66h-2' permit stripper mounting arms 66 and 66' to experience movement relative to common rod 70 enabling rod 70 to become skewed relative to the arms 66 and 66', which facllitates separate and independent alignment of the stripper arms 66, 66' as wi]l be more fully described. The common rod 70 serves as a means for simultaneo~lsly moving both stripper arms 66, 66' from the opel-ative position shown in solid line fashion in Fig. 2a, to the opell position 66'' Jo facilitate inspection, maincenance, and che like.
The upper end of arm 66b is provided with a threaded .Z394 opening 66j which commlnic.3tes with a side ecige 66b-3 ac its right-hand end, while its left-hand encl communicates with an enlarged diameter opening 66k which terminates in left-land side 66b-2. A set screw 89, shown best in Fig. 4e, threaaedly engages tappeci opening 66j. Its forward tip 89a is designed to engage an eccentric cam-shaped surface 91a proviciecl in shaft 9l. Shaft 91 e~telds across the frame of the document handli 17g ancl counting apparatus lO
as shown best, for example, in Fig. 2b and is journaled in frame members 92 and 94 by bearings 93a and 93b. The free right-hand end of shaft 91 has a knurled operating handle 95 secured tllereto. Operating handle 95 extends through an opening l d-7 in top surface 12d as shown - --in Figs. 1 and 2b in order to facilitate rotation of operating member 95 to rotate shaft 91. Kotation of operating member 95 and shaft 91 rotates the first and second eccentric cam surfaces 91a and 91b, shown best in Fig. 2b, relative to set screws 89 in order to simultaneously provide movement of the stripper supporting arms 66 and 66 in either the clockwise or counterclockwisedirection about shalt 67, as shown best in Fig. 2a. In addition thereto, indivic]ual and independent adjustment of each stripper mounting arm 66, 66 is accomplished by means of the set screw 89, shown best in Fig. 4e, which threadedly engages tapped opening 66j, enabling its forward end 89a to be adjusted in either direction in accordance with the double-headed arrow 99 shown in l`ig. 4c. This adjustment in Lurn establish-es the position of the associated arm 66 which in turn determines the pOsitioll of its associated stripper shoe assembly 36 relative to its cooperating fee roll 40, fol- example. Once the strippel- shoes 36 aud 38 are inclepelll-ently adjusted relltive Jo thcir associat~cl feed l-C)I ls ~212394 40 and 42, the stripper arms 66, 66' may simultaneously be moved by manipulation of the operating mernber ~5, shown in Figs. 2a and 2b to read jusC the stripper shoes 36, 38 to compensate for wearing. By providing larger diameter openings 66h-1, 66h-2, on opposite sides of opening 66g in stripper rnounting arm 66, the stripper mounting arm 66 is free to experience movement due to the adjustment of set screw 89 sufficient to allow the central axis of common rod 70 to become skewed relative to the central axis of opening 66g so that some independent swinging adjustment of each arm 66, 66' may be attended to without affecting the position of the other arm.
Both arms 66, 66'may be simultaneously moved to the operative position shown in solid line fashion 66 in Fig. 2a, as well as the open position 66" of Fig. 2a, by gripping common rod 70. In order to retain both arms 66 and 66' and common rod 70 in the operative position, there is provided a spring-like locking member 101 shown best in Figs. 4c and 4e, which is bent at its right-hand end to form an encircling portion lOla for encircling elongated rod 91, as shown best in jig. 4e. The resilient locking member 101 is provided with an intermediate substantially U-shaped portion lOlb which is integrally joined with a second substantially C-shaped portion 101c, whose free end terminates in a substantially straight portion lOld.
Fig. 4e shows stripper mounting arm 66 in the operative position and likewise shows resilient locking member 101 in the locked position with C-shaped portion ~Olc locked and substantially encircling common rod 70. ln order to move the stripper shoe mounting arms 66, 66' prom the operative position to che open position, portion IOId of resilicnt locking member 101 is gripped by che ~2~Z3~
finaers and is lifted or swung upwardly as shown by arrow 103, to lift C-shaped portion lOlc away from rod 70.
Rod 70 is then free to be swung in the direction sho~m by arrow 105 about shaft 67, i.e. is swung counterclockwise relative to Fig. 4e to the dotted line position 66'' shown in Fig. 2b. It should be understood that both arms 66 and 66' are simultan-eously swNng downwardly to the open position by pulling down rod 70. In this position, inspection and/or maintenance of the apparatus 10 is facilitated. In addition, it is also very simple to remove and replace a stripper shoe assembly 36, 38, if desired.
After such inspection and/or maintenance, the stripper mounting arms 66 and 66' may be moved back to the operative position by gripping common rod 70 and swinging rod 70 about pivot pin 67 in the direction shown by arrow 107, i.e. clockwise about shaft 67, to move the stripper mounting arms to the solid line position 66 shown in Fig. 2a. The stripper mounting arms 66, 66' are retained in the operative position by swinging resilient locking member 101 in the counterclockwise direction about shaft 91 to bring C-! shaped portion lOlc into the locking position relative to common rod 70, as shown best in Fig. 4e. C-shaped portion lOlc substantially encircles and releasably grips more than 180 degrees of the surface of rod 70, so as to be retained in a self-locking condition. The resilient locking member 101 is preferably formed of a spring steel material serving to provide a resilient biasing force which is exerted upon common rod 70, and hence upon stripper mounting arms 66,66' in order to normally urge the stripper shoe assemblies 36, 38 toward their respective feed rolls 40,42.
Turning again -to Fig. 5b, it can be seen that arm 66b is provided with a curved surface 66c. A pair of 1~23~4 tapped apertures 66c-2 and 66c-1 are provided in arm 66b and communicate with curved surface 66c. Surface 66c conforms with the shape of curved guide member 72, which is provided with a pair of openings 72f, 72g arranged to be brought into alignment with threaded apertures 66c-2 and 66c-1 respectively for receiving threaded fastening members, not shown for purposes of simplicity, which secure curved guide plate 72 to its associated stripper mounting arm 66. It should be understood that the heads of the fastening members are arranged so as to be either flush with the concave surface 72h of curved guide plate 72 (note Fig. 4e) or slightly below surface 72h so as to avoid any possibility of interfering with the free movement of sheets in the curved region between each curved guide plate surface 72h and its associated feed roller 40 shown, for example, in Fig. 4e.
The curved guide plates 72 and 74 are shown best in Figs. 4c, 5a and 4e. Noting especially Figs. 4c and 5a, each curved guide plate 72, 74 is provided with a substantially square-shaped slot 72d, 74d which pro-vides clearance for its assoclated stripper shoe assembly 36, 38. Each curved guide plate 72, 74 is further provided with a right angle shaped notch portion 72e, 74e which portions cooperate to form a substantially -square-shaped slot 117, which provides clearance for acceleration roller 50, shown best in Fig. 4c.

As was described hereinabove, each of the curved guide plates 72, 74 is permanently secured to an associated stripper shoe mounting arm 66, 66' and, as a result, the curved guide plates 72, 74 are moved to the operative position shown in solid line fashion in Fig. 2a, and to the dotted line position 72', also shown in Pig. 2a, 23~9L

simultaneously with the movement of the associated stripper arms 66, 66'.
Thus, the clearing of any possible jam condition and/or the inspection and maintenance of the equipment is greatly simplified, whereupon the stripper mounting arm 66, 66' and stripper shoes 36, 36' and curved guide plates 72 and 74 are all displaced a significant distance away from their operative position to greatly facilitate inspection and/or maintenance of apparatus 10.
Considering Figs. 9 and 9a, the drive train for the apparatus 10 is shown, and will now be described in detail. The drive train is comprised of a single motor 84, shown also in Fig. 2a, and having an out-put shaft 84a upon which is mounted pulley 122. A pair of O-rings 124 is entrained about pulley 122 and a second pulley 126 mounted upon shaft 52 upon which acceleration roller 50 is mounted. Rotation of output shaft 84a is thus imparted to shaft 52 through pulley 122, O-rings 124 and pulley 126.
A gear 128 is mounted upon shaft 52 and meshes with larger diameter gear 130. Gear 128 also meshes with a larger diameter gear 142 mounted upon shaft 44, which freewheelingly supports the acceleration idler 46 and which simultaneously rotates feed rolls 40 and 42. The shaft 44 also has mounted thereto a pulley 144. Drive is imparted to the shaft 28 upon which the picker rolls 24, 26 are mounted, by means of pulley 148 and O-rings 146 which are entrained about pulleys 144 and 148.
Gear 128, mentioned previously, meshes with a large diameter gear 130 mounted upon shaft 132. Also mounted upon shaft 132 is a smaller diameter gear 135 which meshes with gear 134 mounted upon the shaft 82, which carries the stacker wheels 18 and 20 and flywheel 138. Gear 134 is coupled to shaft 82 through a one-way clutch assembly 136, to be more fully described. The fly wheel member 138 is also mounted upon shaft 82 and cooperates with one-way clutch assembly 136 in a manner to be more fully described, to assure that the last sheet fed to the stacker assemblies 18 and 20 reaches the stacker plate 22, even if the machine has stopped abruptly.
The use of the gear train comprised of gears 128, 130, 134, 135 and 142, assures a synchronized timing operation as between the feed rolls 40, 42, acceleration roll 50 and stacker wheels 18 and 20. The timing relationship as between the picker rolls 24, 26 and the feed rolls 40, 42 is not critical and hence a pulley and belt drive assembly may be utilized, although the pulley and belt drive assembly comprised of pulleys 144 and 148 and 0-rings 146, may be replaced by a timing belt and cooperat-ing timing belt pulleys when it is desired to synchronized the operation of the picker rolls 24, 26 with the feed rolls 40, 42 and acceleration roll 50.
By utilizing a pulley and belt drive assembly between motor 84 and the aforementioned gear train, any jamming of any gears or members within the gear train are prevented from being positively coupled back to motor 84, thereby providing a safety operating feature.
In the event that an abrupt stoppage of the device 10 is called for, for any reason, whereupon motor 84 is caused to abruptly deenergize, all of the shafts driven by the associated gears 130 through 142 are abruptly brought to a halt. However, clutch 134 couples drive to shaft 82 through one-way clutch 136, the sense of gear 136 is such as to allow shaft 82 to rotate in a freewheeling manner relative to gear 134 and, under the influence of flywheel 138, enables the flywheel 138 and stacker wheels 18 and 20 3~9~
to rotate through an angle of at least one-quarter turn and preferably one-half turn, thereby assuring that the last sheet (or sheets) delivered to stacker wheels 18 and 20 arrive at and are neatly stacked upon the outfeed stacker plate 22.
It should be understood that Fig. 9 shows a simplified plan view of the drive train and the manner in which all of the wheels and rollers are powered, while Fig. 9a shows an elevational view which more accurately depicts the physical loca-tions of each of the gears and pulleys shown in Fig. 9.
Having now described in detail all of the mechanisms and components, aspects of the invention will now be described in more detail in connection with Figs. 2a, 4a, 4b and 4d.
A stack of sheets, for example, paper currency I; S, is placed in the infeed stacker 14. wicker rolls 24, 26 rotate in a counterclockwise direction as shown by arrow 152 to feed the bottom sheet toward the pair of stripper shoes 36,38 and cooperating feed rollers 40 and 42. The leading edge of the sheet` advanced by picker rolls 24,26 enters into the tapered throat region T. As was previously mentioned, the picker rolls 24,26 are eccentrically mounted so as to periodically extend through opening 30 to engage the bottom sheet and jog the stack S
of sheets which serves to loosen the stack and facilitate feeding.
The aforementioned bottom sheet which has now entered into throat T (see Fig. 4e) is engaged on its undersurface by the feed rollers 40 and 42, which are rotating counter-clockwise as shown by arrow 154, and is engaged along its opposite surface by the stripper shoes 36,38. As was previously mentioned, the feed rollers 40 and 42 as can best be seen in Figs. 4a and 4b, have a large peripheral portion having a relatively low coefficient ~2~239~
of sliding friction which is formed by member 60 as shown best in Figs 6a and 6b, while the remaining smaller peripheral portion, formed by member 62 shown in Figs. 7a and 7b, has a larger coefficient of sliding friction The coefficient of sliding friction of the stripper shoes 36, 38, although greater than the coefficient of sliding friction of the peripheral portions defined by member 60, is nevertheless less than the coefficient of sliding friction of the peripheral portions defined by member 62. The dimensions of the stripper shoes 36 and 38 are such that they are capable of partially extending into the shallow recess 40a, shown best in Fig. 4f.
The width W of the stripper shoe 36, shown in Fig. 4f, is slightly less than the width @l of recess 40a. Thus, the stripper shoe 36, although ex-tending partially into recess 40a, does not normally engage the feed roil 40.
In one preferred embodiment, the depth of recess 40a is of the - :
order of from 0.050 to 0.060 inches and the distance between the adjacent surfaces of the stripper shoe 36 and recess 40a is of the order of 0.020 to 0.025 inches.
When the sheet S' enters into the region between the stripper shoe 36 and feed roller 40, shown best in Fig. 4d, and the portion of the 20 feed roller 40 formed by the member 60 is passing beneath stripper shoe 36, the sheet is urged into an undulating configuration, as shown in Fig. 4d.
Ilowever, very little feeding occurs at this time since the coefficient of sliding friction of the peripheral surface formed by member 40 is very low and further, since the stationary stripper shoe 36 imparts a drag upon the sheet.
However, as soon as the portion of the peripheral surface formed by member 62 and having a substantially 23~3~

greater coefficient 03'- sliding friction engclges tl7e sheet in the region beneath sLripper shoe ~6 the 1eadir)g edge of thc sheet is grabbed and is very positive]y fed in the forward feed direction as represented by arrow 154 shown for example in Figs. 2a and 4d. Since the cooef~icient of sliding friction of the portion of rollers 40 anci 42 formed by members 62 is significantly greacer than the coefriciellt of sliding friction of stripper shoes 36 an(i 38 the feed rollers 40 and 42 exert the dominc3rlt influence upon tlle shecL
S' causing the sheet to feed beneath the stripper shoes 36 and 38 and thereafter to move into the curved guideway defined by the feed rollers 40 and 42 and the curved guide plates 72 and 74. The curved guide plates 72 and 74 as were described hereinabove have a larger throat portion in the region of stripper shoes 36 and 38 which throat tapers to a narrower guideway region toward the lower ends thereof.
Thus as the sheet S' moves past point P shown in Fig.
4e the sheet is retained substantially in engagement with feed rollers 40 and 42 by means of guide plates 72 and 74. Sufficient frictional drive is imparted to the sheet to cause it to follow the curved guideway defined by curved guide 72 and 74 and feed rollers 40 and 42 until the leading edge moves into the region of the nip N formed by rolling engagement between acceleration roll - -50 and idler roll 46 shown best in Figs. 4a 4b and 4e.
It should be noted that the guide plates 72 and 74 have been omitted from Figs. 4a and 4b for purposes of clarifica-tion of the components shown therein. Idler roll 46 although rotating faster than feed rolls 40 and 42 has an insignifi-3() canc effect UpOIl the sheet until the leading edge of the s hee t reaches the nip N.
The surfaces of idler roll 46 alld ~Icccleration roll 50 scrve to "grab" the ]eaclillg ecige of the sheet cnterillg _ 28 -121~39~

into nip (see Fig. 4e), to abruptly accelerate the shee, so as to signi~icallcly increase the linear velocity of the sheet and move the sheet in che direction shown by arrow 158, as shown in Figs. 2a and 4e, toward the guide plate 76 through which the flexible resilient blades 18a and 20a of stacker wheels 18 and 20 extend.

The rapid acceleration of each sheet as it enters into che nip N inc-reases the gap between the trailing edge of an accelerated sheet and the leading edge of the next sheet yet to movè into the nip N. The gap between sheets is utilized for counting purposes and, more specifical-ly, counting is accomplished through the employ.~ent of the LED 78 and the phototransistor element 80 which are shown mounted along opposite sides along the curved guideway defined by curved guide plates 72 and 74. Elements 78 and ~0 serve to differentiate between the passage of sheets and the pass~.ge of a gap between sheets to count the sheets.
The gap is further signif;cantly increased through the use of the feed rollers 40 and 42 having portions thereof provided with significantly different coefficients of sliding friction, as has described hereinabove. Thus, hen the leading edge of a sheet moves inco the throat region T between strippers 36 and 38 and the cooperating ~5 feed rolls 40 and 42, the sheet is not effectively advanced ntil the peripheral portion of the feed rolls 40, 42 having che significantly greater coefficient of sliding friction moves beneath its associated stripper shoe 36 and 38. By (ie]aying the feeding of each sheet lintil the porcion of each feed roll 40 and 42 having the greater coefficiellt of sliding friction, moves beneath its associ.3ted scripper shoe 36 and 38, clle g.3l-s l~cc~eell ;.djacellt .sllcets are f~lrtller "" ~2~3g~
increase to assure and significantly enhance the counting operation for sheets.
The operation of apparatus 10, in accordance with operating panel 170, is as follows:
The front control panel 200 includes start button 202, stop button 204, count button 206, batching control buttons 208 through 216 and illuminating display panels 218 and 220 for respectively displaying batch quantities and regular count quantities.
The key functions are as follows:
Depressing start key 202 energizes motor 84 (Fig. 9) and resets any error condition presently being displayed by visually observable display 218. If no sheets are in the output stacker 22, the count displayed will be zero.
Depressing stop key 204 turns motor 84 off, and inhibits automatic starting.
Depressing any one of the batch keys 208 through 216 selects the batch desired. This capability allows sheets to be batched in quantities determined by the batch key selected. For example, to batch quantities of 50 sheets, key ! 214 is depressed. As long as a sufficient number of sheets are present in the feed hopper 14 to form a batch of 50, a batch of 50 sheets will be counted and collected in outfeed stacker 22, and motor 84 will be deenergized.
A sensor 240 which may preferably be comprised of a cooperating light source (for example, and LED) and phototransistor, are positioned to cooperate with an opening in tray portion 12d-4.
For example, the light source may be arranged to direct a beam of light at a 45 angle through said opening and the light sensitive element may be arranged to receive light reflected from the bottom sheet in the stack, said lZ39~
light being reflected at an angle of 45 . In the absence of any sheets in the infeed stacker 14, no light from the LED is reflected toward the light sensitive element. In order to prevent ambient light from falsely triggering light sensitive element, the LED may be selected to emit light of a particular wavelength such as infrared, while the light sensitive element preferably is provided with a filter positioned in front of its light sensitive surface to pass only light in the infrared wavelength to the light sensitive surface of the light sensitive element.
When at least one sheet is placed in infeed hopper 14, the apparatus 10 is energized, including motor 84. As soon as the light source/light sensitive element combination 78-80 counts 50 sheets (assuming the example given above) the batching operation will halt. Sensor~assembly 242 mounted to outfeed stacker 22 by bracket 244 may be substantially of the same design and function in the same manner as the sensor assembly 240 provided in the infeed hopper 14. As an example, assuming that key 214 is depressed, and a number of sheets are placed in the infeed hopper 14 sufficient to form at least one group of 50 sheets, the covering of sensor 240 starts the machine and 50 sheets are delivered to the outfeed stacker 22 covering sensor 242. This time, apparatus 10 stopsO when the 50 sheets are removed from output stacker 22, sensor assembly 242 is uncovered, allowing the apparatus 10 to initiate formation of the next batch of sheets.
The sensor in the output tray acts like a "continue"
button. If sheets are in the input hopper 14, removing the finished stack of sheets within outfeed stacker 22 allows apparatus 10 to continue operation and begin forming a new batch. If too few sheets are provided in infeed hopper 14 to form a full batch of the desired number of sheets, apparatus -` ~ZlZ3~4 10 will stop until further sheets are placed in infeed hopper 14 to again "cover" the sensor assembly 240. The above operating steps are repeated until all the sheets desired to be batched have been so batched.
Depressing count key 206 causes all the sheets placed in infeed hopper 14 to be counted until the infeed hopper 14 is emptied of sheets, at which time the counting operation will terminate, but with the total count remaining in storage and being displayed by display 220.
If sheets are removed from output stacker 22 before placing more sheets in input hopper 14, the count will start from zero as soon as a new stack of sheets are placed in infeed hopper 14.
In addition to the above, it can be seen that sheets in moving from the stripper shoes 36 and 38 toward the nip N, are always positively driven and, contrary to prior art techniques in which the sheet enters into a free flight region, the continuous and positive drive of sheets in the present invention assures positive, accurate handling of sheets and prevents sheets from being in any way deflected away from the intended path of movement.
; As an example, if a sheet has a permanent curl, the sheet will nevertheless be positively driven from : the time it moves between stripper shoes 36 and 38 and feed - rolls 40 and 42, until the leading edge enters into the aforesaid nip N. This is also the case even if the leading edge of a sheet is folded over or creased.
Contrary thereto, in the prior art apparatus, a sheet having a curvature or a folded or creased edge will tend to resume its curved or creased configuration and will Z3g4 cause the sheet to deviate from its normal intended path of movement.
The handling of sheets through the apparatus of aspects of the present invention can be understood with still greater clarity from a consideration of one preferred embodiment thereof, the picker rolls 24,26 rotate at an r.p.m. sufficient to provide a tangential velocity of the order of 211 inches per second. The feed rollers 40, 42 are rotated at an r.p.m. sufficient to provide a tangential velocity of 63 inches per second at their respective surfaces. The acceleration roll 50 is rotated at an r.p.m. sufficiént to provide a tangential velocity at the periphery of acceleration roll 50 of the order of 135 inches per second. The r.p.m. of the stacker wheels 18,20 is sufficient to move the tips of the resilient blades 18a and 20a at a tangential velocity of the order of 32 inches per second. Given these respective operating velocities, a gap of the order of 2.28 inches between adjacent documents is provided and sheets, such as U.S. paper currency, are separated, counted and restacked at a rate of the order of 1,000 per minute. The above operating speeds are merely exemplary and it should be understood that these speeds may be raised or lowered to suit the needs of the particular application.
The stacker 22, described hereinabove in connection with Fig. 2a, is shown in solid line fashion in preparation for receiving sheets. The stacker plate portion 22a is guided between a pair of channels arranged on opposite sides of the machine frame. Fig. 2a shows one such channel 162 having a centrally aligned groove 162a for receiving one marginal edge of plate 22a, enabling the stacker 22 to experience linear movement. The stacker 22 is retained in the solid line position by means of spring 88, having ~L2~Z3~a~

a first end 88a fixed to a stationary point 165 and having its opposite end secured to a downwardly extending ear 22c arranged at the left-hand end of plate portion 22a. As more sheets are accumulated upon stacker 22, as soon as the thickness of the stack is greater than the distance between plate portion 76c and stacker plate portion 22b, the stack of sheets urges the stacker 22 in the direction shown by arrow 172 and against the influence of biasing spring 88. The stacker may ve, for example, to the dotted line position 22' to accommodate a relatively large stack of sheets which have been separated and counted.
Figs. 8a, 8b and 8c show another alternative embodiment 10' of :
an aspect of another aspect of the present invention which is utilized to facilitate the positive and accurate handling of light, fluffy sheets or documents and is similar to the document handling and counting apparatus 10 shown, for exanple, in Figs. 2a and 2b, except for the addition of a dancer roll assembly 180 comprised of an arm 182 having an opening 182a for swingable mounting upon shaft 91 and having a second opening for re-ceiving shaft 184. Bearings 186 and 188 are preferably arranged within openings 182a and 182b. A pair of cylindrical rings 190 and 192 are arranged upon shaft 91. These rings are provided with set screws l90a, 192a. Rings 190, 192 are slidably moved adjacent the opposite sides of swingable arm 182. Fig. 8c shows the rings 190 and 192 separated from lever 182 merely for purposes of simplicity, it being understood that rings 190 and 192 are positioned adjacent lever 182 to prevent lever 182 from experiencing any linear movement along the axis of shaft 91.

~3'~

Z3~9~

Shaft 184 extends through opening 188 and has provided at its ; opposite ends a pair of rollers 194, 196 secured to shaft 184 by fasten-ers 194a, 196a respectively. Rollers 194 and 196 may, if desired, be freewheelingly mounted upon shaft 184 by means of bearings 194b, 196b respectively.
As can best be seen from a consideration of Figs. 8a and 8b, the free end of lever 182 is urged downwardly toward feed rollers 40, 42 by gravity. Rollers 194 and 196 rollingly engage associated feed rollers 40, 42 respectively and cooperate with the feed rollers 40, 42 to impart some drive to sheets, and especially light, thin, fluffy sheets in order to be assured that their leading edges are driven into the tapering throat regions T formed between the stripper assemblies 36, 38 and their cooperating feed rollers 40 and 42. Thicker, less bendable sheets tend to cause the assembly 180 to move away from the feed rollers 40, 42 and thereby have an insignificant effect upon the feeding of thicker, heavier and hence more manageable documents or sheets. If desired, the rollers 194, 196 may be arranged to engage idler 46 to initiate movement of sheets ; to enter throat T.
As another alternative arrangement (see Fig. 2a), the dancer roll assembly 180 may be replaced by a substantially C-shaped spring mem-ber 203 which lightly engages the top surface of each feed roll 40, 42 ; (or idler 46) to urge light, thin, fluffy documents between spring member 203 and feed rolls 40 and 42 to be assured that the leading edge of the bottom sheet fed therebetween reaches the entrance throat T between the stripper shoes 36, 38 and their cooperating feed rolls 40 and 42. Again, this light spring element 203 is required only during the handling of thin, light, fluffy sheets and will be bent back away from the feed rolls ~3 23~

40 and 42 (or idler 46) when handling heavier, thicker, less bendable sheets. us a result, the light spring-loaded member 203 has substantial-ly no effect upon thicker sheets, while having an increasingly greater effect when feeding thinner, lighter, fluffier sheets.

Claims (4)

THE EMBODIMENTS OF THE INVENTION IN WHICH AN EXCLUSIVE
PROPERTY OR PRIVILEGE IS CLAIMED ARE DEFINED AS FOLLOWS:
1. Apparatus for delivering sheets received from a sheet advancing source and for depositing said sheets in an outfeed stacker comprising:
a stacker wheel assembly having a plurality of flexible resilient arms joined to a rotating member, said arms being curved so that adjacent arms form curved pockets, each pocket being adapted to receive a sheet and to urge said sheet into a curvature generally conforming to the curvature of said thin, flexible arms;
stripper means cooperating with said arms and arranged to engage one edge of sheets deposited in said pockets for stripping sheets from said pockets as the stacker wheel assembly rotates;
a stacker plate for receiving sheets stripped from said stacker wheel assembly;
flywheel means mounted upon a common shaft with said stacker wheel assembly and adapted to allow said shaft and hence its stacker wheel assembly to move through an angle sufficient to assure that any sheets delivered into the pockets of said stacker wheel assembly are stripped from said stacker wheel assembly and deposited upon said stacker plate, even in the event that the means for rotating said stacker wheel assembly is abruptly halted.
2. The apparatus of Claim I further comprising one-way clutch means arranged between said common shaft and said stacker wheel assembly to cause said stacker wheel assembly to rotate when said means for rotating is energized and for enabling said stacker wheel assembly to rotate relative to said common shaft when said means for rotating said stacker wheel assembly is deenergized.
3. Apparatus for delivering sheets received from a sheet advancing source and for depositing said sheets in an outfeed stacker comprising:
a stacker wheel assembly having a plurality of flexible resilient arms joined to a rotating member, said arms being curved so that adjacent arms form curved pockets, each pocket being adapted to receive a sheet and to urge said sheet into a curvature generally conforming to the curvature of said thin, flexible arms;
stripper means cooperating with said arms and arranged to engage one edge of sheets deposited in said pockets for stripping sheets from said pockets as the stacker wheel assembly rotates;
a stacker plate for receiving sheets stripped from said stacker wheel assembly;
said outfeed stacker including flywheel means mounted to rotate about a shaft and said outfeed stacker including means for rotating the stacker wheel assembly through an angle sufficient to assure that any sheets delivered into the pockets of said stacker wheel assembly are stripped from said stacker wheel assembly and deposited upon said stacker plate, even in the event that the means for rotating said stacker wheel assembly is abruptly halted.
4. The apparatus of Claim 3 further including one-way clutch means arranged between the means for rotating the stacker wheel assembly and said stacker wheel assembly to cause said stacker wheel assembly to rotate under control of said means for rotating when said means for rotating is energized and for enabling said stacker wheel assembly to rotate under control of said flywheel means and independently of said means for rotating when said means for rotating said stacker wheel assembly is deenergized.
CA000487989A 1981-07-30 1985-08-01 Apparatus for delivering and depositing sheets Expired CA1212394A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA000487989A CA1212394A (en) 1981-07-30 1985-08-01 Apparatus for delivering and depositing sheets

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US06/288,646 US4474365A (en) 1981-07-30 1981-07-30 Document feeding, handling and counting apparatus
US288,646 1981-07-30
CA000408240A CA1192924A (en) 1981-07-30 1982-07-28 Document feeding, handling and counting apparatus
CA000487989A CA1212394A (en) 1981-07-30 1985-08-01 Apparatus for delivering and depositing sheets

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CA000408240A Division CA1192924A (en) 1981-07-30 1982-07-28 Document feeding, handling and counting apparatus

Publications (1)

Publication Number Publication Date
CA1212394A true CA1212394A (en) 1986-10-07

Family

ID=25669776

Family Applications (1)

Application Number Title Priority Date Filing Date
CA000487989A Expired CA1212394A (en) 1981-07-30 1985-08-01 Apparatus for delivering and depositing sheets

Country Status (1)

Country Link
CA (1) CA1212394A (en)

Similar Documents

Publication Publication Date Title
US4474365A (en) Document feeding, handling and counting apparatus
US3771783A (en) Mechanism for feeding, separating and stacking sheets
US4275874A (en) Extended stacker
US5207788A (en) Feed arrangement for currency handling machines
AU652449B2 (en) Feed arrangement for currency handling machines
US5163672A (en) Bill transport and stacking mechanism for currency handling machines
US4718809A (en) Device for unstacking flat objects
CA1051467A (en) Vacuum-controlled, sheet-material separator and feeder system
EP0216801B2 (en) Compact apparatus for dispensing a preselected mix of paper currency or the like
US3912255A (en) Stackers for document counters and the like
US4971310A (en) Paper sheet takeout apparatus
US4615518A (en) Document handling and counting apparatus
EP0375146B1 (en) High speed sheet feeder singulator
JPH0739291B2 (en) Paper sheet separating and feeding device
US3664660A (en) Device for feeding flat objects to a processing machine
JPS5941892B2 (en) Feeding device for paper sheet counting machine
KR20030015195A (en) Note feeder
CA1212394A (en) Apparatus for delivering and depositing sheets
USRE33847E (en) Document feeding, handling and counting apparatus
US4796878A (en) Document handling counting apparatus
US5456457A (en) High speed separator with movable hold back belt for high speed flats feeder
JP3130947B2 (en) Stacked sheet feeder
WO1982000994A1 (en) Separator mechanism for envelope or sheet feeding apparatus
JP2515083Y2 (en) Separation and feeding device for paper sheets
JPH085162Y2 (en) Paper sheet separating and feeding device

Legal Events

Date Code Title Description
MKEX Expiry