CA1199463A - Process for crosslinking of polymers and copolymers using free radical forming agents in the presence of oxygen - Google Patents
Process for crosslinking of polymers and copolymers using free radical forming agents in the presence of oxygenInfo
- Publication number
- CA1199463A CA1199463A CA000409440A CA409440A CA1199463A CA 1199463 A CA1199463 A CA 1199463A CA 000409440 A CA000409440 A CA 000409440A CA 409440 A CA409440 A CA 409440A CA 1199463 A CA1199463 A CA 1199463A
- Authority
- CA
- Canada
- Prior art keywords
- boric acid
- copolymers
- crosslinking
- polymers
- free radical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/38—Boron-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
- C08J7/04—Coating
- C08J7/06—Coating with compositions not containing macromolecular substances
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Graft Or Block Polymers (AREA)
- Treatments Of Macromolecular Shaped Articles (AREA)
Abstract
ABSTRACT OF THE INVENTION
Crosslinkable polymers and co-polymers are treated with boric acid, boric acid anhydride, or mixtures thereof prior to crosslinking with free radical organic peroxide initiators in the presence of oxygen. This pre-treatment prevents stickiness of the surface of the crosslinked polymer making the crosslinked polymer more commercially acceptable.
Crosslinkable polymers and co-polymers are treated with boric acid, boric acid anhydride, or mixtures thereof prior to crosslinking with free radical organic peroxide initiators in the presence of oxygen. This pre-treatment prevents stickiness of the surface of the crosslinked polymer making the crosslinked polymer more commercially acceptable.
Description
~ g~3 Process For Crosslinking Of Polymers And Copolymers Us ng Free Radical Forming Agents In The Presence Of Oxygen IR-~648 Background of the Invent The present invention pertains to the pretreatment of crosslinkable polymers and copolymers with boric acid, boric acid anhydride, or mixtures thereof prior to crosslinking using free radical initiators in the presence of oxygen to :Eorm crosslinked polymers with non-sticky surfaces.
It is known from the technical literature that the crosslinking of copolymers, especially of thick and complicated profiles, may be carried out with sulfur u~ ng~
.~
the UHF-hot air method or the shear head-hot air method. It is also known that crosslinking with free radical initiators, such as organic peroxides, in the presence of oxygen leads to incompletely crosslinked and sticky surfaces of the parts (see, for example, Farbenfabriken Bayer, Notice of March 2, 1962, Levapren 450 (ethyl vinyl acetate), Section 7.1.1 to 7.1.5, and notice sheet of December 1, 1965, Urepan (urethane rubber), p. 15~ first section, and Chemische Werke Huls, May 1976, Third Edition, Buna AP (~PM~EPDM), insert section "Instructions for processors", p.~) The stickiness especially occurs in the case of copolymers with high filler contents and extended with oil, such as ethylene-propylene copolymers (EPM), ethylene-propylene diene monomer copolymers (~PDM), styrene-butadiene rubber (SBR), acrylonitrile-butadiene rubber (NBR), natural rubber ((cis-1,4-polyisoprene) (NR), isoprene rubber (IR), ethylene-vinyl acetate copolymers (EVA), acrylonitrile-butadiene-styrene copolymers (ABS), styrene-isoprene-styrene copolymers (SIS), chloroprene rubber (CR), chlorinated polyethylene (DM) and polymethane rubber.
In order to obtain the better quality of polymers crosslinked with free radical initiators, crosslinking was carried out with organic peroxide initiators in a molten salt bath, known as the "liquid curing rnethod" (LCM), in a steam tube or in other closed systems. A further possibility is described in German Preliminiary Published Application No. 2,936,906, which describes the treatment of the surface with solutions of metal soaps, such as cobalt octoate, cerium octoate, iron octoate, etc.
S~MMARY OF INVENTION
Surprisingly it has now been found that the treatment of polymers and/or copolymers crosslinkable with free radical forming agents in the presence of oxygen after molding but prior to ~he crosslinking process using powdered boric acid or boric acide anhydride or mixtures thereof leads to C
hardened products which have non-adhesive, s~ratch-resistant and solvent-resistant surfaces.
Therefore the invention pertains to a process for the crosslinking of polymers and/or copolymers~ which may contain the customary additives and fillers, with free radical forming agents in the presence of oxygen, which is charactaerized in that the polymers and/or copolymers are pretreated following shaping but before crosslinking to prevent surface stickiness with (a) powdered boric acid, (b) powdered boric acid anhydride and [or] (c) mixtures thereof.
DETAILED DESCRIPTION OF INVENTION
Free radical forming agents which may be considered include, for ex~mple, organic peroxide or azo compounds. The crosslinking may take place by heating by means of shear head and/or ultra-high frequencey irradiation (UHF) and/or hot air-/heating systems.
The powdered boric acid or boric acid anhydride or mixtures thereof are applied to the profiles, tubes or other parts using powdering equipment conventionally employed in the rubber industry, and the excess of the powder removed again. These powdering devices use dust nozzles to create a dust atmosphere, or contain a powder bath loosened up with gas or air, or rotating brushes by means of which the powder is applied to the profile surface. The excess not adhering to the surface is drawn off, blown off or brushed off, since otherwise it deposits unnecessarily in the UHF or hot air system. Powdered boric acid or boric acid anhydride is preferably applied to the molded parts by blowing, brushing or dusting on.
The powder is preferahly applied in quantities of 200 mg/m2 to 10,000 mg/m2, particularly preferably 400 mg/m2 to 2000 mg~m , on the surface of the molded article.
The powder should have maximal particle size of 90~m, preferably of less than or equal to 20 ~m, in order to prevent excessively large b~ric acid or boric acid anhydride 3L~9~
particles from becoming pressed into the surface, which is still thermoplastic, and damaging the surface.
A11 polymers and copolymers crosslinkable with suitable free radical sol~rces, filled or unfilled, can be treated in accordance with the invention using the above-mentioned boron compounds in order to obtain non-sticky surfaces.
Particularly stuitable for this treatment in order to avoid sticky surfaces after hardening are polymers and copolymers on the basis of ~-olefins. Examples of copolymers, which may be highly filled and extended with oils, if desired, include the following:
EPM ethylene-propylene copolymer EPDM ethylene-propylene-diene monomer copolymers (suitable diene monomers include, for example, ethylene norbornene, cyclopentadiene, butadiene, etc.) SBR styrene-butadiene rubber EVA ethylene-vinyl acetate copolymer NBR nitrile-butadiene rubber NR natural rubber IR isoprene rubber ABS acrylonitrile-butadiene rubber SBS styrene-butadiene-sytrene rubber SIS sytrene-isoprene-styrene copolymer CR chloroprene rubber ~9~
CM homopolymeric chlorinated polyethylene AU polyurethane rubber (polyester type) and polymethane rubber.
The mixtures are generally composed of polymers and/or copolymers with various customary additives, such as reinforcing agents and fillers, e.g., carbon black, metal oxides, clays, carbonates, silicates, pigment, as well as free radical forming agents, activators, coagents, antioxidants, stabilizers, plasticizers, auxiliary oils or oils and/or extender oils.
The free radical forming agents, such as the customary organic peroxides, azo compounds and C-C initiators, are added in quantities of 0.1 to 15 wt-%, based on the ~inished mixture, usually from 1 to 10 wt-%.
Coagents, such as triallylcyanurate, triallylphosphate, ethylene glycol dimethacrylate, trimethylolpropane trimethacrylate~ divinylbenzene, diallymaleate, etc., may be present in quantities from 0 to S wt-%, based on the finished mixture, generally from 0.5 to 3 wt-%.
The process in accordance with this invention makes it possible to avoid the formation of sticky surfaces in the peroxide crosslinking of polymers and/or copolymers in air.
Examples The rubber mixtures described in the following examples were produced on a roller frame and rolled out into pieces 4 mm thick. Samples, 20 x 80 m~l in size, were punched out of this. Some of these samples were left untreated and others were powdered by dipping in powdered boric acid (particle size 10 to 80 ~m) or powdered boric acid anhydride (particle size 5 to 75 ~m3~ they were heated in a heating oven at 180 to 230C for 10 min in the presence of air oxygen. The applied quantlty of boric acid or boric acid anhydride on the molded pieces fluctuated between 400 and 750 mg/m2. (Ten minutes of heating were sufficient to attain 99% conversion of the peroxide for crosslinking). The crosslinked samples while hot were pressed onto a paper under constant pressure and time conditions. After removing the samples from the paper, a more or less t.hick, black, sticky impression remained behind. The samples treated with the compounds in accordance with this invention left no impression or a less intensive impression than the untreated samples.
In addition the abrasion was tested with a spatula, and the solubility of the surface with trichloroethylene. (See corresponding tables in the examples).
Example 1 A highly surface-sticky mixture with a Shore hardness of 40 was produced from lO0 parts EPDM (containing a diene monomer of the ethylidene norbornene type~ with a Mooney plasticity NL 1 + 4 (lOO~C~ of 65, 90 parts HAF carbon black3 60 parts of a high boiling hydrocarbon oil, and 4 parts of dicumyl peroxide (98%).
The crosslinked samples, some of which had been dusted and some left untreated, displayed the characteristics presented in the following table:
TreatmentStickinessAbrasionSolubility -untreated +++ +++ +++
dusted with boric acid boric acid anhydride ~ -+
zinc borate ++ +++ +++
borax -++ +~+ ++~
20 zinc stearate +++ +++ +++
Explanation: --- = none --+ = slight -++ = extensive ~++ = very extensive Boric acid and boric acid anhydride functioned surprisingly well, while the zinc compounds used did not.
Example 2 A black profile mixture based on EPDM with dicyclopentadiene as the diene monomer and Shore hardness of 60, containing 2.6% of 1,1-di-tcrt.-butylperoxy-3,3,5-tri-methylcyclohexane (40%) and 2.45% dicumyl peroxide(40%) was crosslinked in the manner described~ partially after dusting with boron compounds and partially without treatment, and its properties investigated.
Treatment StickinessAbrasion Solubility untreated +++ ~ +++
dusted with boric acid -~
~oric acid lS anhydride borax -+~ ~+ +++
zinc borate +++ ~+ ++~
For explanation of symbols see Example 1 Example 3 An EPM mixture without diene monomer with the following composition was treated as described in Examples 1 and 2, and gave the following results:
100 parts EPM, 90 parts HAF black, 20 parts oil, 8 parts dicumyl peroxide (40%), and 2 parts stearic acid.
\
~9g~i3 , ~ .
TreatmentStickiness Abrasion Solubility untreated -++ `+++ ++~
dusted with boric acid ~ + -++
boric acid anhydride --+ -++ -++
borax +++ +++ +++
For explanation of symbols see Example 1.
Example 4 The same mixture as in Example 3, but with addition of
It is known from the technical literature that the crosslinking of copolymers, especially of thick and complicated profiles, may be carried out with sulfur u~ ng~
.~
the UHF-hot air method or the shear head-hot air method. It is also known that crosslinking with free radical initiators, such as organic peroxides, in the presence of oxygen leads to incompletely crosslinked and sticky surfaces of the parts (see, for example, Farbenfabriken Bayer, Notice of March 2, 1962, Levapren 450 (ethyl vinyl acetate), Section 7.1.1 to 7.1.5, and notice sheet of December 1, 1965, Urepan (urethane rubber), p. 15~ first section, and Chemische Werke Huls, May 1976, Third Edition, Buna AP (~PM~EPDM), insert section "Instructions for processors", p.~) The stickiness especially occurs in the case of copolymers with high filler contents and extended with oil, such as ethylene-propylene copolymers (EPM), ethylene-propylene diene monomer copolymers (~PDM), styrene-butadiene rubber (SBR), acrylonitrile-butadiene rubber (NBR), natural rubber ((cis-1,4-polyisoprene) (NR), isoprene rubber (IR), ethylene-vinyl acetate copolymers (EVA), acrylonitrile-butadiene-styrene copolymers (ABS), styrene-isoprene-styrene copolymers (SIS), chloroprene rubber (CR), chlorinated polyethylene (DM) and polymethane rubber.
In order to obtain the better quality of polymers crosslinked with free radical initiators, crosslinking was carried out with organic peroxide initiators in a molten salt bath, known as the "liquid curing rnethod" (LCM), in a steam tube or in other closed systems. A further possibility is described in German Preliminiary Published Application No. 2,936,906, which describes the treatment of the surface with solutions of metal soaps, such as cobalt octoate, cerium octoate, iron octoate, etc.
S~MMARY OF INVENTION
Surprisingly it has now been found that the treatment of polymers and/or copolymers crosslinkable with free radical forming agents in the presence of oxygen after molding but prior to ~he crosslinking process using powdered boric acid or boric acide anhydride or mixtures thereof leads to C
hardened products which have non-adhesive, s~ratch-resistant and solvent-resistant surfaces.
Therefore the invention pertains to a process for the crosslinking of polymers and/or copolymers~ which may contain the customary additives and fillers, with free radical forming agents in the presence of oxygen, which is charactaerized in that the polymers and/or copolymers are pretreated following shaping but before crosslinking to prevent surface stickiness with (a) powdered boric acid, (b) powdered boric acid anhydride and [or] (c) mixtures thereof.
DETAILED DESCRIPTION OF INVENTION
Free radical forming agents which may be considered include, for ex~mple, organic peroxide or azo compounds. The crosslinking may take place by heating by means of shear head and/or ultra-high frequencey irradiation (UHF) and/or hot air-/heating systems.
The powdered boric acid or boric acid anhydride or mixtures thereof are applied to the profiles, tubes or other parts using powdering equipment conventionally employed in the rubber industry, and the excess of the powder removed again. These powdering devices use dust nozzles to create a dust atmosphere, or contain a powder bath loosened up with gas or air, or rotating brushes by means of which the powder is applied to the profile surface. The excess not adhering to the surface is drawn off, blown off or brushed off, since otherwise it deposits unnecessarily in the UHF or hot air system. Powdered boric acid or boric acid anhydride is preferably applied to the molded parts by blowing, brushing or dusting on.
The powder is preferahly applied in quantities of 200 mg/m2 to 10,000 mg/m2, particularly preferably 400 mg/m2 to 2000 mg~m , on the surface of the molded article.
The powder should have maximal particle size of 90~m, preferably of less than or equal to 20 ~m, in order to prevent excessively large b~ric acid or boric acid anhydride 3L~9~
particles from becoming pressed into the surface, which is still thermoplastic, and damaging the surface.
A11 polymers and copolymers crosslinkable with suitable free radical sol~rces, filled or unfilled, can be treated in accordance with the invention using the above-mentioned boron compounds in order to obtain non-sticky surfaces.
Particularly stuitable for this treatment in order to avoid sticky surfaces after hardening are polymers and copolymers on the basis of ~-olefins. Examples of copolymers, which may be highly filled and extended with oils, if desired, include the following:
EPM ethylene-propylene copolymer EPDM ethylene-propylene-diene monomer copolymers (suitable diene monomers include, for example, ethylene norbornene, cyclopentadiene, butadiene, etc.) SBR styrene-butadiene rubber EVA ethylene-vinyl acetate copolymer NBR nitrile-butadiene rubber NR natural rubber IR isoprene rubber ABS acrylonitrile-butadiene rubber SBS styrene-butadiene-sytrene rubber SIS sytrene-isoprene-styrene copolymer CR chloroprene rubber ~9~
CM homopolymeric chlorinated polyethylene AU polyurethane rubber (polyester type) and polymethane rubber.
The mixtures are generally composed of polymers and/or copolymers with various customary additives, such as reinforcing agents and fillers, e.g., carbon black, metal oxides, clays, carbonates, silicates, pigment, as well as free radical forming agents, activators, coagents, antioxidants, stabilizers, plasticizers, auxiliary oils or oils and/or extender oils.
The free radical forming agents, such as the customary organic peroxides, azo compounds and C-C initiators, are added in quantities of 0.1 to 15 wt-%, based on the ~inished mixture, usually from 1 to 10 wt-%.
Coagents, such as triallylcyanurate, triallylphosphate, ethylene glycol dimethacrylate, trimethylolpropane trimethacrylate~ divinylbenzene, diallymaleate, etc., may be present in quantities from 0 to S wt-%, based on the finished mixture, generally from 0.5 to 3 wt-%.
The process in accordance with this invention makes it possible to avoid the formation of sticky surfaces in the peroxide crosslinking of polymers and/or copolymers in air.
Examples The rubber mixtures described in the following examples were produced on a roller frame and rolled out into pieces 4 mm thick. Samples, 20 x 80 m~l in size, were punched out of this. Some of these samples were left untreated and others were powdered by dipping in powdered boric acid (particle size 10 to 80 ~m) or powdered boric acid anhydride (particle size 5 to 75 ~m3~ they were heated in a heating oven at 180 to 230C for 10 min in the presence of air oxygen. The applied quantlty of boric acid or boric acid anhydride on the molded pieces fluctuated between 400 and 750 mg/m2. (Ten minutes of heating were sufficient to attain 99% conversion of the peroxide for crosslinking). The crosslinked samples while hot were pressed onto a paper under constant pressure and time conditions. After removing the samples from the paper, a more or less t.hick, black, sticky impression remained behind. The samples treated with the compounds in accordance with this invention left no impression or a less intensive impression than the untreated samples.
In addition the abrasion was tested with a spatula, and the solubility of the surface with trichloroethylene. (See corresponding tables in the examples).
Example 1 A highly surface-sticky mixture with a Shore hardness of 40 was produced from lO0 parts EPDM (containing a diene monomer of the ethylidene norbornene type~ with a Mooney plasticity NL 1 + 4 (lOO~C~ of 65, 90 parts HAF carbon black3 60 parts of a high boiling hydrocarbon oil, and 4 parts of dicumyl peroxide (98%).
The crosslinked samples, some of which had been dusted and some left untreated, displayed the characteristics presented in the following table:
TreatmentStickinessAbrasionSolubility -untreated +++ +++ +++
dusted with boric acid boric acid anhydride ~ -+
zinc borate ++ +++ +++
borax -++ +~+ ++~
20 zinc stearate +++ +++ +++
Explanation: --- = none --+ = slight -++ = extensive ~++ = very extensive Boric acid and boric acid anhydride functioned surprisingly well, while the zinc compounds used did not.
Example 2 A black profile mixture based on EPDM with dicyclopentadiene as the diene monomer and Shore hardness of 60, containing 2.6% of 1,1-di-tcrt.-butylperoxy-3,3,5-tri-methylcyclohexane (40%) and 2.45% dicumyl peroxide(40%) was crosslinked in the manner described~ partially after dusting with boron compounds and partially without treatment, and its properties investigated.
Treatment StickinessAbrasion Solubility untreated +++ ~ +++
dusted with boric acid -~
~oric acid lS anhydride borax -+~ ~+ +++
zinc borate +++ ~+ ++~
For explanation of symbols see Example 1 Example 3 An EPM mixture without diene monomer with the following composition was treated as described in Examples 1 and 2, and gave the following results:
100 parts EPM, 90 parts HAF black, 20 parts oil, 8 parts dicumyl peroxide (40%), and 2 parts stearic acid.
\
~9g~i3 , ~ .
TreatmentStickiness Abrasion Solubility untreated -++ `+++ ++~
dusted with boric acid ~ + -++
boric acid anhydride --+ -++ -++
borax +++ +++ +++
For explanation of symbols see Example 1.
Example 4 The same mixture as in Example 3, but with addition of
2.5 parts triallylcyanurate as coagent.
TreatmentStickinessAbrasion Solubility 15 untreated -++ +++ +++
dusted with boric acid boric acid anhydride --- --- --+
Example 5 Mixture on SBR basis with the following composition: 100 parts SBR (1502), 90 parts HAF black, 60 parts oil, 2 parts stearic acid, and 8 parts dicumyl peroxide (40%).
Treatment Stickiness Abrasion Solubility untreated +++ +++ +++
dusted with boric acid ---boric acid 3Q anhydride ~--Example 6 Mixture on EVA ba~is with 60% vinyl acetate with the following composition: 100 parts EVA~ 50 parts ~F carbon black, 20 parts oil, 1 part stearic acid, 2 parts dicumyl peroxide (40%) prepara~ion, and 2 parts triallyl cyanurate.
Treatment StickinessAbrasion Solubility untreated -f+ +++ +++
dusted with 10 ~oric acid boric acid anhydride
TreatmentStickinessAbrasion Solubility 15 untreated -++ +++ +++
dusted with boric acid boric acid anhydride --- --- --+
Example 5 Mixture on SBR basis with the following composition: 100 parts SBR (1502), 90 parts HAF black, 60 parts oil, 2 parts stearic acid, and 8 parts dicumyl peroxide (40%).
Treatment Stickiness Abrasion Solubility untreated +++ +++ +++
dusted with boric acid ---boric acid 3Q anhydride ~--Example 6 Mixture on EVA ba~is with 60% vinyl acetate with the following composition: 100 parts EVA~ 50 parts ~F carbon black, 20 parts oil, 1 part stearic acid, 2 parts dicumyl peroxide (40%) prepara~ion, and 2 parts triallyl cyanurate.
Treatment StickinessAbrasion Solubility untreated -f+ +++ +++
dusted with 10 ~oric acid boric acid anhydride
Claims (2)
PRIVILEGE IS CLAIMED ARE DEFINED AS FOLLOWS:
1. A process for the crosslinking of crosslinkable polymers or copolymers comprising molding the crosslinkable polymers or copolymers into the desired shaped articles, pretreating the shaped articles in order to prevent the surfaces from being sticky by coating on the shaped articles a member selected from the group consisting of boric acid, boric acid anhydride, and mixtures thereof, and crosslinking the coated shaped articles with free radical initators of organic peroxides in the presence of oxygen wherein the crosslinked shaped articles have non-sticky surfaces.
2. The process of Claim 1 wherein the boric acid, boric acid anhydride and mixtures thereof are blown, painted, or dusted onto the molded articles as a powder.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DEP3133219.6 | 1981-08-21 | ||
DE19813133219 DE3133219A1 (en) | 1981-08-21 | 1981-08-21 | METHOD FOR CROSSLINKING POLYMERS AND COPOLYMERS BY MEANS OF RADICAL IMAGES IN THE PRESENCE OF OXYGEN |
Publications (1)
Publication Number | Publication Date |
---|---|
CA1199463A true CA1199463A (en) | 1986-01-21 |
Family
ID=6139857
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA000409440A Expired CA1199463A (en) | 1981-08-21 | 1982-08-13 | Process for crosslinking of polymers and copolymers using free radical forming agents in the presence of oxygen |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP0073037B1 (en) |
CA (1) | CA1199463A (en) |
DE (2) | DE3133219A1 (en) |
ES (1) | ES515155A0 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4808442A (en) * | 1986-01-23 | 1989-02-28 | Akzo Nv | Composition suitable for use in polymer cross-linking processes |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS536927Y2 (en) * | 1974-07-19 | 1978-02-22 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2936906A1 (en) * | 1979-09-12 | 1981-04-02 | Luperox GmbH, 8870 Günzburg | METHOD FOR CROSSLINKING CROSSLINKABLE POLYMERS AND / OR COPOLYMERS |
-
1981
- 1981-08-21 DE DE19813133219 patent/DE3133219A1/en not_active Withdrawn
-
1982
- 1982-08-13 CA CA000409440A patent/CA1199463A/en not_active Expired
- 1982-08-20 DE DE8282107643T patent/DE3265230D1/en not_active Expired
- 1982-08-20 ES ES515155A patent/ES515155A0/en active Granted
- 1982-08-20 EP EP82107643A patent/EP0073037B1/en not_active Expired
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4808442A (en) * | 1986-01-23 | 1989-02-28 | Akzo Nv | Composition suitable for use in polymer cross-linking processes |
Also Published As
Publication number | Publication date |
---|---|
EP0073037A1 (en) | 1983-03-02 |
ES8403506A1 (en) | 1984-03-16 |
DE3133219A1 (en) | 1983-03-10 |
EP0073037B1 (en) | 1985-08-07 |
ES515155A0 (en) | 1984-03-16 |
DE3265230D1 (en) | 1985-09-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1295073C (en) | Methods for production of crosslinked rubber products | |
US3751378A (en) | Inhibiting prevulcanization of rubber with polyfunctional methacrylate monomers as cross-linking coagents with peroxides | |
US5776294A (en) | Peroxide-cured elastomers with improved metal adhesion | |
JPH06228345A (en) | Methods of surface treatment and coating of propylene resin composition molding | |
CA2071650C (en) | Process for grafting vinyl monomers on particulate olefin polymers | |
US4439388A (en) | Process for crosslinking of polymers and copolymers using free radical forming agents | |
CA1139073A (en) | Metallic salt pre-treatment of crosslinkable co-polymers for eliminating tackiness | |
JP2595442B2 (en) | Scorch retarder compositions for peroxide-curable elastomers | |
EP0527633B1 (en) | Method of treating surface of molded article of polypropylene resin and method of coating said molded article | |
JPH0475793B2 (en) | ||
CA1199463A (en) | Process for crosslinking of polymers and copolymers using free radical forming agents in the presence of oxygen | |
JP2876031B2 (en) | Surface treatment method of thermoplastic elastomer molded article and coating method thereof | |
CA1308215C (en) | Composition suitable for use in polymer cross-linking processes | |
US5069927A (en) | Adhesively-bonded coated composites of highly saturated elastomers | |
EP2092005B1 (en) | Process for the preparation of a cross-linked rubber article | |
JPH1036456A (en) | Modified rubber composition, production thereof, and molded article | |
KR940008998B1 (en) | Polypropylene resin composition | |
JP4096450B2 (en) | Surface treatment method for vulcanized rubber molded products | |
JPH07103258B2 (en) | Surface treatment method for vulcanized rubber moldings | |
JPH08108431A (en) | Treatment of surface of polyolefin molding material and production of molding | |
EP0204531B1 (en) | Production of molded vulcanised rubber articles | |
EP0386642A2 (en) | Adhesively-bonded coated composites of highly saturated elastomers | |
JP2747468B2 (en) | Rubber sheet | |
JPH01210087A (en) | Surface treatment agent for polyolefin group vulcanized rubber moldings and manufacture thereof | |
RU2026318C1 (en) | Process for preparing molded rubber fabric articles |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MKEX | Expiry |