CA1193985A - Method of joining pipe ends and joint formed thereby - Google Patents

Method of joining pipe ends and joint formed thereby

Info

Publication number
CA1193985A
CA1193985A CA000430452A CA430452A CA1193985A CA 1193985 A CA1193985 A CA 1193985A CA 000430452 A CA000430452 A CA 000430452A CA 430452 A CA430452 A CA 430452A CA 1193985 A CA1193985 A CA 1193985A
Authority
CA
Canada
Prior art keywords
pipe
solder
groove
grooves
pipe ends
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
CA000430452A
Other languages
French (fr)
Inventor
Hugh M. Hawkins
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CA000430452A priority Critical patent/CA1193985A/en
Application granted granted Critical
Publication of CA1193985A publication Critical patent/CA1193985A/en
Expired legal-status Critical Current

Links

Landscapes

  • Non-Disconnectible Joints And Screw-Threaded Joints (AREA)

Abstract

METHOD OF JOINING PIPE ENDS AND JOINT FORMED THEREBY

ABSTRACT OF THE DISCLOSURE

A soldered pipe joint and a method for making same, wherein the flow of solder from one end of the over-lapped pipe ends is terminated at a set of axially aligned circumferential grooves formed in the two pipe ends.

Description

~3~5 Field of the Invention Th~s invention relates to a method of soldering t pipes together, and to the joint formed thereby, and it relates in particular to a method of soldering metallic joints together, and to such a joint.
Back round of the Invention Y _ F
In the field of soldering pipe ends together, one i end of a pipe is inserted into the open end of another, larger pipe--in practice the "larger" pipe end is usually a "fitting" connected at its other end to another pipe end. After the pipe end is positioned within the L
larger pipe end, i.e. the fitting, the overlapped ends are heated and a soldering material is applied to the exposed end of the overlapped portion. Because of capillary action and the heat, the solderinq material flows axially between the pipe ends from the first axial end of the overlap all the way to the other end ~f the overlap. This complete flow from one end of the overlapped portion to the other end thereof is generally referred to as 100~ flow, and is generally the most desirable condition since it provides a joint of max-imum strength. ~-However, under certain conditions, such 100~ flow is undesirable. As one example, in certain manufactur-ing processes such as the manufacture of electronic com-ponents, it is necessary to supply a gas such as a nitrogen gas in a form as pure as possible. In such an ~`
environment, if the solder composition (or the flux material which is applied to the joint in advance of the L
soldering material and generally moves through the space ahead of the soldering material) reaches the end of the overlapped portion and protrudes into the interior of the conduit, it provides a source of impurities which can be carried away with the gas and adversely affect that manufacturing process. Under these conditions, t .~ ~

~9~
-2-it is desirable if not mandatory to limit the solder flow to less than 100~, for example between 25% and 75 for example, 50%.
The desire to limit solder flow to less than 100%
of the overlapped portion has been recognized on occasion heretofore. For example, the Lindquist U.S. Patent b_ No 1,890,998 recognizes the problem and provides one attempted solution therefor. However, the problem is a most difficult one to solve and to applicant's F
knowledge has not been solved heretofore as satisfac-torily as with the present invention.
The difficulty is that once the pipe ends are L
heated to the proper temperature,whieh for a silver soldering colnposi-tion would be approximately 1100 F, the force of th~: capillary action carrying the soldering material through the space between the pipes is a very great force and difficult to stop. Attempts to limit this flow by controlling and varying the temperature along the overlapped portion, i.e. 1100' ~` for a first v portion and a cooler temperature for the latter portion of the overlap,have also met with failure because of the ~
extreme difficulty in attempting to provide an abrupt ~:
change in temperature in a heat conductive material such as the metal of the pipes. Indeed, in process pipiny the material is often copper which is of course is extremely conductive, thereby rendering solder control by temperature control very difficult if not impossible.
The applicant also attempted to limit solder flow ~:
by mechanically forcing the two pipes together along a ~
circumferential band at the axial location where it was _ desired to stop the solder flow. (This attempt is essentially analgous to the attempt in the Lindquist Patent No. 1,890,998 of utilizing a tapered end on the outer pipe.) However, this attempt also failed. No matter how great the force urging the inner and outer pipes together, there will always remain a "space" of ~'
-3-a few thousands of an inch through which silver solder will flow under the high temperature conditions men-tioned above. If on the other hand the force urging the two pipes together is extremely large, it will in all likelihood distort one of the pipes relative to the other, thereby creating at some point around the circumference o4 the overlapped pipes an opening through , which the solder can flow to the end of the overlap and into the conduit. F
Hence, there exists a need for a method of solder-ing pipe ends together, and to such a joint, wherein the flow of solder can reliably be stopped at a prede-termined axial location less than the full axial length of the overlap.
Summary of the Invention It is therefore a purpose of the present invention to provide a new and improved method for joining pipe ~nds together, and to a pipe joint Eormed thereby, which solves the problems which existed heretofore. r This purpose is achieved in accordance with the method and pipe joint of the present invention by pro- ~:
viding a method and arrangement whereby both the larger, ~;
outer pipe end and the smaller, inner pipe end are formed with a recessed circumferential groove, both grooves r_ extending radially in ~he same direction, and both ;
grooves being essentially axially aligned with each `:
othex, and wherein with the pipe ends and their grooves, F
thus arranged, the soldering material is introduced at the outside, i.e. exposed end of the overlapped portion.
It has been found that with the pipes heated to the appropriate temperature for flo;w of the solder material .
being used, the solder will flow axially along the space between the pipes up to but not beyond the location of the aligned grooves.
In a preferred method for carrying out the present L

~ 3~8~ii invention/ the inner plpe end is formed with a ~roovc.
It has been found most convenient to form this groove with a conventional pipe cutting tool wherein the cutting elements are removed and placed by grooving ~,wheels which are similar to the cutting wheels but which of course have a slightly wider cross section at the point where they engage the pipe. In one preferred arrangement used with 3" diameter copper piping, the Itgrooving wheels formed a groove of approximately 1/16"
in width and approximately 1/32" in depth.
The inner pipe with the groove thus formed is then placed into the larger, outer pipe, i.e. the "fitting" L
by an axial amount which is carefully noted. With the pipes thus overlapped, a groove is then formed on the outer pipe at a location which precisely matches the axial location of the groove on the inner pipe so that the inner side of the groove on the outer pipe will be aligned with and in fact most likely enter the groove L
~ormed on the inner pipe.
Wi~h the pipe ends and the grooves thus formed and _ arranged, the operator can apply heat to the appropriate temperature all along the overlapped portion without attempting to create any temperature variation therealong.
With the pipe ends thus heated the solder is applied and will flow along the space between the pipes up to but not beyond the aligned grooves.
Hence, there is provided a new and improved pipe joint according to the present invention having aligned -grooves and solder extending from one end of the over- ,, lap up to the grooves but not therebeyond.
Hence, it is an object of this invention to pro-vide a new and improved method for soldering overlapped pipe ends together wherein it is necessary to limit the solder flow to less than the full length of the overlap.
It is another object of the present invention to provide a new and improved method for soldering together ~3~

pipe ends under conditions wherein imp~rities within the conduit are to be avoided.
It is another object of this invention to provide 7 a new and improved method for soldering pipe ends to-gether wherein the axial extent of the solder 10w can be limited without resorting to varying the temp- Y~
erature OI the overlapped pipe ends along the length of the overlap.
It is still another object of this invention to provide a new and improved method for soldering pipe ends together wherein a pair of aligned grooves are provided, one on each of the pipe ends, said grooves L
being operable to limit the flow of solder. ~` It is another object of this invention to provide a new and improved pipe joint wherein the solder is ~
located from one end of the overlap up to a predeter- !' mined axial point less than the full length of the overlap. L
~ It is still another object of this invention to ~provide a pipe joint having aligned grooves and a _ solder connection from one end of the overlap up to the aligned grooves and not therebeyond.
It is still another of this invention to provide a conduit for carrying extremely pure gases, the con-duit having pipe joints wherein the solder is not ex- kposed to the interior of the conduit.
These and other objects of the present invention will become apparent from the detailed description to follow.
Brief Description of the Drawinqs e There follows a detailed description of preferred embodiments of the invention to ~e read together with the accompanying drawings wherein: , ¦
Figure 1 illustrates a portion of a conduit having a fitting connected to three different pipe ends, each of the three connections being made in accordance with It ~ ~3~ t ~he pre3ent invention.
Figures 2 through 6 illustrate in central cross section one of the connections of Figure 1, namely the one on the right hand side, in five successive steps in the formation of this pipe joint.
Figure 7 is a side elevational view of a tool k-used for forming a groove in a pipe end, and Figure 8 is an enlarged view from the right hand side of Figure 7.
Detailed Description of the Preferred Embodiments Referring now to the drawings, like elements are L
represented by like numerals throughout the several views. ~
Figure 1 illustrates a typical "T" fitting joining r together three pipes 11, 12 and 13. of course fittings in a conduit system can take all different shapes, many including only two aligned openings, others pro- _ - viding four openings, etc. In Figure 1 grooves 21 are shown in this fitting. However, the fitting 10 would ~
have been manufactured without such grooves, the grooves _ being added while connecting together the fitting 10 and the respective pipes while carrying out the method of the present invention.
- The method of the present invention will now be described especially with respect to Figures 2 through 6.
Figure 2 illustrates the end of itting 10 assoc- t iated with the end of pipe 11, both in their natural, -ungrooved state. A groove is then formed into the pipe 11 at a predetermined distance X back from the end ;
of this pipe. For this purpose one could conveniently use a pipe cutting tool as shown in Fiqures 7 and 8, ~:
modified to include wheels which are sufficiently wider than a cutting element to form a groove without cutting the pipe. As illustrated in Fi~ures 1 and 8, the grooving tool 30 includes a plain support roller 33 and a pair of grooving rollers 31 and 32. In the example . . .

3~ 5 wherein a 3 copper tubing was grooved, these grooving wheels 31 and 32 were shaped to form a groove of approximately 1/16 width and to a depth of approxi-mately 1/32 . The xesult, as shown in Figure 3, is a groove having the proper depth and wherein some of the material therein is pushed inwardly and hence visible on the interior of the pipe.
With this groove 20 thus -formed, the pipe 11 is inserted into fitting 10 by a known distance Y. With the distances X and Y thus known, the operator can form the groove 21 into the exterior of pipe Eitting 10 in such a manner that the groove 21 is aligned with the groove 20 and so that any material pushed inwardly by formation of groove 21, which can be referred to as a circumferential protrusion, would enter the exterior of groove 20. Engaging elements 20 and 21 then form a circumferentially continuous solder stop.
With the pipe ends thus arranged, a flux material would be placed on the pipes in the vicinity where the solder will be added. In a known manner, ~lux material facilitates adherence of the soldering material to the pipes. The operator would then heat the entire over-lapped material. For a conventional silver composition soldering material, the overlapped area would be heated to a temperature of 1100 F, using for example an oxygen acetylene torch. Using a conventional solder-ing material (for example 56~ silver) the temperature range which is proper for flow of the solder by the capillary action is quite narrow. It is an advantage of the present invention that this high temperature within a narrow temperature range can be applied uni-formly over the entire overlapped area without any attempt to create a variance in the temperature along this axial distance. With the pipe ends properly heated, the soldering material is applied to the exposed end 22 of the overlap. The material may be applied in ~3~5 7A) the conventional form such as a 1~8-- wire held up to the opening around its circumference. In accordance with a main ~eature of the present invention, the solder which is designated at 23 in Figure 6, will then flow up to the aligned grooves but not therebeyond.
Of course in practice traces or insignificant amounts may move slightly beyond the aligned grooves, but for practical purposes the flow of solder is essentially L
limited at the grooves.
It cannot be stated with exact certainty at which point in the grooves the flow stops. However, this is not material since the main purpose is to create a block for the solder flow at a point which is located well upstream from the end of the overlap where it opens into the interior of the conduit. Most likely, however, the solder material will stop at the middle of the grooves since along this circumferential line the pushed in portion of the outer pipe groove presses against the bottom of the groove on the inner pipe by virtue of the force that was applied to form the outer pipe aroove.
Although the one example described herein relates to grooving in a 3" copper piping, it will be understood .
that the present invention is applicable to any piping b wherein soldering material is used and piping of any t.-size. For larger pipes the groove would be appropriat-ely increased in width and depth with the limitation that the size of the groove cannot be made so big that ~
in forming it, the operator would distort the pipe in f`
a plane perpendicular to the pipe axis.
Also, the grooves could of course be formed in many ways other than by the roll grooving tool shown herein. As merely one example compression dies could be used. Moreover, the grooves could even be formed on at least. the inner pipe during the manu~acture thereof.
Although the invention has been déscribed in con- ~
siderable detail with respect to preferred embodiments, L
it will be understood that the invention is capable of ~3~
9 ~,6 numerous variations and modifications apparent to those skilled in the art, without departing rom the spirit and scope o the invention.

F

Claims (12)

I CLAIM:
1. A method for forming a pipe joint between two concentric overlapping pipe ends, comprising the steps of:
forming a circumferential groove into the exterior of the smaller, in erior pipe, inserting the smaller pipe into an open end of the larger pipe to a predetermined position, forming a circumferential groove into the exterior of the outer, larger pipe end so that the groove is aligned with the groove on the smaller, inner pipe, the confronting surfaces of the grooves tightly engag-ing one another to form a circumferentially continuous solder stop, heating the pipe ends, and while the pipe ends are thus heated, introducing a solder material into an exposed end of the overlapped pipe ends, such that the solder flows between the pipe ends to solder them together, and is substantially terminated, in the axial direction, at the said stop, such that no more than an insignificant amount of solder passes beyond the grooves.
2. The method according to Claim 1, wherein the grooves are circular.
3. The method according to Claim 2, wherein the grooves are formed in the exterior of each pipe end, forcing some material of each pipe end radially inwardly.
4. The method according to Claim 1, wherein the pipes are metallic and the solder is a silver composition.
5. The method according to Claim 4, including heating the pipes to a temperature of approximately 1100° F.
6. The method according to Claim 1, wherein the step of forming the grooves includes using a pipe cutting tool having at least one grooving roller and a support roller.
7. The method according to Claim 1, wherein each groove has a width in the axial direction of approxi-mately 1/16".
8. A joint for joining together overlapping pipe ends comprising:
a first circumferential groove formed into the exterior of the inner pipe end, a second circumferential groove formed into the exterior of the outer pipe end, said outer pipe including a circumferential protrusion across from the second groove and formed as a result of the formation of said second groove, the first and second grooves and the said circumferential protrusion all being axially aligned with the protrusion extending at least partially into the first groove to tightly engage the first groove to form a circumferentially continuous solder stop, the shape of the protrusion being dissimilar from the shape of the first circumferential groove, and including a solder composition in the space between the overlapped pipe ends from an exposed end of the overlap, up to the grooves, and substantially terminating at the said stop with no more than an insignificant amount of solder located beyond the grooves.
9. A joint according to Claim 8, wherein the grooves are circular.
10. A joint according to Claim 9, wherein each groove is formed into the exterior of its respective pipe, forcing some material thereof radially inwardly.
11. A joint according to Claim 8, wherein the pipe material is metal and the solder is a silver composition.
12. A joint according to Claim 11, wherein the pipe is copper.
CA000430452A 1983-06-15 1983-06-15 Method of joining pipe ends and joint formed thereby Expired CA1193985A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA000430452A CA1193985A (en) 1983-06-15 1983-06-15 Method of joining pipe ends and joint formed thereby

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CA000430452A CA1193985A (en) 1983-06-15 1983-06-15 Method of joining pipe ends and joint formed thereby

Publications (1)

Publication Number Publication Date
CA1193985A true CA1193985A (en) 1985-09-24

Family

ID=4125486

Family Applications (1)

Application Number Title Priority Date Filing Date
CA000430452A Expired CA1193985A (en) 1983-06-15 1983-06-15 Method of joining pipe ends and joint formed thereby

Country Status (1)

Country Link
CA (1) CA1193985A (en)

Similar Documents

Publication Publication Date Title
US4396213A (en) Method of joining pipe ends and joint formed thereby
US5056704A (en) Tube fitting having a saddle bead with conforming pilot
US3849871A (en) Method for welding pipes
US5836621A (en) Method of and joint for electrofusion coupling of thermoplastic pipes
US5638869A (en) Flexible metal hose connector and method of forming same
US4611830A (en) Partially consumable spacer chill rings and their use in welding pipe joints
CA2678652C (en) Welded component comprising seamless bent pipe and seamless straight pipe sections and methods of manufacturing thereof
EP0886098B1 (en) Method for producing a ventilation duct system
US5251714A (en) Method for soldering pipe end and counter member
US2528280A (en) Process of fabricating tubular fittings
US5775736A (en) Plastic pipe fittings
US4832383A (en) Pipe and flange assembly
EP0273312A3 (en) Method for welding ribbed pipe
CA1193985A (en) Method of joining pipe ends and joint formed thereby
US4322598A (en) Method for forming a conduit extending through and beyond opposite sides of a housing wall
US2598338A (en) Method of making pipe joints
US2072591A (en) Manufacture of fittings
EP0063239A1 (en) Multiple-wall pipe structure with anticorrosion end protection
SU1742090A1 (en) Method of pipe connection
JP7363015B2 (en) Manufacturing method of pipe structure
CA1145377A (en) Thermoplastic brazing of metal pipes
JPS6338267B2 (en)
JPH05337573A (en) Joining method of tube parts and its joined tube body using the joining method
RU94029182A (en) Coupling unit of pipeline tees
JPH05280676A (en) Flange structure for lining pipe

Legal Events

Date Code Title Description
MKEC Expiry (correction)
MKEX Expiry