CA1189636A - Apparatus for cooling integrated circuit chips - Google Patents

Apparatus for cooling integrated circuit chips

Info

Publication number
CA1189636A
CA1189636A CA000416183A CA416183A CA1189636A CA 1189636 A CA1189636 A CA 1189636A CA 000416183 A CA000416183 A CA 000416183A CA 416183 A CA416183 A CA 416183A CA 1189636 A CA1189636 A CA 1189636A
Authority
CA
Canada
Prior art keywords
housing
cooling
chips
cold plate
cooling portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
CA000416183A
Other languages
French (fr)
Inventor
Faquir C. Mittal
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sperry Corp
Original Assignee
Sperry Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sperry Corp filed Critical Sperry Corp
Application granted granted Critical
Publication of CA1189636A publication Critical patent/CA1189636A/en
Expired legal-status Critical Current

Links

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

ABSTRACT OF THE DISCLOSURE
A multichip thermal conduction module has improved cooling in a housing having a board including chips mounted on the hoard. The housing is divided so as to form first and second cooling portions. The chips are in the first cooling portion. Several bunches of heat conducting strands extend into the first cooling portion so that each bunch is urged into deflecting contact with a respective chip. A fluid inlet and outlet are provided in the second cooling portion.

Description

- `

This invention relates generally to heat exchange of an electrical article and more particularly to cooling a module containing a plurality of integrated circui~ chips.
The temperature o~ integrated circuit chips must be kept below speci-fied limits to ensure proper function, reliability and useful life. The trend in integrated circuit technology is to pack more circuits per chip which in-creases the heat generation per chip. Also, system designers are mounting chips closer together to minimize propagation delays in the interconnections. These trends and designs have increased heat flux, i.e. power per unit area, and caused a need for new cooling tec~miques.
In the conduction cooling of heat producing elements, a conductive heat transfer medium (a solid) is placed into contact with a heat producing ele-ment. The medium either has, or contacts another element which has, a greater surface area relative to the heat producing element so that heat is more easily dissipated from the greater surface area. To enhance heat dissipation from surface areas, a fluid is often used as a heat transfer medium by being moved over the heat dissipating surface area to "carry away" heat by convection.
From the foregoing it becomes quite clear that heat transfer is enhanced when there is greater surface contact between a heat producing element and a heat transfer medium.
The development of multichip thermal conduction modules to enhance the cooling of concentrations of chips resulted in various conduction cooling tech-niques including a plurality of resiliently urged pistons each contacting a chip and providing a thermal path to a portion of the module housing which is convection cooled by a fluid coolant.
This technique was further enhanced by encapsulating the pistons in 3~i helium gas to promote conduction cooling. Also, coolants such as air, water or fluorocarbons have been pumped through the hou-slngs .
Such pistons limit heat transfer regardless of piston geometry due to the rigidity of the piston. For example, if the piston has a curved contact surface then limited point contact with the relatively planar chip sur-face results in reduced heat transEer. Where the piston also has a relatively planar contact surface, the piston and chip contact surfaces must be in substan-]0 tial alignment to avoid point contaet.
The foregoing illustrates limitations of the knownprior art. Thus, it is apparent that it would be advantageous to provide an alternative directed to overcoming one or more of the limitations as set forth above~ Accordingly, a suitable alternative is provided including features more fully disclosed hereinafter.
In one aspect of the present invention, this is accom-plished by providing an integrated circuit chips cooling apparatus, comprising: a housing including a board having integrated circuit ehips mounted thereon, said chips having a substantially planar surface; means mounted in the housing for separating first and second eooling portions, said separating means including a cold plate and said chips being in said first portion opposite said plate; means including bunched, heat-conductive strands connected together at a first end to one side ofsaid cold plate and having a second end extending into said first cooling portion flexing and spreading apart in contact with said planar surface of a
-2 ~ ` ~

/ -respective chip; a fluid inlet in said housing; a fluid outlet in said housing; and other bunched, heat conductive strands having a first end connected to another side of said cold plate oppo-site said one side, said other strands having a second end spread-ing and extending freely into said second cooling portion.
The invention will now be described in greater detail with reference to the accompanying drawings, in which:
Figure 1 diagramma-tically illustrates an embodiment of the module of this invention; and Figure 2 diagramrnatically illustrates another embodi-ment of the -2a-
3~i module of this invention.
An apparatus for cooling integrated circuit chips is illustrated in Figure 1 as an improved thermal conduction module generally designated 10.
Module 10 includes a housing assembly 12 having a cap 14, a cold plate 16, a board 18, and flexible means 20.
Generally, modules 10 are known and cap 14 is preferably of aluminum or copper and includes a fluid inlet 22 and a fluid outlet 24. Cold plate 16 is typically of aluminum or copper and board 18 includes a plurality of in-tegrated circuit chips 26 mounted thereon having a substantially planar surface 28. A plurality of connector pins 30 are also mounted on board 18. Several of such boards 18 and their respective modules 10 are mounted on a card (not shown) via pins 30, as is well known. The above mentioned components of housing 12 are commonly held together by a plurality of suitable bolts 32.
Cold plate 16 and cap 14 provide a means mounted in housing assembly 12 for forming a first cooling portion 34 and a second cooling portion 36.
Chips 26 extend into first portion 34. The first and second cooling portions 34, 36 are fluid tight and, as it is well known, a more conductive environment than air, such as an inert fluid, helium, may be provided in irst portion 34.
Also well known, is the practice of moving a fluid coolant such as air, water or Eluorocarbons througll second portion 36 via inlet 22 and outlet 24.
The rate of heat transfer from chip 26 to cold plate 16 is vastly im-proved when contact resistance between chip 26 and the heat conductor is reduced.
The present invention reduces contact resistance by providing a flexible conduc-tor means 20 such as a plurality of bunches of heat conducting flexible strands 38, preferably beryllium copper~ having a first end 40 recessed into a bore 42 formed in co]d plate 16. First end 40 may be secured in bore 42 by brazing, welding or the like. A second end 44 of strands 38 flex and spread apart slightly as in a broom or brush so as to conform to planar surface 28 of chip 26 in response to being urged into deflecting contact with chip 26. A deflec-tion of about 4 or 5 mils is preferred.
A pump 46 and ~LopLiate conduit 48 may be ~plopriately connected to inlet 22 and outlet 24 for moving a fluid coolant, as above-mentioned, through second cooling portion 36. A heat exchanger 49, or some suitable means for re-cooling the fluid, is provided.
In another embodiment, Figure 2, first cooling portion 34 includes a fluid inlet 50 and a fluid outlet 52 connected to pump 46 via conduit 48 for moving the fluid coolant of second cooling portion 36 also through first cooling portion 34. Also, another plurality of bunches of strands 38a have a first end 40a recessed into a bore 42a formed in cold plate 16 and have a second end 44a extending freely into second cooling portion 36. In addition, the first named bunches of strands 38 may extend at an angle "V" relative to cold plate 16 to provide better contact distribution between end 44 and surface 28 of chip 26. It should be noted that, if desired, different coolants may be used in portions 34, 36. Also, inlets 22, 50 and outlets 24, 52 may be provided in multiples or have a slotted configuration,depending on factors such as the desired cooling effect, the type of coolant used, etc.
In operation, heat is conducted~ Figure 1, from chips 26 to cold plate 16 via strands 38. Thermal conduction in first cooling portion 34 is enhanced by the presence of helium. Fluid moved through second cooling portion 36 by a pump 46 provides convection cooling to dissipate heat tran~erred ~o cold plate 16.

63~i In Figure 2 heat is conducted from chips 26 to cold plate 16 via strands 38. Thermal convection is provided to first cooling portion 34 by fluid moved therethrough by pump 46. Additionally, strands 38a conduc~ heat from cold plate 16 into second cooling portion 36. Thermal convection is provided to second cooling portion 36 by the fluid moved by pump 46.
As a result of this invention, a conductive heat transfer medium is provided which is axially and angularly compliant with the chip surface. Thus, there is a substantial increase in surface area contact between the medium, in this case a plurality of strands, and a surface of the chip.

Claims (4)

THE EMBODIMENTS OF THE INVENTION IN WHICH AN EXCLUSIVE
PROPERTY OR PRIVILEGE IS CLAIMED ARE DEFINED AS FOLLOWS:
1. An integrated circuit chips cooling apparatus, compri-sing: a housing including a board having integrated circuit chips mounted thereon, said chips having a substantially planar surface;
means mounted in the housing for separating first and second cooling portions, said separating means including a cold plate and said chips being in said first portion opposite said plate;
means including bunched, heat-conductive strands connected toge-ther at a first end to one side of said cold plate and having a second end extending into said first cooling portion flexing and spreading apart in contact with said planar surface of a respective chip; a fluid inlet in said housing; a fluid outlet in said housing; and other bunched, heat conductive strands having a first end connected to another side of said cold plate opposite said one side, said other strands having a second end spreading and extending freely into said second cooling portion.
2. The apparatus of claim 1 including: means connected to said inlet and outlet for moving a fluid coolant through said housing.
3. An apparatus for cooling integrated circuit chips moun-ted on a board, the chips each having a substantially planar surface, the apparatus comprising a housing and means mounted in the housing for separating first and second cooling portions, said separating means including a cold plate, securing means for securing the housing to the board so that the chips are loca-ted in the first cooling portion opposite said plate, means in-cluding bunched, heat-conductive strands connected together at a first end to one side of said cold plate and having a second end extending into said first cooling portion flexing and spread-ing apart in contact with said planar surface of a respective chip; a fluid inlet in said housing; a fluid outlet in said hou-sing; and other bunched, heat conductive strands having a first end connected to another side of said cold plate opposite said one side, said other strands having a second end spreading and extending freely into said second cooling portion.
4. The apparatus of claim 3 including: means connected to said inlet and outlet for moving a fluid coolant through said housing.
CA000416183A 1982-06-09 1982-11-23 Apparatus for cooling integrated circuit chips Expired CA1189636A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US38655682A 1982-06-09 1982-06-09
US386,556 1982-06-09

Publications (1)

Publication Number Publication Date
CA1189636A true CA1189636A (en) 1985-06-25

Family

ID=23526095

Family Applications (1)

Application Number Title Priority Date Filing Date
CA000416183A Expired CA1189636A (en) 1982-06-09 1982-11-23 Apparatus for cooling integrated circuit chips

Country Status (1)

Country Link
CA (1) CA1189636A (en)

Similar Documents

Publication Publication Date Title
US4485429A (en) Apparatus for cooling integrated circuit chips
US4450505A (en) Apparatus for cooling integrated circuit chips
US4468717A (en) Apparatus for cooling integrated circuit chips
US5021924A (en) Semiconductor cooling device
EP0129966B1 (en) High cooling efficiency circuit module
US4884168A (en) Cooling plate with interboard connector apertures for circuit board assemblies
US5513070A (en) Dissipation of heat through keyboard using a heat pipe
KR900002213B1 (en) Cooling system for electron circuit device
CA1227886A (en) Liquid-cooling module system for electronic circuit components
US7639498B2 (en) Conductive heat transport cooling system and method for a multi-component electronics system
EP1381083B1 (en) Apparatus for removing heat from a circuit
US20080084664A1 (en) Liquid-based cooling system for cooling a multi-component electronics system
US20030097846A1 (en) Active temperature gradient reducer
JPH07142657A (en) Semiconductor chip cooler and cooling method
CA2348507A1 (en) Stacked circuit board assembly adapted for heat dissipation
US6862185B2 (en) Systems and methods that use at least one component to remove the heat generated by at least one other component
GB2280310A (en) Spring-biased heat sink assembly for a plurality of integrated circuits on a substrate
US7448438B2 (en) Heat pipe type heat dissipation device
WO1981003734A1 (en) Heat pin integrated circuit packaging
US5790379A (en) Surface complemental heat dissipation device
KR20010070141A (en) Electronic module
US6000125A (en) Method of heat dissipation from two surfaces of a microprocessor
US6510053B1 (en) Circuit board cooling system
JPH10284685A (en) Semiconductor module for electric power
CA1189636A (en) Apparatus for cooling integrated circuit chips

Legal Events

Date Code Title Description
MKEC Expiry (correction)
MKEX Expiry