CA1188841A - Blends of polyphenylene ether resins and styrene-tert- butylstyrene copolymers - Google Patents

Blends of polyphenylene ether resins and styrene-tert- butylstyrene copolymers

Info

Publication number
CA1188841A
CA1188841A CA000418323A CA418323A CA1188841A CA 1188841 A CA1188841 A CA 1188841A CA 000418323 A CA000418323 A CA 000418323A CA 418323 A CA418323 A CA 418323A CA 1188841 A CA1188841 A CA 1188841A
Authority
CA
Canada
Prior art keywords
tert
copolymer
styrene
butylstyrene
polyphenylene ether
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
CA000418323A
Other languages
French (fr)
Inventor
Glenn D. Cooper
Arthur Katchman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Priority to CA000418323A priority Critical patent/CA1188841A/en
Application granted granted Critical
Publication of CA1188841A publication Critical patent/CA1188841A/en
Expired legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

ABSTRACT OF THE DISCLOSURE
Homogeneous blends of polyphenylene ether resin and copolymers of styrene and 4-tert-butylstyrene are described. Rubber modifiers can be included in the copolymer or the blends. The blends are moldable into highly ductile articles having high heat distortion temperature.

Description

BLENDS_F POLYP:HENYLENE ETHER RESINS AND:STYRENE-TERT-B;UT~LSTYRENE COPOLYMERS
_ BACKGROUND OF THE INVENTION
~ .
The polyphenylene ether ~also known as polyphenylene oxide) resins are well known family of engineering plastics capable of being extruded, molded or otherwise shaped into articles of various shapes and sizes. A number of these resins and methods for their preparation are disclosed by Hay in U.S.
Patent Nos. 4,306/874, issued February 28, 1967 and 3,306,875, issued February 28, 1967, and by Gelu Stammatoff in U.S. Patent Nos. 3,257,357 and 3~257~358/ issued June 21, 1966.
It is known from Cizek, U.SO Patent No~
3,383,435, issued May 14~ 1968, and elsewhere~ that polyphenylene ethers are admixable with polystyrene to form blends having good properties.
Blends of polyphenylene ether and poly(4-tert-butylstyrene) in particular, after molding, have been found to be too brittle, with low tensile strength.
INTRODUCTION TO THE IN~ENTION

The discovery has now been made that certain copolymers of 4-tert-butylstyrene and styrene, unmodified or modified with rubber, can be blended with polyphenylene ether resin to produce a homogeneous (single phase) thermoplastic composition which can be molded into a ductile material having good tensile strength and good impact strength. Moreover, the composition has a higher heat distortion temperature (~DT) than the corresponding composite made with polyphenylene ether and polystyrene.
The copolymers useful in the present kinds of compositions are those in which the tert-butylstyrene content is in the range between 5~ and 65% by weight based on the total weight of the copolymer without the rubber modifier. Copolymers containing less than 5~ of tert-butylstyrene do not significantly improve the heat distortion temperature of the blend, while copolymers having greater than 65% of tert-butylstyrene result in blends which after molding are brittle, with very low impact strength. The sharp drop in properties which occurs with use of a tert-butylstyrene content of greater than 65~ is believed due to the incompatibility of such copolymers with polyphenylene ether resin; the blends are not homogeneous~ but rather comprise two distinct phases. The styrene-t-butylstyrene copolymers can be modified with rubber to improve the ductility and impact strength of the composi-tion.
The specified styrene-tert-butylstyrene copolymers are not compatible with polystyrene alone, and blends of these copolymers with conventional rubber modified high impact polystyrene (hereinafter also "HIPS") have lower impact strength in the moldings than blends of the same HIPS with polystyrene homopolymer.
However, the further discovery has been made that addition of polyphenylene ether resin produces a homo geneous matrix, i.e., a single phase, and properties of the resultant blends o~ polyphenylene ether resin, styrene-tert-butylstyrene copolymer and HIPS are equal to those of blends with the same rubber and polyphenylene ether concentration made with polystyrene hbmopolymer in place of the styrene-t-butylstyrene copolymer.
DESCRIPTION OF THE INVENTION
The polyphenylene ether resins useful in accordance with the present compositions are well known and readily available.

The preferred polyphenylene ethers are homo-- and copolymers oE the formula:

Q"' Q' ~ O ~

Q" Q

wherein Q, Q', Q' and Q"', are independently selected from the group consisting of hydrogen, hydrocarbon radicals, halohydrocarbon radicals having at least two carbon atoms between the halogen atom and the phenol nucleus, hydrocarbonoxY radicals and halohydrocarbonoxy radicals having at least two carbon atoms between the halogen atoms and the phenol nucleus, and Q'~ Q" and Q"' in addition may be halogen with the proviso that Q
and Q' are preferably free of a tertiary carbon atom;
and n represents the total number of monomer residues and is an integer of at least 50 Especially pxeferred is poly(2,6-dimethyl-1,4-phenylene) ether.
The compositions can also contain, as an optional ingredient, a rubber modified high impact polystyrene. The terminology "rubber modified high impact polystyrene" is used in this d~clogur~ in its conventional sense to refer to a wel`l known class of materials, methods for the preparation of which are known.
Examples are Foster Grant's FG 834 HIPS and Amoco's 6H~
grade of HIPS.
This invention thus provides thermoplastic compositions suitable for molding which comprise polyphenylene ether resin with or withbut rubber modified high impact polystyrene, and a rubber modified copolymer of styrene and tert-butylstyrene; or composition which comprises polyphenylene ether resin and styrene-t-butylstyrene copolymer, with or without rubber modified high impact polystyrene.
The rubber modified styrene-tert-butylstyrene copolymers which are useful in the present kinds of compositions can be made by the procedures known for preparing conventional rubber modified high impact polystyrene (HIPS).
By way of illustration, in one procedure styrene and tert-butylstyrene in the relative amounts desired for the finished copolymer are co-polymerized by heating in the presence of a radical forming catalyst, e.g., a peroxide, and a rubber, to form a pre-polymer, Polymerization is then continued in suspension in water.
The resultant polymer will comprise a copolymer of styrene and tert-butylstyrene in approximately the original relatively proportions and an amount of the rubber.
The resinous ingredients are combinable in virtually all proportions in the compositions. In the preferred forms, however, the weight percent of poly-phenylene ether resin to total resin weight varies from 10 to 90 percent.
The compositions can optionally also include additional resins to further modify physical and chemlcal properties. Such modifying resins as are described in Cizek, above, are useful, including linear, block or random copolymers of styrene and elastomeric materials, e.g., isoprene or butadiene. The additional resins include, by was of illusrtation, styrene containing co-polymers such as styrene-acrylonitrile copolymers (SAN~, styrene-butadiene copolymers, styrene-maleic anhydride copolymers, styrene-acrylonitrile-butadiene terpolymers (ABS), block copolymers of the A-B-A and A-B type where A is, for instance, polystyrene and B is, for instance, ~8~B~

polybutadiene or polyisoprene, radial teleblock copolymers of -these two materials, as well as hydrogenated forms of the block or radial teleblock copolymers in which the aliphatic unsaturation has been reduced, and acrylic resin modified styrene-butadiene copolymers.
The molding compositions of the invention can and advantageously do contain one or more of the supplementary non-resinous agents which have heretofore been customarily present in polyphenylene ether resin molding compositions to improve certain other physical and ~hemic~l properties of the moldings. The agents include flame retardants~ plasticizers~ anti-oxidants, strengthening fibers (for example, glass fibers and graphite whiskers), mineral fillers/reinforcements, abrasion resistant components, dyes, and pigments. Many of such agents are disclosed in U.S. Patent No. 4,172,929, issued October 30, 1979 to Cooper, et al.
The supplementary non-resinous agents are present in total amount of between about 1% and 50% on a weight basis, so as to provide the benefits which these materials have conferred in the past on shaped molded articles made from thermoplastic resins.
For applications where flammability is important, the optimum copolymer composition is from 5 to about 40%
by weight of tert-butylstyrene. Copolymers containing 25% of tert-butylstyrene yield blends with polyphenylene ether resin which have a flammability equal to or slightly better than blends of the polyphenylene ether with poly-styrene, but at 50% or more of tert-butylstyrene the blends have poorer flammability than blends with polystyrene.
Blends of polyphenylene ether and copolymers of 25%
tert-butylstyr~ne and 75% styrenel for ins-tance, have gGod flammability and physical properties and increase the heat dis-tortion temperature by about 20F.
The compositions can be prepared by any of a number of procedures. In one such procedure the components are dry blended, fed through a single screw Brabender or twin screw Werner-Pfleiderer extruder, Cllt or ground into particles and fed to an injection molding device.
The invention is further illustrated in the examples which follow. These examples are not to be construed as limiting the invention to the particular forms shown there, but rather are intended as preferred or best embodiments. Parts are by weight unless stated otherwise.

Preparation of a Rubber-Modified Copolymer of Styrene and tert-Butylstyrene.
A solution of 90g of Taktene 1202 poly(butadiene) 15 rubber in 455g of styrene and 455g of tert-butylstyrene (Dow Chemical Company Monomer No. CX2290; 95% para, 5%
meta~ was transferred to a one-gallon stainless steel reactor along with 0.6g of benzoyl peroxide and 0.6g of dic-umyl peroxide. The reactor was purged with nitrogen and the contents were heated, whlle being stirred at 700 rpm by a turbine blade agitator, for 4-1/2 hours at 90C.
(styrene conversion 28%). The prepolymer was transferred by a gear pump to a second reactor and suspended in 2000 ml of water containing 4.8g of poly(vinyl alcohol) and 3.6 of gelatin. Polymerization was completed by heating the suspension for 5 hours at 100 , 5 hours at 120 , and 6 hours at 140C. The mixture was cooled and the product, beads of a 50:50 copolymers of styrene and tert-butylstyrene containing 9% rubber, was filtered off, washed with water and dried.
This procedure was repeated with proportions of styrene and tert-butylstyrene varied to obtain a 25:75 copolymer and a 75:25 copolymer.

A mixture of 55 parts of poly(2,6-d~methyl-lr4-phenylene ether) resin (General Electric's PP , 45 parts of tert-butylstyrene copolymer prepared as described in Example 1, ~.5 parts of polyethylene, 3.5 parts of txiphenyl phosphate, 1 part of diphenyl decyl phosphite, 0.15 part of zinc sulfide and 0.15 part of zinc oxide was extruded in a 2g mm twin-screw extruder and extruded pellets were molded into standard test pieces by means of a screw injection molding machine. Properties are listed in Table 1.

Tert-Butylstyrene Izod (ft. Gardner IIDT Ave. Burn in Copolymer Elong.% lbs./in.) tin.lbs.) ( F.~ UL 94 (sec.
0* 50 3.6 110 250 V-l 16.0 ~S 60 3.1 100 270 V-l 13.4 32 2.9 125 283 drip 37 7 0.6 ~ 5 279 drip 80 * Amoco 6H6 HIPS; control experiment The blends have good tensile strength, impact strength and ductility up to a copolymer composition of 50% tert-butyl-styrene, with heat distortion temperatures substantially higher than that of a blend containing ordinary rubber-modified poly tyrene. Physical properties dropped sharply when the tert-butylstyrene content of the copolymer was increased to 75%. Flammability of the blend made with the copolymer containing 25% tert-bu-tylstyrene was as good as th~t of the control blend, but flammability was sub-stantially worse than the control for blends made with copolymer containing 50% or more oE tert-butylstyrene.

A mixture of 40 parts poly(2,6-dimethyl-1,4-phenylene ether~, PPO, 60 parts of rubber-modified copolymer prepared as described in Example 1, 1.5 parts of polyethylene, 8 parts of triphenyl phosphate, 1 part of diphenyl decyl phosphite, 0.15 part of zinc sul:Eide and 0.15 part of zinc oxide was extruded and molded as described in Example 2.
Properties are listed in Table 20 %Tert-Butyl~tyrene Izod (ft. Gardner ~IDT Ave.Burn in Copol~nerElong.% lbs./in.) (in.lbs.)( F.) ~lL-9a~ (sec.1 __ 0 41 ~.2 110 211 drip 24 31 3.5 100 228 drip 17
2~ 2.9 75 239 drip 72 7 0.6 ~ 5 241 drip 90 Copolymers of styrene and 4-tert-butylstyrene were prepared by the procedure described in Example l, but with no rubber present. E~ual weights of poly(2,6-dimethyl-1,4-phenylene ether) (PPO) and the tert-butylstyrene copolymer were dissolved in toluene, and the polymers were co-precipitated by adding the toluene solution rapidly to a large volume of rapidly stirred methanol.
The co-precipitated polymer was filtered off, dried in vacuum, and compression molded into film at ~ 500 F.
A film was also prepared from a co-precipitated l:l mixture of ordinary polystyrene with a 50:50 copolymer of styrene and tert-butylstyrene. The films were tested in a Perkin Elmer DSC-II differential scanning calorimeter, at a heating rate of 40C./minute, with the results listed in Table 3 below; a single transistion indicates a homogeneous blend, while two transitions show the presence of two distinct phases.

~CN-3557 _g_ Glass Transition Temperatures of 50:50 Blends of Tert-Butylstyrene with other Polymers.

Copolymer Composition 5 (%Ter-t-Butylstyrenel Second Polymer Tg( C.) O PPO 1~1 PPo 158 PP0 173 & 194 0100 PP0 160 & 210 Polystyrene 98 & 121 A mixture of 40 parts of a conventional high impact polystyrene containing 19.7% of rubber, 60 parts of styrene-4-tert-butylstyrene copolymer and 0.2 part of Irganox 1076 hindered phenolic antioxidant was blended in a twin-screw extruder. ~lends were prepared from copolymers containing 25%, 50% and 75% tert-butylstyrene. A control blend was prepared from 40 parts of the high impact polystyrene and 60 parts of ordinary polystyrene. A portion of the extruded pellets from each blend was molded into test bars in a screw injection molding machine.
%Tert Butylstyrene Izod impact strength Blendin Copolymer(ft.lbs./in.n.) _ ( F~

A 0 1.9 177 B 25 1.1 178 C 50 0.7 181 D 75 0.5 186 A mixture of 50 parts of poly(2,6-dimethyl-1,4-phenylene ether~ resin (PPO), 50 parts of the blend described in Example 5 and 3 parts of triphenyl pho~phate was extruded and molded as described in Example 2 Properties of the blends are summarized in Table 4.

~lthough impact strength of the blends of HIPS with tert-butylstyrene copolymers decreased steadily with increasing tert-butylstyrene content, the blends containing PPO in addition to the HIPS and tert-butylstyrene copolymer retained impac~ strength, tensile strength and ductility up to 50~ tert-butylstyrene, and had higher HDT than blends containing only polystyrene. Ductility, tensile strength, Izod impact strength, and Gardner impact strength all decreased sharply in blends made with the copolymer of 75% tert-butylstyrene and 25~ styrene.
TABI,~ 4 %Tert-Butylstyrene Tensile Yld. Izod (ft. Gardner ~DT
Blendln Copolymer Elong.% (psi) lbs./in.~ (in.lbs.) ( F) E 0 41 10,400 3.1 50 244 F 25 30 10,000 3.0 75 252 G 50 30 10,000 3.0 75 261 7 8,500 l.O ~5 261 Obviously, other modifications and variations of the present in~ention are possible, in light of the above disclosure. For instance, instead of poly(2,6-dimethyl-1,4-phenylene ether), copolymers such as poly(2,6-dimethyl-co~2,3,6-trimethyl-1~4-phenylene ether) can be used. It is therefore, to be understood that changes may be made in the specific embodiments described without departing from the scope of the invention as defined by the appended claims.

Claims (16)

The embodiments of the invention in which an exclusive property or privilege is claimed are defined as follows:
1. A thermoplastic composition, which comprises a homogeneous, single phase admixture of:
(a) a polyphenylene ether resin; and (b) a copolymer of styrene and 4-tert-butylstyrene, unmodified or modified with rubber.
2. A thermoplastic composition as defined in claim 1 wherein said copolymer of styrene is unmodified with rubber.
3. A thermoplastic composition according to claim 2, which includes a rubber modified high impact polystyrene.
4. A thermoplastic composition which comprises a homogeneous, single phase admixture of:
(a) a polyphenylene ether resin; and (b) a rubber modified copolymer of styrene and 4-tert-butylstyrene.
5. A composition according to claim 4, in which the polyphenylene ether resin is poly(2,6-dimethyl-1,4-phenylene ether).
6. A composition according to claim 2, in which the copolymer comprises from 5% to 65% by weight of 4-tert-butylstyrene based on the total copolymer weight, exclusive of any rubber modifier.
7. A composition according to claim 4, in which the rubber modifier for the copolymer is polybutadiene.
8. A composition according to claim 4, which comprises polyphenylene ether resin in an amount of from 10 to 90 percent based on the total resin weight.
9. A composition according to claim 4, which further includes one or more additives selected from among flame retardants, mineral fillers/reinforcements, strengthening fibers, plasticizers, antioxidants and dyes or pigments.
10. A thermoplastic composition which comprises a homogeneous, single phase admixture of:
(a) a polyphenylene ether resin;
(b) a copolymer of styrene and 4-tert-butyl-styrene; and (c) a rubber modified high impact polystyrene.
11. A thermoplastic composition, which comprises a homogeneous, single phase admixture of:
(a) a polyphenylene ether resin; and (b) a copolymer of styrene and 4-tert-butyl-styrene modified with rubber in which the copolymer comprises from 5% to 65% by weight of the 4-tert-butyl-styrene based on the total copolymer weight.
12. A composition according to cliam 10 or 11, in which the polyphenylene ether resin is poly(2,6-dimethyl-1,4-phenylene ether).
13. A composition according to claim 10, in which the copolymer comprises from 5% to 65% by weight of 4-tert-butylstyrene based on the total copolymer weight.
14. A composition according to claim 10 or 11, which comprises the polyphenylene ether resin in an amount of from 10 to 90 percent based on the total resin weight.
15. A composition according to claim 10 or 11, which further includes one or more additives selected from among flame retardants, mineral fillers/reinforcements, strengthening fibers, plasticizers, antioxidants and dyes or pigments.
16. A composition according to claim 11, in which the rubber modifier for the copolymer is polybutadiene.
CA000418323A 1982-12-22 1982-12-22 Blends of polyphenylene ether resins and styrene-tert- butylstyrene copolymers Expired CA1188841A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA000418323A CA1188841A (en) 1982-12-22 1982-12-22 Blends of polyphenylene ether resins and styrene-tert- butylstyrene copolymers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CA000418323A CA1188841A (en) 1982-12-22 1982-12-22 Blends of polyphenylene ether resins and styrene-tert- butylstyrene copolymers

Publications (1)

Publication Number Publication Date
CA1188841A true CA1188841A (en) 1985-06-11

Family

ID=4124203

Family Applications (1)

Application Number Title Priority Date Filing Date
CA000418323A Expired CA1188841A (en) 1982-12-22 1982-12-22 Blends of polyphenylene ether resins and styrene-tert- butylstyrene copolymers

Country Status (1)

Country Link
CA (1) CA1188841A (en)

Similar Documents

Publication Publication Date Title
CA1042588A (en) Composition of a polyphenylene ether and a hydrogenated block copolymer
US3994856A (en) Composition of a polyphenylene ether and a block copolymer of a vinyl aromatic compound and a conjugated diene
US4128602A (en) Polyphenylene ether compositions containing rubber modified polystyrene
US4239673A (en) Composition of a polyphenylene ether, a block copolymer of a vinyl aromatic compound and a conjugated diene and a polyolefin
US4166055A (en) Composition of a polyphenylene ether, a block copolymer of a vinyl aromatic compound and a conjugated diene and a polyolefin
US3835200A (en) Composition of a polyphenylene ether, a rubber styrene graft copolymer and normally rigid block copolymer of a vinyl aromatic compound and a conjugated diene
US4113797A (en) Thermoplastic molding compositions of rubber modified copolymers of a vinyl aromatic compound and an α,β-unsaturated cyclic anhydride
EP0401690B1 (en) Method for preparing a polyphenylene ether composition having high melt flow characteristics
EP0305764B1 (en) High molecular weight polystyrene blends with PPE and HIPS
JPH0480943B2 (en)
US4128604A (en) Polyphenylene ether compositions
US4578423A (en) Polyblends of polyphenylene oxide and styrene-acrylonitrile polymers having broad acrylonitrile compositional distribution
EP0090523B1 (en) Ppe compositions comprising an ethylene polymer containing carbonyl and hydroxyl groups
US5034459A (en) Polyphenylene ether compositions having improved flow
US4282335A (en) High molecular resin composition
CA2021100A1 (en) Polyphenylene ether compositions having improved flow
US4389511A (en) Blends of polyphenylene ether resins and styrene-tert-butylstyrene copolymers
JPH02187459A (en) Composition containing both polyphenylene ether resin and polyamide
CA1188841A (en) Blends of polyphenylene ether resins and styrene-tert- butylstyrene copolymers
US4684681A (en) Flow enhanced polyphenylene ether resin compositions
US4454271A (en) Blends of polyphenylene ether resins and styrene-tert-butylstryene copolymers
JPS63199753A (en) Polystyrene modified in impact resistance by rubber and polyphenylene ether resin containing the same
EP0016829A1 (en) Polyphenylene ether resin compositions containing polyphentenamer
CA1084195A (en) Composition of a polyphenylene ether resin, homopolystyrene and an a-b- a.sup.1 block copolymer
US4423176A (en) Molding compositions comprising polyphenylene ether, polysulfone and vinyl aromatic-diene block copolymer

Legal Events

Date Code Title Description
MKEC Expiry (correction)
MKEX Expiry