CA1184125A - Internal combustion engine - Google Patents

Internal combustion engine

Info

Publication number
CA1184125A
CA1184125A CA000391237A CA391237A CA1184125A CA 1184125 A CA1184125 A CA 1184125A CA 000391237 A CA000391237 A CA 000391237A CA 391237 A CA391237 A CA 391237A CA 1184125 A CA1184125 A CA 1184125A
Authority
CA
Canada
Prior art keywords
piston
cylinder
engine
crankshaft
connecting rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
CA000391237A
Other languages
French (fr)
Inventor
Hugh G. Evans
Stephen A. Speer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of CA1184125A publication Critical patent/CA1184125A/en
Expired legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B41/00Engines characterised by special means for improving conversion of heat or pressure energy into mechanical power
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F7/00Casings, e.g. crankcases or frames
    • F02F7/0002Cylinder arrangements
    • F02F7/0019Cylinders and crankshaft not in one plane (deaxation)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • F02B2075/022Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
    • F02B2075/025Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle two
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)
  • Valve Device For Special Equipments (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

Title: INTERNAL COMBUSTION ENGINE
ABSTRACT
In an internal combustion engine wherein the air inlet ports are opened and closed directly by the reciprocating movement of the piston, the crankshaft is laterally offset from the central plane common to the longitudinal axes of all of the cylinders. This results in a substantial increase in the power output of the engine.

Description

SPECIFICATION
-This invention relates to improvements in internal combustion engines, and most especially relates to so-called two-cycle enyines.

The history of the development of internal combustion engines has a continuing theme: the provision of an engine having the greatest possible horsepower for a given size and weight, while optimizing the durability and reliability of the engine.
In the past, the two requirements set forth above have had an almost inverse relationship. The power output of an engine, which is directly related to the total mass flowthrough of the engine, for a given volume of engine, could be increased, e.g. by either increasing the pressure applied to the working fluid or by increasing the speed of the engine, whereby the number of cycles per unit time was increased. Both of these conditions tended to increase the stress applied to the engine components, thus generally requiring a significant equivalent increase in the weight of the engine; and also increasing engine speed, especially, often resulted in a more complex engine~
For example, increasing the pressure, clearly requires thicker engine walls and also places a greater strain on all engine components. This of necessity requires either a signi-ficantly larger engine, and certainly a heaver engine, and also "~ro r~ , increases l:he likelihood of failure of the engine, especially caused by a failure of maintaining encJine seal, especially, for example, around the valves and between the moving piston and the cylinder wall.
An increase in engine speed, especially on the two-cycle engine, required an increase in the timing differential, or of the effective height of the working fluid inlet port into the engine cylinder. This increase in effective height has been obtained, for example, by providing a movable sleeve valve, located between the piston and the cylinder wall. The sleeve can be moved separately Erom the piston, albeit being ultimately driven by the power provided through the piston.
Such a sleeve valve engine is shown, for example, in U.S. Patent No. 1,956,804 to Meyer, wherein a single sleeve valve on the spark-ignited engine is provided with a combined reciprocating and oscillating movement relative to the cylinder and sleeve axes by means of a wobble valve shaft, ultimately driven from the engine crankshaft. In order to provide space for the wobble valve shart, and also coincidentally to red~lce piston slap, the crankshaft is offset to one side of the central longi-tudinal plane oE the engine cylinders, in the direction of the crankshaft rotation.
Offsetting of the crankshaft is also shown in ~.S.
Patent No. 2,3l5,llq, to Fels and U.S. Patent No. 2,392,921 to 13Olman, both of these latter two patents utilize a segmented piston-connecting rod involving a pivoted intermediate joint ' '`: ','~ j s between the plston rod and the crankshaft. In the case of Holman, there are two crankshafts offset on either side of the central plane of the cylinder which rotate in opposite directions. In each case, the crankshaft is offset in the direction of rotation of the crankshaft. Fels utilizes an intermediate rocker arm between the crankshaft and the piston connecting rod in order to maintain a more nearly constant tor~ue delivery during the engine cycle.
The invention broadly comprehends a 2-cycle, diesel cycle internal combustion engine comprising a single in-line engine block with internal wall surfaces defining at least one cylinder within the engine block. The longitudinal axis of each cylinder is aligned within the common plane extending longitudinally of the engine block. The axially extending internal wall surface to each cylinder has at leas-t one air intake port therethrough with a piston axially and reciprocal-ly movable within each cylinder so as to alternately cover and expose each air intake port. The engine is so designed that the diameter of the cylinder is greater than the permitted axial movement of the piston within the cylinder and an exhaust port is at the upper portion of the cylinder with a mechanically operated valve for opening and closing such port located immediately adjacent such port. A connecting rod is pivotably connected at one end to each piston and a crankshaft is rotatably connected to the second end of each connecting rod, such that the crankshaft is caused to rotate by reciprocating movement of each piston and there is a rotatable connecting means between the piston and the connecting rod. The improvement pertains to the axis of the crankshaft being parallel -to and ~1 -3-laterally offset from the common plane by a distance equal to at least about 20 percent of the stroke of the piston, and further to the rotatable connection means being located in the lower half of the piston, such that the period of time during which each air intake port is exposed is increased when the direction of crankshaft rotation is opposite to the direction of the crank-shaft offset from the common plane.
When reference is made to the direction of rotation of the crankshaft, this refers to the lateral direction of movement of the crankshaft, when it is considered as rotating with a crank moving downwardly.
Although this invention is applicable to internal combustion engines used for any purpose, the result of decreased weight and size, as well as a decrease in complexity, is clearly most important for engines used in powerins aircraft. For such purpose, any substantial increase in size or weight will have a far greater effect than for the powering of most surface vessels.

A further understanding of the present invention can be obtained by reference to the preferred embodiments set forth in the illustrations Of the accompanying drawings. The illustrated embodiment, however, is merely exemplary of certain presently known preferred systerns for carrying out the present invention. The drawings are not in-tended to limit the scope of this invention, but merely to clarify and exemplify, without being exclusive thereof.
Referring to the drawings:
Figure 1 is a side elevation view of the crankshaft of a three-cylinder engine according to this invention, with attendant reduction gears and showing one of the pistons attached to the crankshaft;
Figure 2 is a front elevation view showing the forward end of the crankshaft and main drive, together with the attendant reduction gears of the engine of Figure l;
Figure 3 is a transverse section through a cylinder and crankshaft of a two-cycle engine of the type of Figure l;
Figure 4 is a top plan view of the cylinder of Figure 3;
Figure ~ is a plan vlew of the three-cylinder engine illustrated; and Figure 6 is a cross-section through a piston showing a further embodiment of this invention.
Since most portions of -the engine utilizing the present invention can be of conventional construction, except for the significant advan-tages of decreased size and wei~ht for given power output obtainable by the present invention, it is believe~

~;

to be sufficient to illustrate only those portions set forth herein; these include a cross-section of a single cylinder, with the connecting rod and crankshaft connections being only diagrammatically shown. The invention deals primarily with the relationship of these parts to each other and not to any specific structural features. The engine shown is of the two-cycle diesel type, although this is merely exemplary and the invention is equally adaptable to a spark ignition engine, or even other modes or type of engine power cycles possible with reciprocating piston engines, that can function with an inlet port located through the side wall of the cylinder that is alternately opened and closed directly by the movement of the piston.
As shown in the drawings, the cylinder, generally indicated by the numeral 10, has a piston 12 reciprocally movable therewithin. The piston 12 includes a relatively thick head po~tion 13 and skirt 14 extending outwardly therefrom.
A wrist pin 16 is mounted within the skirt 14 at a location adjacent the outer end thereof. A piston connecting rod 18 is journaled around the wrist pin 16, at the upper end of the connecting rod 18. The piston head 13, as depicted in the drawing, presents a substantially convex surface, which is conventionally used for diesel engines. Similarly, a flat head surface could be provided if the engine were to be used ln a spark ignition cycle. Other configurations can be utilized, which are well known in the art, or which may be developed in the future, without affecting the present invention. In the upper end of the cylinder 10, Eour exhaust valves 19, of the poppet-type, are provided, which are opexated .~

by a cam shaft not explicitly shown in the drawings. Openings for two fuel injectors, defined by surfaces 20, are provided in this preferred embodiment. This invention is not limited, however, to any particular combustion chamber design, e.g.
the combination of valves, fuel inlets, and spark plugs, if any are used.
The in-line, two-cycle engine depicted in the drawings is shown as having three cylinders in accordance with Figure 1. It must be understood that this number is not limiting and either a smaller or greater number of cylinders can be present in any operating engine in accordance with this invention. The crankshaft in all cases is located such that its longitudinal axis is parallel to but laterally offset to a substantial extent from, the common plane extending lS longitudinally of the cylinder block and including the longitudinal axis of each cylinder in the block. The crankshaft, generally indicated by the numeral 24, is designed for a three-cylinder engine and thus includes three cranks 25, 26 and 27, which are separated from each other by the same distances as separate the center lines of the cylinders, and are angularly spaced apart about the circumference of the crankshaft, 120 degrees. As is shown in Figure 1, the crank 25 is journaled within the second end of the connecting rod 18.
The crank 24 operates the exhaust poppet valves and the various other accessories which may be utilized with this engine, such as for example an air turbo-charger, through the reduction gears shown in Figure 2. The main drive 3~, driven by the pinion year 29, connects to the main cam drive gear , ~

32 which, in turn, is connected by conventional means to the other camming gears including the right cam gear 38 and accessory gear 34, the left cam idler 35, the left accessory drive 36, the right accessory drive 37, the right cam gear 38, and the left cam gear 39. The shaft connections between these various gears and the exhaus-t valves or accessories are not shown here but are conventional in -the art, not having a direct effect on the present invention. It is useful to note, however, that preferred mechanical operating characteristics are obtained when the axis about which the main drive 30 rotates, passes through the common longitudinal plane of the cylinders in the piston block.
In the particular embodiment shown herein, each cylinder 10 is formed within a cylinder block 100, as by casting, there being a water jacket defined between the internal surfaces of the engine block 100 and the ex-ternal surfaces of the individual cylinders 10. Air inlet ports defined by lateral surfaces 40 are formed in the middle area of each cylinder 10, below the water jacket 10. A sleeve liner 42 is press fit into the cylinder bore, so as to remain stationary during engine operation. This sleeve 42 can also be cast in place or the interior surface of the cylinder wall can be suitably finished so that the piston rides directly on the cylinder 10. The cylinder liner 42 includes ports defined by la-teral surfaces 43, the ports ~3 being so located on the sleeve such that when the sleeve is slip fit within the cylinder 10, each port 43 is aligned with a complementary port 40 through the cylinder wall 41. The internal circurnferential surface of the cylinder liner 42 is so sized as to form a pressure-tight fit with the external clrcumferential surace of the piston skirt 14 during operation, and most specifically with the sealing rings 45 loca-ted circumferentially about the piston skirt 14.
The inlet ports 40 (approximately 10 ports) are arranged about the circumference of each cylinder symmetrically relative to the common plane of the engine. Each port 40 is open between the cylinder 10 and an inlet plenum defined by the lower wall 140 of the water jacket 100 and the curved surface 142. The substantially straight surface 141 and curved surface 142 are convergent such that the inlet plenum has a venturi-like cross-section, as shown in Fig. 3.
The invention as embodied in the above-described engine, allows greater engine speed (rpm) and eEficiency in operation by providing asymmetrical timing for the opening of the air inlet ports 40, 43, and increased effective port height for greater flow area cross-section, and, therefore, greater mass flow. A great advantage is obtained by the increased delay in the opening of the exhaust valve during each cycle, made possible by the offsetting of the crankshaft.
This increases the period of expansion during each cycle of the engine, resulting in improved mechanical and thermodynamic efficiency.
Referring to the depicted engine, during operation, each piston 12 reciprocates within a cylinder 10, alternately opening and closing the air inlet ports 40, 43. The greater the amount of air, i.e. the engine working fluid, that can be drawn in during each cycle, the greater will be the effective power output oE the engine, at a given engine speed, or cycle _g _ s time. The present invention permits an increase in the intake of air per operat:ing cycle of the engine by increasing the expansion period during each cycle. This is accomplished by permitting an increase in the height of the ports 40, 43, i.e. the distance parallel to the center line of the cylinder as shown in Figure 3, and by increasing the period of time during which the port is open during each cycle of the engine.
The length of the stroke of the crankshaft is effectively increased by its lateral offset rela-tive to the center line of the cylinder. Thus, the greater the degree of offset the greater the effective increase in working fluid mass flow rate and thus the greater the increase in power output. Preferably, in order to gain a substantial advantage from the offset, the offset distance should be at least equal to about 10 percent of the radius of the piston, and optimally at least about 20 percent of the radius.
The effectiveness of the offset is assumed to be proportional to the size of the offset angle (~). This angle ~ is maximized by maintaining the length of the connecting rod, i.e. the distance between the wrist pin 16 axis and the crank axis 25, 27, as short as possible. This can be shortened, e.g. by placing the wrist pin 16 axially outwardly from the piston head 13, i.e. as close to the outer end of the skirt 14 as is possible without mechanically interfering with the operation of the crankshaft at bottom dead center (as shown in Figures 3 and 6).
The angle ~ can be further increased by radially offsetting the pivoting connection between the piston and the connecting rod, e.g. wris-t pin 16, in -the direction opposite ,, from the offset direction of the crankshaft (as shown inFigure 6).
The effectiveness of the present invention can perhaps best be seen from the following specific example of an operating engine. In the three-cylinder, in-line, two-cycle, engine shown in the accompanying drawings, especially including Figure 6, the cylinder liner, or sleeve 42, has a bore diameter of S-1/8 inches, the piston stroke length is increased to about 3-7/16 inches and the air intake port height is about 11/16 inch. The length of the connecting rod, from the center axis of the piston wrist pin to the center axis of the crankshaft is approximately 6 inches. The lateral offset of the axis of the crankshaf-t to the right of the common longitudinal plane of the cylinders is about 1-5/8 inches, i.e. approximately equal to ~ the stroke of the piston, and the lateral offset of the wrist pin 16 to the left of the common plane is about inch. In this embodiment, the crankshaft rotates to the left, as is indicated by the curved arrows in Figure 3. This provides an offset angle ~ , i.e. between a line drawn from the center point of the piston wrist pin 16 to the longitudinal axis of the crankshaft 24 relative to the common longitudinal plane, (designated as ~ in F'igure 6) of about 14 degrees.
If the wrist pin 16 is located on the axis of the piston, i.e.
without any offset, ~ (in Figure 3) would be 12 degrees, and the stroke 3.39 inches.
Assuming that a conventional engine of this size (i.e. without any offset of crankshaft or wrist pin) develops approximately 400 horsepower at 3200 rpm, offsetting the crankshaft and wrist pin so as to provide an offset angle of = 14 where the piston 12 is at top dead center, results in an improvement of at least 15% in the power output, i.e.
to at least about 460 horsepower, and a concomitant increase in the maximum engine speed, i.e. to at least about 4000 rpm.
The operating cycle of the engine, as defined above, provides for the air intake ports 40, 43 to be open, that is, not covered by the piston skirt 14, for a period of 117 degrees of the total cycle of the piston. That is, the piston drops to below the level of the intake port 128 degrees after top dead center (TDC) and does not close until 115 degrees before TDC, i.e. when the piston has returned moving upwardly above the level of the intake ports 40, 43. Because of the offset (~) angle, the botton dead center oE the engine operation is 190 degrees after TDC. Accordingly, it is believed that the effective increase in the time during which the intake port is open is equal to aproximately ~2 of the angle ~ in each cycle.
It is believed that this invention is particularly adaptable to the so-called "square" or "over-square" engine design, that is, where the cylinder bore is equal to or larger than the piston stroke. Such engines provide a larger bore for a given volume-tric capacity and thus are be-tter able to accommodate the angled connecting rod without interference with its movemen-t.
It must be noted that care must be taken to maintain the structural strength of the piston wrist pin connection when placing the wrist pin 16 axially outwardly from the piston head 13, as shown in Figures 3 and 6.
Although offsetting, laterally or axially, the wrist pin, as described above, can create structural problems with ,~, ',:.. !

regard to the structural strength of the piston, a compromise of structural strength versus offset angle is among the parameters that must be taken into account in designiny an engine in accordance with the present invention. Other factors, as stated above, are the length of the connecting rod 18, the diameter of the connecting rod 18, and the distance between the outer end of the piston skirt 14 and the crank 25, 27 and the outer end of the cylinder. Thus, although in conventional engines, the cylinder walls extend a substantial distance below bottom dead center of the piston, to avoid obstruction for the present invention, the cylinder side walls 42 should be made as short as possible; alternatively, indentations or notches can be formed in the cylinder wall extending axially to the bottom dead center position of the piston during operation, to eliminate as much as possible any mechanical interference with the angled connecting rod 18, without disturbing the pressure seal of the cylinder/piston interface.
; Although a movable sleeve valve can be used to increase the air flow during operation of the piston, as compared to the simple port valve as shown in the accompanying drawings, the greater complexity of design of a sleeve valve is not required when the present invention is provided for a given engine design. It is critical that the crankshaft be offset in the direction opposite to the rotation of the crankshaft, in order to obtain the desirable asymmetrical port timing, which results in an increased open, or intake, period for the intake ports. Offsetting the crankshaft in the same direct~on as the rota-tion of the crankshaft, will not have this effect, and in fact should have the diametrically opposite effect of reducing the period of time during which the port is open.
In operating an engine in accordance with this invention, air can be pressurized, i.e. supercharged, prior to the intake into the engine, by means that are well known to the art. Such a pressurizer, or supercharger, can be operated by, for example, the accessory gears as defined above.
However, any type of supercharger, or intake air pressurizing means, can be used: exhaust gas driven turbochargers or so-called comprex, or pulsed, superchargers.
Similarly, fuel, i.e. petroleum hydrocarbons, can be fed into the engine by any of a variety of known methods.
For example, when operating a spark-ignited engine, the fuel can be fed either by a conventional carburetor or by a conventional fuel injector, both of which are well known to the art, or improvements or modifications thereof which may be developed in the future. For a diesel engine, the conven-tional means ~or feeding fuel is by use of a fuel injection system; however, again, other presently known means or other means which may in the future be developed can be utilized.

Claims (13)

The embodiments of the invention in which an ex-clusive property or privilege is claimed are defined as follows:
1. In a 2-cycle, diesel cycle internal combustion engine comprising a single in-line engine block, internal wall surfaces defining at least one cylinder within the engine block, the longitudinal axis of each cylinder aligned within the common plane extending longitudinally of the engine block, the axially extending internal wall surface to each cylinder having at least one air intake port therethrough, a piston axially and re-ciprocally movable within each cylinder so as to alternately cover and expose each air intake port, the engine being so designed that the diameter of the cylinder is greater than the permitted axial movement of the piston within the cylinder, an exhaust port at the upper portion of the cylinder and a mechanically operated valve for opening and closing such port located immediately adjacent such port, a connecting rod pivotably connected at one end to each piston and a crank-shaft, rotatably connected to the second end of each connecting rod, such that the crankshaft is caused to rotate by re-ciprocating movement of each piston, and a rotatable connecting means between the piston and the connecting rod, the improvement wherein the axis of the crankshaft is parallel to and laterally offset from the common plane by a distance equal to at least about 20 percent of the stroke of the piston and further wherein the rotatable connection means is located in the lower half of the piston, such that the period of time during which each air in-take port is exposed is increased when the direction of crank-shaft rotation is opposite to the direction of the crankshaft offset from the common plane.
2. The internal combustion engine of Claim 1, comprising in addition spark-ignition means located within the cylinder.
3. The internal combustion engine of Claim 1, comprising at least two cylinders and two pistons.
4. The internal combustion engine of Claim 1, wherein each connecting rod is a substantially rigid member connected between a piston and the crankshaft.
5. The internal combustion engine of Claim 4, wherein the piston comprises a piston head and a skirt portion extending axially outward from the piston head, and wherein the pivoting connection between the piston and the connecting rod is in a plane substantially perpendicular to the axis of the piston and located adjacent the axially outward portion of the piston skirt.
6. The engine of Claim 1, wherein the connecting rod pivots in relation to the piston about an axis that substantially intersects the longitudinal axis of the piston and cylinder.
7. The engine of Claim 1, wherein the connecting rod pivots in relation to the piston about an axis that is sub-stantially parallel to, but laterally offset from the common plane in a direction opposite to the direction of offset of the crankshaft.
8. The internal combustion engine of Claim 1, wherein the crankshaft is offset laterally from the common plane sufficiently to increase the period during which the air inlet port is open by an amount equal to at least 10 percent of the piston stroke length.
9. The internal combustion engine of Claim 1, comprising a convergent plenum in fluid flow connection between the ambient and each air intake port, the plenum being convergent towards each port.
10. The engine of Claim 1 comprising a plurality of substantially identical cylinders within the engine block, a plurality of pistons, one piston axially, reciprocally movable within each cylinder, a plurality of rigid connecting rods, one between each said piston and the offset crankshaft, the crankshaft being a single unitary rigid member, having a single axis, a plurality of mechanical camming means, one camming means being operatively connected to the mechanically-operated valve in each cylinder, drive means, operatively connected between the single crankshaft and each of the mechanical camming means, for driving the camming means, the plurality of camming means being so arranged with respect to the valve and the driving means, such that the exhaust port to each cylinder is opened at a predetermined point in time during the reciprocal movement of the piston within that cylinder, to exhaust gases from the cylinder, to a point which is relatively late in the cyclical movement of the piston, thereby increasing the period of expansion during each cycle of the reciprocating movement of each piston.
11. The engine of Claim 1, further including fuel injection means located in the upper portion of each cylinder.
12. The engine of Claim 1, further including air compression means in fluid flow connection to the air intake port, to provide pressurized air to the cylinder.
13. The engine of Claim 1, wherein the angle alpha formed between the connecting rod at the top dead center position of the piston and the longitudinal axis of the cylinder is equal to at least about 12 degrees.
CA000391237A 1980-12-02 1981-12-01 Internal combustion engine Expired CA1184125A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US21209380A 1980-12-02 1980-12-02
US212,093 1980-12-02

Publications (1)

Publication Number Publication Date
CA1184125A true CA1184125A (en) 1985-03-19

Family

ID=22789535

Family Applications (1)

Application Number Title Priority Date Filing Date
CA000391237A Expired CA1184125A (en) 1980-12-02 1981-12-01 Internal combustion engine

Country Status (14)

Country Link
EP (1) EP0065988A4 (en)
JP (1) JPS57502264A (en)
AU (1) AU549837B2 (en)
BR (1) BR8108902A (en)
CA (1) CA1184125A (en)
DD (1) DD201927A5 (en)
DE (1) DE3152567A1 (en)
ES (1) ES8301323A1 (en)
GB (1) GB2104151B (en)
IN (1) IN157675B (en)
IT (1) IT1144517B (en)
PL (1) PL234058A1 (en)
SE (1) SE8204519D0 (en)
WO (1) WO1982001913A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4945866A (en) * 1987-03-26 1990-08-07 Chabot Jr Bertin R Altered piston timing engine
GB8813073D0 (en) * 1988-06-02 1988-07-06 Kisch R Improved efficiency in reciprocating combustion engines
FR2710948B1 (en) * 1993-10-05 1996-02-09 Gheorghe Parciulea Internal combustion engine with cylinder moved later.
HU9500081D0 (en) * 1994-01-18 1995-03-28 Grumbkow Internal combustion engine
DE102004017218B4 (en) * 2004-04-05 2008-09-18 Plasmatreat Gmbh reciprocating engine
US9657768B2 (en) * 2014-11-04 2017-05-23 Ford Global Technologies, Llc Engine crankshaft

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1515946A (en) * 1924-11-18 Gas engine
US792615A (en) * 1903-02-19 1905-06-20 Robert H Ramsey Engine.
FR543889A (en) * 1920-12-08 1922-09-11
US2048223A (en) * 1931-08-19 1936-07-21 Scott Philip Lane Engine
US2368412A (en) * 1943-10-11 1945-01-30 William H Cords Internal-combustion engine

Also Published As

Publication number Publication date
PL234058A1 (en) 1982-08-02
WO1982001913A1 (en) 1982-06-10
AU549837B2 (en) 1986-02-13
ES507601A0 (en) 1982-11-16
DD201927A5 (en) 1983-08-17
ES8301323A1 (en) 1982-11-16
BR8108902A (en) 1982-10-26
EP0065988A1 (en) 1982-12-08
JPS57502264A (en) 1982-12-23
SE8204519L (en) 1982-07-30
SE8204519D0 (en) 1982-07-30
GB2104151A (en) 1983-03-02
IT1144517B (en) 1986-10-29
DE3152567A1 (en) 1983-01-13
EP0065988A4 (en) 1983-03-23
IT8149810A0 (en) 1981-12-01
IN157675B (en) 1986-05-17
AU8082082A (en) 1982-06-17
GB2104151B (en) 1985-10-02

Similar Documents

Publication Publication Date Title
US5076220A (en) Internal combustion engine
JP2718482B2 (en) Valve drive mechanism for two-cycle multi-cylinder engine
JP3016485B2 (en) Reciprocating 2-cycle internal combustion engine without crank
US6698405B2 (en) Reciprocating internal combustion engine with balancing and supercharging
EP0672219B1 (en) Rotary engine
US4491096A (en) Two-stroke cycle engine
US4884532A (en) Swinging-piston internal-combustion engine
JPH02204625A (en) Two-cycle engine
US5778833A (en) Water vehicle having a "V" shaped multi-cylinder crankcase scavenging engine
US4244338A (en) Internal combustion engine
US6250263B1 (en) Dual piston cylinder configuration for internal combustion engine
EP0476010B1 (en) Reciprocating piston engine with pumping and power cylinders
JPH03179152A (en) Intake system for two-cycle multicylinder engine
CA1184125A (en) Internal combustion engine
US5769039A (en) V shaped multi-cylinder engine of crankcase compression type
EP0767294B1 (en) Internal combustion engine
JPS598648B2 (en) Taikou Piston Gatadoriyokukikan
JPH07305636A (en) Offset engine
WO1988007127A1 (en) Two-stroke cycle engine and pump having three-stroke cycle effect
WO1995030080A1 (en) Valve device for an internal combustion engine
AU629238B2 (en) Crankless reciprocating two stroke internal combustion engin e
JPS6056121A (en) Two cycle internal-combustion engine
JPH03164524A (en) Crank chamber structure for two-cycle internal combustion engine
JPS6124528B2 (en)
JPH0524330B2 (en)

Legal Events

Date Code Title Description
MKEX Expiry