CA1170832A - Process for producing hydrogen - Google Patents

Process for producing hydrogen

Info

Publication number
CA1170832A
CA1170832A CA000404089A CA404089A CA1170832A CA 1170832 A CA1170832 A CA 1170832A CA 000404089 A CA000404089 A CA 000404089A CA 404089 A CA404089 A CA 404089A CA 1170832 A CA1170832 A CA 1170832A
Authority
CA
Canada
Prior art keywords
coke
kiln
hydrogen
gas
combustion zone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
CA000404089A
Other languages
French (fr)
Inventor
James R. Mcconaghy
Ardis L. Anderson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ConocoPhillips Co
Original Assignee
Conoco Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Conoco Inc filed Critical Conoco Inc
Priority to CA000404089A priority Critical patent/CA1170832A/en
Application granted granted Critical
Publication of CA1170832A publication Critical patent/CA1170832A/en
Expired legal-status Critical Current

Links

Landscapes

  • Coke Industry (AREA)

Abstract

Case No. 6153 Process for Producing Hydrogen Abstract of the Disclosure Carbonaceous material such as petroleum coke is calcined in the upper part of an air-injected ver-tical shaft kiln, and steam injected into the lower part of the kiln reacts with hot coke below the combustion zone to produce hydrogen and carbon monoxide. A product gas stream rich in hydrogen and low in nitrogen is with-drawn from a level below the combustion zone in the kiln.
High sulfur coke can be desulfurized in the process by maintaining the temperature in the calcining zone above 1400°C.

Description

1 1 7~83~

PROCESS FOR PRODUCING HYDROGEN
Background of the Invention This invention relates to calcining of carbonaceous material such as petroleum coke, and more particularly to production of a hydrogen-rich product gas stream in a ver-tical shaft kiln.
Calcination of carbonaceous material such as petroleum coke is carried out routinely. It is known that by main-taining a calcining temperature above about 1400C much of the sulfur in the material being calcined can be removed.
Such calcination is usually carried out in large inclined rotary kilns. A process for calcining petroleum coke in a moving bed vertical shaft kiln is described in U.S. Patent No. 4,251,323 issued on February 17, 1981 to John H. Smith and assigned to the assignee of this application.
It is also well known that hot carbon tabove about 315C) and steam react according to the water gas reaction C + H2O = H2 + CO. This reaction is the basis of much of the effort to gasify coal or other carbonaceous materia,l.
A typical gasification process is described in U.S. Patent No. 3,920,417. That patent describes a process wherein coal is fed to a moving bed retort, oxidizing gas is injected to burn a portion of the coal and heat the remainder, and steam is injected below the ignition level to produce the desired reaction. Product gas is removed from the bottom of the retort.
U.S. Patent No. 4,007,092 describes a fluid coking and 1 1 7~832 gasification process in which an oxygen-containing gas is introduced into the upper portion of the gasification zone and steam is introduced into the lower portion of the gasi-fication zone.
Both of the processes described the aforementioned patents are subject to a common deficiency. If air is used as the oxidizing gas, the product gas is heavily diluted with nitrogen. Nitrogen is difficult to remove from the product stream, and if not removed, drastically reduces the heating value per unit volume of the product gas. If the nitrogen dilution problem is avoided by using pure oxygen as the oxidizing gas, then an expensive air separation facility must be provided.
A process of calcining coke and producing synthesis gas 15 is described in U.S. Patent No. 3,676,517. Again, the pro-cess described results in the synthesis gas being diluted with nitrogen when air is used to oxidize coke in the cal-ciner.
There has been a continuing need for a process that could produce a high heating value gas from a gasification process which could utilize air as the oxidizing medium.
Such a process is provided by the present invention.

Summary_of the Invention According to the present invention, carbonaceous material is fed to a moving bed vertical shaft kiln, air is injected to provide a combustion zone in the kiln, steam is injected I 1 7~832 into the lower part of the kiln to produce hydrogen and carbon monoxide by reaction with hot carbon, and a product gas having a high hydrogen content and low nitrogen content is withdrawn from the kiln below the combustion zone. The gas flow throughout the kiln is upward, preventing nitrogen in the injected air from diluting the product gas which is withdrawn below the air injection level.
Thus, a gasification process is provided which allows use of ordinary air as the oxidizer without the resultant drawback of producing a nitrogen-diluted product gas stream.

Brief Description of the Drawings The Figure isa schematic cross section of a shaft kiln adapted to carry out the invention.

Desc_iption of the Preferred Embodiment The process of this invention is applicable to parti-culate carbonaceous material, and particularly to petroleum coke, either from the delayed coking process or the fluid bed process. The process has particular advantages when the coke has a high sulfur content, such as greater than 2 percent by weight.
The process of the invention provides the capability of producing a low sulfur calcined coke and a gas product undiluted with nitrogen utilizing a high sulfur coke, air and steam.
It is well known that calcining high sulfur coke at . ~ :, ..

~ 1 7 ~ ~3 3 ?

temperatures of from 1400 to 1600C greatly reduces the sul-fur content of the coke.
The equipment used in the process is in general conven-tional, and can be similar to tha-t described in U.S. Patent No. 4,251,323 referred to above. However, the kiln for this process must have provision for injecting steam into the lower section and for withdrawing product gas below the air injection level.
As shown in the drawing, a vertical shaft kiln 10 is provided with an upper receiving hopper 11 and distribution members 12 for uniformly feeding particulate carbonaceous material. An air distributor 13 is provided near the midpoint of kiln 10, and a steam distributor 14 is provided near the bottom of kiln 10. An upper gas draw 15 is provided near the top of the kiln to remove products of combustion along with vaporized moisture and volatile matter from the coke.
In the case of a high sulfur feed, hydrogen sulfide will be removed from gas draw 15 if the calcining temperature is maintained above about 1400C.
An intermediate gas draw 16 is provided below the level of air distributor 13 for removing gaseous products of the reaction C + H20---'H2 + CO which takes place in the lower part of the kiln. Through proper regulation of the various gas distributors and gas draws and use of mechanical seals or seal gas at each end of the kiln, the gas flow throughout the kiln is from bottom to top. Some of the gas from the lower portion of the kiln travels past gas draw 16 to the ,~

I ~ 7~832 combustion zone. Calcined product is removed through lower distributors 17.
Since gas draw 16 is below air distributor 13 and since gas flow is upward throughout the kiln, it will be apparent that the gas removed from gas draw 16 will be essentially nitrogen-free. The product gas can be used as a fuel gas, or it can be processed to provide an enriched hydrogen stream.
Either the raw product gas or the enriched hydrogen stream can be used for the catalytic hydrodesulfurization of liquid hydrocarbons.
Operation of the process utilizing a green delayed petroleum coke containing 10 percent by weight sulfur will now be described.
Green coke is introduced to the top of kiln 10. The rate of green coke feed is controlled by the rate of with-drawal of calcined coke from the bottom of the kiln. The coke is maintained at a temperature of from 1400 to 1600C
in the upper calcining section of the kiln for a time suf-ficient to calcine and desulfurize the coke to about a 1 percent by weic~ht sulfur level. Nitrogen, combustion pro-ducts, hydrogen sulfide and volatile material from the coke are removed through upper gas draw 15. The hydrogen sulfide can be removed and converted to elemental sulfur in a con-ventional manner.
Hot calcined coke descends past air distributor 13 and gas draw 16 where it reacts with steam to produce primarily hydrogen and carbon monoxide. From 5 to 25 percent by weight 1 1 7~832 of the carbon in the coke, and typically about 15 percent, will react with the steam by the reaction C + H20---'CO + H2 in a single pass~ The unreacted coke is cooled by the steam and removed as a calcined low-sulfur coke product.
Products of the steam-coke reaction are removed through product gas draw 16.
A typical gas product stream would have the composition set forth in Table I.
TABLE I
10Component Volume Percent
2 55 15~l2S nil N2 nil Thus, even though air is used as the oxidizing gas to the process, the product gas is nitrogen-free, providing an undiluted fuel gas having a higher heating value than is obtained in conventional gasification reactions when air is used as the oxidant.
The process as described above would also apply where the feed is a high sulfur petroleum coke produced by the fluidized bed process.

`\3~, , .'~,

Claims (4)

THE EMBODIMENTS OF THE INVENTION IN WHICH AN EXCLUSIVE
PROPERTY OR PRIVILEGE IS CLAIMED ARE DEFINED AS FOLLOWS:
1. A method of producing a gas stream which is high in hydrogen content and low in nitrogen content from petroleum coke comprising the steps of:
(a) feeding particulate green coke into the top of a vertical shaft kiln to provide a downwardly moving bed of coke in the kiln;
(b) injecting combustion air into an intermediate level of the kiln to provide a combustion zone;
(c) recovering internally-generated flue gas from the upper section of the kiln;
(d) introducing steam into the lower section of the kiln whereby the steam contacts hot coke descending from the combustion zone and reacts therewith according to the reaction C + H2O?H2 + CO to produce hydrogen and carbon monoxide;
(e) maintaining an upward flow of gas throughout said kiln; and (f) withdrawing a gas stream comprised of hydrogen and carbon monoxide from a level in the kiln below the combustion zone and above the steam injection level, thereby producing a product gas stream rich in hydrogen and substantially free of nitrogen.
2. The method of claim 1 wherein the petroleum coke is green delayed coke.
3. The method of claim 1 wherein the petroleum coke is fluidized bed coke.
4. The method of claim 1 wherein the petroleum coke is a high sulfur coke and the combustion zone is maintained above 1400°C whereby the coke is desulfurized.
CA000404089A 1982-05-31 1982-05-31 Process for producing hydrogen Expired CA1170832A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA000404089A CA1170832A (en) 1982-05-31 1982-05-31 Process for producing hydrogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CA000404089A CA1170832A (en) 1982-05-31 1982-05-31 Process for producing hydrogen

Publications (1)

Publication Number Publication Date
CA1170832A true CA1170832A (en) 1984-07-17

Family

ID=4122894

Family Applications (1)

Application Number Title Priority Date Filing Date
CA000404089A Expired CA1170832A (en) 1982-05-31 1982-05-31 Process for producing hydrogen

Country Status (1)

Country Link
CA (1) CA1170832A (en)

Similar Documents

Publication Publication Date Title
US4160663A (en) Method for the direct reduction of iron ore
CA1143159A (en) Method of converting liquid and/or solid fuel to a substantially inerts-free gas
US3890111A (en) Transfer line burner system using low oxygen content gas
EP0063924B2 (en) Methods for melting and refining a powdery ore containing metal oxides and apparatuses for melt-refining said ore
CA1154261A (en) Method of producing direct reduced iron with fluid bed coal gasification
US4298460A (en) Process for processing sulfur-containing heavy oil
CA1208021A (en) Method and means for gasifying carbonaceous material
US4578175A (en) Combined process for coal pyrolysis and char gasification
US2963348A (en) Hydrocarbon conversion process
US4212452A (en) Apparatus for the direct reduction of iron ore
JP2509192B2 (en) Method for producing carbon monoxide and hydrogen containing gas
US4041141A (en) Production of elemental sulphur
EP0196359B1 (en) Method and apparatus for fluidized bed reduction of iron ore
US3108857A (en) Method for the production of hydrogen
CA1126515A (en) Process for gasifying pelletized carbonaceous fuels
US4332641A (en) Process for producing calcined coke and rich synthesis gas
EP0068303B1 (en) Process for the manufacture of calcium carbide
US2654661A (en) Gasification of carbonaceous solid fuels
CA1170832A (en) Process for producing hydrogen
US3463623A (en) Process for gasifying caking coals
US3950503A (en) Calcination-desulfurization of green coke with concurrent sulfur production
CA1093823A (en) Process for prevention of condensation during transport of hot, crude coke-oven gas to its place of use
US3303017A (en) Metal treating process
CA1118207A (en) Continuous coke production from fine coal, char and low grade coal agglomerates by agglomeration and hardening stages
US4755372A (en) Catalytic sulfur degassing

Legal Events

Date Code Title Description
MKEC Expiry (correction)
MKEX Expiry