CA1170018A - Process for cooling a metal wire obtained from a liquid jet - Google Patents

Process for cooling a metal wire obtained from a liquid jet

Info

Publication number
CA1170018A
CA1170018A CA000355425A CA355425A CA1170018A CA 1170018 A CA1170018 A CA 1170018A CA 000355425 A CA000355425 A CA 000355425A CA 355425 A CA355425 A CA 355425A CA 1170018 A CA1170018 A CA 1170018A
Authority
CA
Canada
Prior art keywords
jet
wire
cooling fluid
cooling
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
CA000355425A
Other languages
French (fr)
Inventor
Guy Jarrige
Andre Reiniche
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Compagnie Generale des Etablissements Michelin SCA
Original Assignee
Compagnie Generale des Etablissements Michelin SCA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Compagnie Generale des Etablissements Michelin SCA filed Critical Compagnie Generale des Etablissements Michelin SCA
Priority to CA000355425A priority Critical patent/CA1170018A/en
Application granted granted Critical
Publication of CA1170018A publication Critical patent/CA1170018A/en
Expired legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

ABSTRACT OF THE DISCLOSURE

In order to cool the jet coming from a crucible and then the wire as it starts solidifying, there is used a cooling fluid in the form of a gaseous mixture having a base of gaseous hydrogen and at least one other component which is a compound of hydrogen capable of an endothermic chemical reaction in contact with the jet (wire) and of a chemical composition such that the product or products of this reaction have a high molecular content (mol %) of free hydrogen.

Description

~ 1 3~Vl~

PROCESS FOR COOLING A MF.T~L WIRE OBTAINED FROM
A LIQUID JET
of which the following is a SPECIFICATION

This invention relates to processes for manufacturing a wire of metal or metal alloy in an installation comprising essentially a cr~cible containing the molten metal or metal alloy, a die arranged in a wall of the crucible, an enclosure containing a pressurizing fluid acting on the metal or metal alloy in th~ crucible and another enclosure following the die and containing a cooling fluid, the wire being obtained by projecting a jet of the metal or metal alloy, under the effect of the pressurizing ~luid, through the die into the cooling enclosure, wherein the liquid jet is cooled and trans~ormed into solid wire.
U.S. patent No. 3,543,-831 describes the cooling of a metal jet coming from a die by means of a suspension of liquid or solid particles. T.he particles are capable of reacting chemically in contact with the hot jet. The chemical reaction upon the contact oE the particles with the jet may be of the endothermic type in the case of solid , .- ; :

~:~
70 0 ~ 8 particles, they being intended to form a solid coating on the wire.
U.S. patents Nos. 4,149,584 and 4,153,099 describe an enclosure and a cooling fluid in which a fluid having a base of hydrogen and water vapor forming a mist is used. The droplets of water of the mist by coming into contact with the jet (wire) contribute by evaporation to the cooling of the latter.
The object of the present invention i5 to improve the ~ate of the heat exchange in the cooling enclosure between the jet (wire) and the cooling ~luid in the form of a gaseous mixture having a base of gaseous hydrogen and at least one other component.
The method of cooling employed in processes for the manufacture of wire of metal or metal alloy of the type described above, employing a cooling 1uid in the ~or~ of a gaseous mixture having a base of gaseous hydrogen~
and at least one other component in the cooling enclosure is char~cterized in accordance with the invention by the use of a cooling fluid in which the other component is a compound of hydrogen capable of an endothermic chemical ~eaction in contact with the jet (wire) and o a chemical composition such that the product or products of this reaction have a high molecular content (mol %) o free hydrogen.
The invention thus constitutes a combination between the cooling effect due to the endothermic chemical reaction of the other component and the cooling effect due to the enrichment of the cooling ~luid in hydrogen by the large amounts of free hydrogen resulting from the reaction , nJ~ ~ o ~
o~ the other component. Gaseous hydrogen has a thermal conductivity which is far greater than that of other gases, such as helium, argon, carbon dioxide and nitrogen. Further-more, the specific heat per unit of mass of hydrogen is large.
S The expression "jet (wire)" means that the cooling fluid acts first of all on the jet hut may also act on the wire, as long as the temperature of the wire permits the maintaining of the endothermic c~emical reaction.
It is also possible to use as khe other component an oxygen donor, particularly within the scope of the processes for the manufacture o steel wires in accordance ~ith U.S. patents Nos. 3,933,441 and 3,861,452, the steel prqjected into the cooling fluid having a content of silicon and possihly o~ manganese such tha~ the oxidation product upon the contact of the jet with the cooling fluid is silica.
The silica sheathing thus produced stabilizes the jet and permits the manufacture of continuous wires.
Instead of using a single other component in the gaseous mixture containing hydrogen which dissociates within the course of an endothexmic chemical reaction liberating ~ree hydrogen when it comes into contact with the ~et (wixe), one may use two other components which react endothermically with each other in-eontact with the ~et (wire), liberating ~ree hydrogen.
Examples of cooling fluids which can be used within the scope of the process elaimed are given below:
Example 1 In this example, the other component of the cooling fluid in aceordance with the invention undergoes an endo-thermic chemical dissociation reaetion when, in contact ~;3-: , ~ ~ ~ 7~0~
with the jet, it reaches its dissociation temperature.
The component itself as well as the products resulting from its dissociation are chemically inert with respec-t to the jet (wire) of metal or metal alloy. A cooling ~luid formed of a gaseous mixture of 50 mol % ammonia (NH3) and 50 mol ~ hydrogen (H2) is used. The liquid ammonia under pressure ln a cylinder is autovaporized by expansion in a number of atomizers which discharge into the cooling enclosure. The boiliny point of ammonia at a pressure of one atmosphere is equal to -33.3C.
The ammonia coming into contact with a jet of liquid steel of a diameter of 1 mm dissociates endother-mically in accordance with the equation:
2NH3 - N2 + 3H2 the products of the dissociation containing 75 mol ~ of free hydrogen~
The endothermic dissociation and the ree hydrogen contributed by the dissociation absorb large amounts of heat.
The thermal transfer is increased by about 30% as compared with a mixture of water vapor and hydrogen.
Example 2 In this example, there are two other cooling-1uid components in accordance with the invention which undergo an endothermic chemical reaction between themselves when, in contact with the jet, the temperature for this reaction is reached.
A first other component is water vapor, incorporated in H2 by sakurating the latter by passage through an ordinary humidifier which makes it possible to reach saturation with ~70~

water at 70C; this gaseous mixture which contains 69 mol of hydrogen is injected into the cooling enclosure. The second other component is propane (boiling point at one atmosphere; -42.6C.) injected into the cooling enclosure.
50 mol % of the f irst other component ~water vapor) are mixed with 50 mol ~ of the second other component (propane), the liquefied propane under pressure in a cylinder being auto-vaporized by expansion in a number of atomizers discharg ing into the cooling enclosure.
The propane (C3H8~ coming into contact with the ~et (wire) of stainless steel of 1.75 mm in diameter participates, as well as the water vapor, in the endothermic chemical reaction in accordance with the equation.
C3H8 + 3H2~ 3CO + 7~2 the products of the xeaction containing 70 mol ~ free hydrogen.
The thermal transfer is improved by about 50 as compared with a mixture of water vapor and hydrogen.
It is to be noted that the carbon monoxide (CO~
liberated during the said reaction contains oxygen. It can therefore be used as oxygen donor of the cooling fluid for the production of silicon steel wire by the processes described in U.S. patents Nos. 3~861,452 and 3,933,441 which have been mentioned above.
In place of propane, one can use other hydrocarbons which hav~e a boiling point less than ambient temperature, are of low cost and are readily available on the market in liquid and compressed state, such as ethane, butane, isobutane, propadiene and butadiene.

, _ .
' .

.
' , ':,' ~ .

J ~ ~o()~
Example 3 .~ I
A cooling 1uid containing 45 mol % of hydrogen (H2) and 55 mol % of the following two other components is used:
- lst other component: 45 mol % of propane (C3H~) injected at several points close to the jet (wire) after expansion in an orifice with au-to-vaporization of the propane coming Erom a liquefied gas cy,linder under pressure.
-~ 2nd other c~e~ 10 mol ~ of water vapor ~2) injected at several poin*s close to the ]et (wire~
a~ter expansion in an orifice with auto-vaporization of the water heated to 200C. under a pressure of 17 atmospheres.
After endothermic chemical reaction between the water ~apor (steam) and propane in contact with the jet (wire) in accordance with the equation C3H~ + 3H2O -~ 3CO ~ 7H~, th~ products of the reaction contain 70 mol % of free h~drogen.
The heat transfer is improved 53% as compared with,a mixture of water vapor and hydrogen.
In these three examples, the cooling fluid in accordance with the invention has a specific weight greater than that of a cooling fluid formed of a mixture of hydrogen 2S and water vapor: The mixture of Example 1 has a specific weigh~ which is 4.75 times greater, the mixture of Example 2 has a specific weight which is 11.5 times greater, and the mixture of Example 3 has a specific weight which is 10.4 times greater than that of a mixture of hydrogen and water vapor.

~ ~ 7Q~

To use a cooling fluid of a specific weight greater than that of a mixture of hydrogen and water vapor is of interest, particularly in installations in which a cooling fluid is also used to support the jet (wire~ and/or stabilize it.
In general, the cooling fluid in accordance with the invention is at a pressure close to ambient pressure.
Furthermore, it is advantageous to use a cooling fluid having a base of as large an amount as possible of hydrogen, preferably at least 30 mol % but not exceeding 80 mol % of the initial composition of the cooling fluid, as well as one or more other components, the product or products of the endothermic chemical reaction of which in contact with the jet (wire) contain as large an amount as possible of free hydrogen, preferably at least 50 mol %.
By initial composition there is understood the composition of the cooling fluid before the contact with the jet twire) and before the endothermic chemical reaction which this contact initiates. By reaction products there are un-derstood the products appearing on the right-hand side of the chemical equations symbolizing the endothermic chemical reaction.

~1

Claims (8)

The embodiments of the invention in which an exclusive property or privilege is claimed are defined as follows:
1. A process for cooling a wire of metal or metal alloy produced in an installation comprising essentially a crucible containing the molten metal or metal alloy, a die arranged in a wall of the crucible, an enclosure containing a pressurizing fluid acting on the metal or metal alloy in the crucible and another enclosure following the die and containing a cooling fluid in the form of a gaseous mixture having a base of gaseous hydrogen and at least one other component, the wire being obtained by projecting a jet of the metal or metal alloy through the die into the cooling enclosure, characterized by the use of a cooling fluid in which said other component is a compound of hydrogen capable of an endothermic chemical reaction in contact with the jet (wire) and of a chemical composition such that the product or products of said reaction have a high molecular content (mol %) of free hydrogen.
2. The process according to claim 1, characterized by the use of a cooling fluid having a base of at least 30 mol % but not exceeding 80 mol % of gaseous hydrogen referred to the initial composition of the cooling fluid.
3. The process according to claim 1, characterized by the fact that said other component has a chemical composition such that the product or products of said reaction contain at least 50 mol % of free hydrogen.
4. The process according to claim 1, 2 or 3, characterized by the fact that the cooling fluid contains two other components which participate in an endothermic chemical reaction in contact with the jet (wire).
5. The process according to claim 1, 2 or 3, characterized by the fact that aid other component undergoes an endothermic chemical dissociation reaction in contact with the jet (wire).
6. The process according to claim 1, 2, or 3, used to manufacture wire by projecting a jet of steel into a cooling fluid, the steel having a content of silicon and possibly of manganese such that the oxidation product upon the contact of the jet with an oxygen-donor cooling fluid is silica, characterized by the fact that a product of the endothermic chemical reaction in contact with the jet (wire) contains oxygen and is used as oxygen-donor of the cooling fluid.
7. The process according to claim 1, characterized by the fact that said other component is ammonia.
8. The process according to claim 1, characterized by the fact that said other components are water vapor and a hydrocarbon selected from the group consisting of ethane, propane, butane, isobutane, propadiene and butadiene.
CA000355425A 1980-07-04 1980-07-04 Process for cooling a metal wire obtained from a liquid jet Expired CA1170018A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA000355425A CA1170018A (en) 1980-07-04 1980-07-04 Process for cooling a metal wire obtained from a liquid jet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CA000355425A CA1170018A (en) 1980-07-04 1980-07-04 Process for cooling a metal wire obtained from a liquid jet

Publications (1)

Publication Number Publication Date
CA1170018A true CA1170018A (en) 1984-07-03

Family

ID=4117341

Family Applications (1)

Application Number Title Priority Date Filing Date
CA000355425A Expired CA1170018A (en) 1980-07-04 1980-07-04 Process for cooling a metal wire obtained from a liquid jet

Country Status (1)

Country Link
CA (1) CA1170018A (en)

Similar Documents

Publication Publication Date Title
Yokoyama et al. The hydrogenation of carbon monoxide by amorphous ribbons
Kikuchi et al. Steam reforming of hydrocarbons on noble metal catalysts (part 1) the catalytic activity in methane-steam reaction
Kowalczyk et al. Studies on kinetics of ammonia synthesis over ruthenium catalyst supported on active carbon
Byrne et al. Studies of the interfacial kinetics of the reaction of nitrogen with liquid iron by the 15 N-14 N isotope exchange reaction
CA1111075A (en) Production of ethylene
Baker et al. Catalyzed nitric oxide reduction with carbon monoxide
US4303119A (en) Process for cooling a metal wire obtained from a liquid jet
CA1170018A (en) Process for cooling a metal wire obtained from a liquid jet
Pennline et al. Operation of a tube wall methanation reactor
DE69130959D1 (en) Continuous production of iron-carbon alloy from iron carbide
GB793336A (en) Improvements in or relating to obtaining a substantially pure argon fraction from anoxygen- and nitrogen-containing stream such as air in which a small percentage of argon is present
RU98107836A (en) SILICON IRON POWDER CONTAINING SILICON, METHOD FOR ITS PRODUCTION AND DEVICE FOR IMPLEMENTING THE METHOD
McGeer et al. Ammonia Decomposition and Related Phenomena on Rhenium Catalysts1
US6099922A (en) Thermally insulated metal surface protected against metal dusting corrosion
CA1050052A (en) Method of transporting heat energy
US1134677A (en) Process of producing propylene from acetylene and methane.
CA1135478A (en) Method of producing ammonia by catalyzed reaction between hydrogen and nitrogen
Koh et al. Kinetics of ethylene hydrogenation over a supported nickel catalyst
US4859434A (en) Production of endothermic gases with methanol
CA1106393A (en) Process for the production of methyl acrylate
MacIver et al. THE CHEMISORPTION OF GASES ON CHROMIA SURFACES AT LOW TEMPERATURES1
NO301341B1 (en) Procedure for preventing adhesion by annealing steel strips
Fruehan et al. Rate of decarburization of Fe-C sat melts by H 2 O at 1523 and 1873 K
Griffiths et al. Pyrolysis of isopropyl nitrate—II. Decomposition at high temperatures and pressures
Plane et al. A study of the reaction Li+ O2+ M (M= N2, He) over the temperature range 267-1100 K by time-resolved laser-induced fluorescence of Li (22PJ-22S1/2)

Legal Events

Date Code Title Description
MKEX Expiry