CA1162991A - Method and apparatus for conducting smut-free welding - Google Patents

Method and apparatus for conducting smut-free welding

Info

Publication number
CA1162991A
CA1162991A CA000359442A CA359442A CA1162991A CA 1162991 A CA1162991 A CA 1162991A CA 000359442 A CA000359442 A CA 000359442A CA 359442 A CA359442 A CA 359442A CA 1162991 A CA1162991 A CA 1162991A
Authority
CA
Canada
Prior art keywords
welding
shield body
source
gas
passages
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
CA000359442A
Other languages
French (fr)
Inventor
Thomas E. Shoup
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nelson Stud Welding Inc
Original Assignee
TRW Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TRW Inc filed Critical TRW Inc
Priority to CA000434144A priority Critical patent/CA1176712A/en
Application granted granted Critical
Publication of CA1162991A publication Critical patent/CA1162991A/en
Expired legal-status Critical Current

Links

Landscapes

  • Arc Welding In General (AREA)

Abstract

ABSTRACT OF THE DISCLOSURE
Method and apparatus for welding studs to a work-piece are provided. When studs are welded to workpieces using a drawn-aro, stud-welding technique, a coating of smut is sometimes deposited on the workpiece around the welded end of the stud. This coating detracts from the appearance and if the workpiece is covered with coating material, such as paint, the smut must first be removed, requiring an extra operation.
It has been found that the coating of smut will not be depos-ited, if, during the welding cycle, fluid is carefully deposited on the weld area around the end of the stud where the weld occurs.
This fluid consists of a small volume of low pressure air and an anti-smut liquid.

Description

3~

This invention relates to a method and apparatus for welding a stud to a ~orkpiece without a coating of smut being deposited thereon, by supplying low pressure air and ant;.-smut fluid through a spark shield around the weld areaa The broad concept of supplying gas through a spark shield of ferrule around a stud to be welded to a workpiece is known in the art. This can be found in the following patents: 2,727,123; 2,790,066; 3,096,429; 3,363,084; 3,736,401;
3,790,740. In these prior patents, the equipment employed was used to provide an inert atmosphere ar~und-analuminum stud during welding, or to supply air around the stud to aid in welding through gal~anized sheet steel. Patenks 3,495,066 and 3,676,640 also show welding equipment using gas around a welding .. area.
When studs are welded to workpieces by a drawn-arc, stud-welding technique, it i.s not uncommon for a coating of smut to ke deposited on the workpiece around the welded end of the stud. This frequently occurs with trim studs which are welded to automobile bodies for the subsequent attachment of clips and trim strips or windshield mounting clamps, for example. After the studs are welded and before the clips and trim are applied, the body receives a protective coating such as a primer, and subsequent decorative coatings. If the coating of smut around the welded stud is not first removed from the automobile body, the protective coating ~ill not adhere properly and will separate from the surface. Thus, an e.xtra operation is required to remove the smut after welding and before the first coating is applied.

In accordance with the invention, a method and appa-ratus are provided or welding studs to workpieces withoutcoatings of smut being deposited thereon. A spark shield is
-2~

r~

utilized around the stud and a chuck in which the stud is held, with the spark shield having a plurality of passages therein which are directed toward the workpiece around the location where the stud is to be welded. ~'luid is then directed through the passages to~ard the area during the welding cycle. The fluid consists of low pressure air and an anti-smut liquid which i5 gently deposited on the surface of the weld area at low velocity~ in thin films. The fluid does not impinge di-rectly on the weld area in line with the end of the stud; other-wise, the pilot arc and the subsequent ~elding arc imposedbetween the end of the stud and the workpiece may be blown out or extinguished so that a ~eld would not result. The end of the spark shield also has a plurality of notches therein through which gases and small beads of weld metal, kno~n as -~splatter, can escape. The notches also help to direct the fluid.
It is, therefore, a principal object of the invention to weld studs to workpi~eces without coatings of smut being deposited on the workpieces around the studs.
Another object of the invention is to provide an in-expensive method and apparatus for welding studs to workpiecesand to prevent coatin~s of smut from being deposited on the workpleces~ duxing the ~elding cycle.
A further object of the invention is to weld trim studs ~, to automobile bodies and to subsequently coat the bodies with protective material without irst having to remove coatings of ` smut around the studs.
Yet another object of the invention is to provide a method and apparatus for preventing coatings of smut from being deposited around welded studs by directing low volume air and anti~smut liquid onto the area around the stud during the ~elding cycle.
3 ~J ~
Many other objects and advantages of the invention will be appar~nt from the following detailed description of a preferred embodiment thereof, reEerence being made to the accompanying drawings, in which:
Fig. 1 is an overall schematic view, partly in eleva-tion and partl~ in section, of apparatus for welding studs to workpieces in accordance with the invention;
Fig. 2 is an enlarged, front in elevation, with parts broken away and with parts in cross section, of a welding foot and spark shield of the apparatus of Fig. l;
Fig. 3 is a view in vertical cross section taken along the line 3-3 of Fig. 2;
Fig. 4 is a view in longitudinal cross section of the spark shield and a chuck; and Fig. 5 is a view in transverse cross section taken generally along the line of 5-S of Fig. 3.
P~eferrin~ to the drawincJs, and particularly to Fig. 1, a stud welding tool 10 according to the invention is used to weld a stud to a workpiece by means of a drawn-arc welding technique. The basi~ tool is known in the art and includes means for retractin~ a stud from the workpiece, means for hold-ing the stud in the retracted position for a predetermined period of time, and means for moving or plunging the stud toward and against the workpiece at the end of the predetermined period. As the stud is retracted from the workpiece, a pilot arc is drawn between the end of the stud and a main welding arc is subsequently imposed on the pilot arc, with the main welding arc then being maintained until the stud is plunged back against the workpiece. The tool can be of the type shown in U.S. patent 3,525,846, for example. This tool pre~erably utilizes a capa-citor discharge type of power source, as shown in U.S. patent 3,136,880, for example.

A power and control unit 12 supplies power for the pilot and the main welding arcs and for a solenoid coll in a tool body 14 which retracts the stud against the force of a plunge spring when the coil is energized. ~ chuck leg 16 ex-tends into the coil and also extends for~7ard].y of the tool body 14 where it is suitably connected to a chuck 18 (Figs. 2 and 4).
In this instance, a trim stud 20 (Fig. 4) has a head 22 which is held by the chuck 18 and a stem 24 which extends forwardly, with the stud backed up by a suitable adjustable stop 26 during the welding cycle. Studs can be fed into the front of the chuck by hand. They also can be transported by air through a tube from a remote supply source and into a chamber in the chuck leg 16 behind the chuck 18. The studs can then be pushed into the chuck from the chamber by a plunger and backed up by the plunger during the welding cycle. The plunger can be connect-ed to a piston and an air cylinder located in the chuck leg to which air is supplied from a remote source. This type of loading arrangement for the stud is shown in U.S. patents 3,525,846 and 3,489,~78, and does not constitute part of the present invention.
A pair of supporting legs 28 extend forwardly from the tool body 14 and support a welding foot 30. The welding foot 30 has a cylindrical opening 32 (Fig. 3) around the chuck leg 16 with a rear, inwardly extending flange 34. A liquid supply passage 36 for anti-smut liquid is located in the welding foot and communicates radially with the opening 32 and an air supply ; passage 38 is also located in the foot 30 and communicates gen-eralIy tangentially with the opening 32. The liquid supply pas-sages 36 communicates with a check valve fitting 40 located ln a cylindrical chamber or passage 42 with which the air passage 3~ (Fig, 2) communicates. The fitting 40 has a check valve seat 44, a check valve ball 46, and a spring 48 which prevent the 2 ~ ~ ~
flow of liquid back through a supply tube 50 which is suitably affixed in a recess 52 in a lower end of the :fitting 40.
Anti-smut liquid is supplied to the tube 50 from a source 54 (Fig. l) by a suitable pump indicated schematically at 56. The pump 56 includes a piston 58 and a cylinder 60 with an inlet check valve 62 and an outlet check valve 64. Upon each stroke of the piston 58, a small quantity of the anti-smut liquid is supplied to the tube 50 with the piston ~8 reciprocated at a rate of approximately lO0 times per minute by a drive unit 66. The pump delivers about one-third of a drop of liquid : during each back and forth stroke.
For supplying gas such as air, the chamber 42 (Figs.
: 2 and 3) in the foot 30 communicates with a larger passage 68 terminating at the edge of a notch 70 in the bottom of the weld-: ing foot 30 between the supporting le~s 28. A hose connector 72 has an end portion 74 extending into the passage 68 with an annular groove 76 receiving an end of a setscrew 78. The hose connector has an annular O-ring seal 80 and a lower nipple 82 extending into the notch 70. A hose 84 is received on the nipple 82 and extends to the power and control unit l~, encom-passing the liquid supply tube 50 to a point near the unit 12.
Gas, preferably air, is suppli.ed from a suitable source 86 past ` an adjustable needle valve 88 and an on-off valve 90 through the `~ hose 84. The needle valve 88 controls flow so that just enou~h air is supplied to cause the liquid to atomize and dribble from the spark shield sufficiently to coat the workpiece with a thin film around the weld area. The ~as also is at low pressure, in a ran~e of three to eight psi, and preferably about five psi.
The liquid is supplied in a ,~uantity of twenty-five to one hundred-twenty five milliliters per hour. The lower quantity is sufficient to prevent smut ~ut a hl~her quantity of seventy milliliters is more effective to prevent splatter build-up in the spark shield. The gas and liquid are supplied continuously unless the ~elding tool 10 is not retriggered within two and one-half seconds, at which time~the drive unit 66 is stopped and the valve 90 is closed by a suitable timer 92. The two and one-half seconds delay in shut-off enables extra li~uid to be pumped into the spark shield so that it is supplied immediately and gives proper liquid coverage ~or the first weld made after the equip-ment has been idle.
A spark shield 94 tFigs. 3 and 4) has a rear end portion located in the opening 32 and extends forwardly thereof. The spark shield 94 is positioned so that the stem 24 of the stud 20 is slightly beyond the end of the spark shield, as shown in Fig.
1, before the stud is pressed against the ~ork-piece. ~he shield 94 has a generally cylindrical body 96 with a rear flange 98 which abuts the flange 3~ of the welding foot 30. An annular groove 100 is formed in the flange 98 an~ contains an O-ring 102.
A threaded shank 104 extends beyond the rear ace of the welding foot 30 and beyond the flange 34 whexe it receives a large nut 106 holding the spark shield 94 in the foot with the flange 98 abutting the flange 34.
A segmented shoulder 108 is located on the shield body 96, spaced for~ardly~of the flange 98. A sleeve 110 is mounted with a t~ght fit on the body 96 and has an annular recess 112 receiving the segmented shoulder 108. Around the recess 112 the sleeve 110 has an annular flange 1]4 with a groove 116 con-taining an O-ring 118. The sleeve flange 114 is spaced from the body flange 98, forming an annular manifold chamber 120 with the cylindrical foot opening 32, with the chamber 120 being sealed off by the O-rings 102 and 118.
A plurality of longitudinally-extending fluid passages _7_ ~ ~2~
122 in the body 96 communicate with the chamber 120 and extend forwardly of the shoulder 108 toward the ~orward end of the body ~6, but terminating short thereof at forward ends 12~. The pas-sages are formed by grooves ln the body.9~6and by the inner sur-face of the sleeve 110.
A plurality of rectangularly-shaped, radially-extending notches 126 are located in the forward edge of a thicker end por-tion 128 of the body 96. The shield is preferably ~ade o~ copper or brass and the inner surface o~ the end portion 128 is highly polished to minimize the adherance of splatter or small weld particles thereto.
A plurality of fluid passages 130 are located in the end portion 128 of the spark shield body 96, there being one of the passa~es 130 for each of the longitudinally-extending passages :; 122. Each of the passayes 130 has an inner end communicating with an end portion of one of the passages 122 and an outer end termina-. ting at one of the radially-extending notches 126. The air and the liquid mix in the annular chamber 120 a`nd then flow through the longitudinal passayes 122 to the passages 130. With the passages terminating at th.e notches, rather than at the inner surface of the spark shield, the passages ~ill not become clog~ed with spIatter. The passages 130 are positioned to direct the low volume air and ant.i-smut liquid in a swirling fashion toward the workpiece around the location at which the end of the stud s-tem ~; 2a is to be welded. The low. volume results in the liqui.d being . deposited at very low velocity as a thin ~ilm on the sur~ace from the passages 130 to prevent the formation of smut on the : workpîece, and to minimize the possibility of the pilot arc or the main weldin~ arc beiny extinguished and no weld thereby re-sulting. The air is believed to be the major factor in the pre-vention of smut but the liquid enables a lower volume of air to : -8 1 ~2~

be used and prevents the build-up of splatter in the spark shield.
Each of the passages 130 forms an angle of about 30 to 80, and preferably about 60, with the plane of the end of the spark shield 94 as shown in Fig. 3. Each of the passages 130 also forms an angle of about 80 to 100, and preferably 90 to a radius of the spark shield which extends through the notch end of the passage, as viewed in Fig. 2.
For trim studs, each of the passages has a diameter of about one to ten passages being employed~ The outer ends of the pas-sages 130 terminating in the notches 126 are from 0.020" to about 0.080" and preferably from about 0.045" to about 0.060"
from the end of the spark shield and the surface of the workpiece.
The angles, lengths, and diameters of the fluid passages 130 will vary according to the stud size, spark shield size, and air pres-sure and li~uid volume, by w.ay of example. The important effect ; is to supply the air and liquid with a swirling motion in a non-turbulent manner around the weld area to prevent the deposition of ~mut ~ithout extinguishing the arcs.

Claims (24)

The embodiments of the invention in which an exclusive property or privilege is claimed are defined as follows:
1. Apparatus for welding a stud to a workpiece with the workpiece around the stud being maintained substantially free of contaminant coatings, said apparatus comprising a welding tool having means for holding the stud, means for establishing a weld-ing arc between the stud and the workpiece, and means for moving the stud toward and away from the workpiece, a spark shield body, a welding foot supporting an end portion of said spark shield body in a position around said holding means with said spark shield body having an inner surface spaced from said holding means and an outer surface, said spark shield body having a plurality of fluid passages extending from the outer surface toward the other end portion of said shield body and spaced around the periphery of said shield body, each of said passages being positioned at an angle to a radius of said spark shield body, a source of gas under pressure communicating with ends of said passages for supplying gas through said passages during a welding operation, and a source of anti-smut liquid under pressure communicating with the ends of said passages for supply-ing liquid through said passages during the welding operation.
2. Apparatus according to claim 1 characterized by the other end portion of said spark shield body having a plurality of uniformly-spaced notches therein, with ends of said fluid passages terminating at said notches.
3. Apparatus according to claim 1 characterized by said fluid passages forming angles of 80° to 100° with radii of said spark shield body.
4. Apparatus according to claim 1 characterized by each of said fluid passages being at an angle of 60° to 80° to the plane of said other end of said spark shield body.
5. Apparatus according to claim 1 characterized by a sleeve surrounding said spark shield body, said spark shield body and said sleeve forming longitudinally-extending additional passages communicating with said fluid passages, said spark shield body and said welding foot forming a manifold chamber communicating with ends of said additional passages, said welding foot having first passage means connecting said manifold chamber with said source of gas, and said welding having second passage means connecting said manifold chamber with said source of liquid.
6. Apparatus according to claim 5 characterized by first flexible passage means connecting said first passage means with said source of gas, and second flexible passage means connecting said second passage means with said source of liquid.
7. Apparatus according to claim 5 characterized by check valve means in said second passage means enabling flow of liquid only toward said manifold chamber.
8. Apparatus according to claim 1 characterized by pump means connecting said source of liquid and said fluid passages to supply liquid at uniformly-spaced, predetermined volumes to said fluid passages.
9. Apparatus according to claim 8 characterized by timer means for shutting off said pump means if a subsequent welding cycle does not occur within a predetermined period of time after a previous welding cycle.
10. Apparatus according to claim 1 characterized by volume control means connecting said source of gas and said passages for controlling the volume of gas thereto.
11. Apparatus according to claim 10 characterized by valve means connecting said source of gas and said passages, and timer means for shutting said valve means if a subsequent welding cycle does not occur within a predetermined period of time after a previous welding cycle.
12. Apparatus according to claim 1 characterized by pump means connecting said source of liquid and said fluid passages to supply liquid thereto, volume control means connecting said source of gas and said fluid passages for controlling the volume of gas thereto, valve means between said source of gas and said fluid passages for controlling the flow of gas thereto, and timer means for shutting off said pump means and for closing said valve if a subsequent welding cycle does not occur within a predetermined period of time after a previous welding cycle.
13. Apparatus for welding a trim stud to a vehicle body with the weld area of the vehicle body around the welded stud being maintained substantially free of smut, said apparatus com-prising a welding tool having a chuck for holding a stud, means for establishing a welding arc between the stud and the work-piece, and means for moving the stud toward and away from the workpiece, a spark shield body, a welding foot supporting an end portion of said spark shield body in a position around said chuck with said spark shield body having an inner surface spaced from said chuck and an outer surface, said spark shield body having a plurality of fluid passages extending from the outer surface toward the other end portion of said spark shield body and spaced around the periphery of said spark shield body, each of said passages being positioned at an angle to the radius of said spark shield body, said welding foot and said spark shield body forming a manifold chamber, means extending from said tool and supporting said welding foot, said other end portion having a plurality of notches therein, said plurality of fluid passages having ends communicating with said mnifold chamber, means for supplying gas under low pressure to said manifold chamber during a welding operation, and means for supplying anti-smut liquid at small volumes to said manifold chamber during the welding operation.
14. Apparatus according to claim 13 characterized by said fluid passages forming angles 80° to 100° with radii of said spark shield body.
15. Apparatus according to claim 13 characterized by each of said fluid passages being at an angle of 60° to 80° to the plane of said other end of said spark shield body.
16. Apparatus according to claim 14 characterized by each of said fluid passages being at an angle of 60° to 80° to the plane of said other end of said spark shield body.
17. Apparatus according to claim 13 characterized by said welding foot having first passage means connecting said manifold chamber with said source of gas, and said welding foot having second passage means connecting said manifold chamber with said source of liquid.
18. Apparatus according to claim 17 characterized by first flexible passage means connecting said first passage means with said source of gas and second flexible passage means connecting said second passage means with said source of liquid.
19. Apparatus according to claim 17 characterized by check valve means in said second passage means enabling flow of liquid only toward said manifold chamber.
20. Apparatus according to claim 13 characterized by pump means connecting said source of liquid and said fluid passages to supply liquid at uniformly-spaced, predetermined volumes to said fluid passages.
21. Apparatus according to claim 20 characterized by timer means for shutting off said pump means if a subsequent welding cycle does not occur within a predetermined period of time after a previous welding cycle.
22. Apparatus according to claim 13 characterized by volume control means connecting said source of gas and said passages for controlling the volume of gas thereto.
23. Apparatus according to claim 22 characterized by valve means connecting said source of gas and said passages, and timer means for shutting said valve means if a subsequent welding cycle does not occur within a predetermined period of time after a previous welding cycle.
24. Apparatus according to claim 13 characterized by pump means connecting said source of liquid and said fluid passages to supply liquid thereto, volume control means con-necting said source of gas and said fluid passages for con-trolling the volume of gas thereto, valve means between said source of gas and said fluid passages for controlling the flow of gas thereto, and timer means for shutting off said pump means and for closing said valve if a subsequent welding cycle does not occur within a predetermined period of time after a previous welding cycle.
CA000359442A 1979-09-14 1980-09-02 Method and apparatus for conducting smut-free welding Expired CA1162991A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA000434144A CA1176712A (en) 1979-09-14 1983-08-08 Method and apparatus for conducting smut-free welding

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US7175179A 1979-09-14 1979-09-14
US071,751 1979-09-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CA000434144A Division CA1176712A (en) 1979-09-14 1983-08-08 Method and apparatus for conducting smut-free welding

Publications (1)

Publication Number Publication Date
CA1162991A true CA1162991A (en) 1984-02-28

Family

ID=22103340

Family Applications (1)

Application Number Title Priority Date Filing Date
CA000359442A Expired CA1162991A (en) 1979-09-14 1980-09-02 Method and apparatus for conducting smut-free welding

Country Status (1)

Country Link
CA (1) CA1162991A (en)

Similar Documents

Publication Publication Date Title
US4258885A (en) Nozzle tip and method of manufacture
US4317020A (en) Apparatus for conducting smut-free welding
EP0437168B1 (en) Cutting head for waterjet cutting machine
US7186167B2 (en) Suspended abrasive waterjet hole drilling system and method
USRE33766E (en) Coated fasteners and process for making the same
US4759502A (en) Spray gun with reversible air/fluid timing
US5073694A (en) Method and apparatus for laser cutting a hollow metal workpiece
US4815241A (en) Wet jet blast nozzle
US4361283A (en) Plural component spray gun convertible from air atomizing to airless
US5844201A (en) Welding torch apparatus
US7975938B2 (en) Coating system
US3816165A (en) Improved method and apparatus for stripping inside seams of cans
US4886013A (en) Modular can coating apparatus
US4306137A (en) Method and apparatus for conducting smut-free stud welding
US4284870A (en) Stud welding with fluid shield
US5294057A (en) Solenoid operated liquid spray gun
WO2000025985A2 (en) Workpiece finishing system and method of operating same
US20070284350A1 (en) System and Method for Reducing Weld Spatter
US4099481A (en) Apparatus for applying metal coatings to a metal substrate
CA1162991A (en) Method and apparatus for conducting smut-free welding
US4778976A (en) Welding nozzle cleaner apparatus
US4486644A (en) Method for conducting smut-free welding
US4804820A (en) Method and apparatus for conducting dripless, smut-free stud welding
US5542873A (en) Novel media valve
CA1189362A (en) Apparatus for conducting smut-free stud welding

Legal Events

Date Code Title Description
MKEX Expiry