CA1160951A - Submergible pump installation - Google Patents

Submergible pump installation

Info

Publication number
CA1160951A
CA1160951A CA000428776A CA428776A CA1160951A CA 1160951 A CA1160951 A CA 1160951A CA 000428776 A CA000428776 A CA 000428776A CA 428776 A CA428776 A CA 428776A CA 1160951 A CA1160951 A CA 1160951A
Authority
CA
Canada
Prior art keywords
valve
valve element
well
safety
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
CA000428776A
Other languages
French (fr)
Inventor
Donald F. Taylor
William G. Boyle
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Otis Engineering Corp
Original Assignee
Otis Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US06/186,980 external-priority patent/US4440221A/en
Application filed by Otis Engineering Corp filed Critical Otis Engineering Corp
Priority to CA000428776A priority Critical patent/CA1160951A/en
Application granted granted Critical
Publication of CA1160951A publication Critical patent/CA1160951A/en
Expired legal-status Critical Current

Links

Landscapes

  • Check Valves (AREA)

Abstract

Abstract of the Disclosure A submergible pump installation for wells comprising a submergible pump assembly adapted to be landed in position within the well bore for pumping well fluids to the surface, together with a safety system for the well including a sub-surface valve or valves for maintaining the well under control as the pump is run into and removed from the well. At least one subsurface valve of the system is hydraulically actuated by the discharge pressure of the pump with the pressure fluid being conducted to the valve by a conducting means located exteriorly of the pump housing. The invention also contem-plates the use of a novel poppet-type subsurface valve which may be suitably pressure balanced so that it is capable of being actuated by relatively low hydraulic control pressure supplied by the pump.

Description

~6(~9~,1 S~ GISII~ ?s~ P .I~ T~L:LATr{~N

This application is a division of copending Canadian patent application Serial No. 382,054, ~iled July 20, 1981.
Abstract of the Disclosure A submergible pump installation for wells comprising a submergible pump assembly adapted to be landed in position within the well bore for pumping well fluids to the surface, together with a safety system for the well including a sub-surface valve or valves for maintaining the well under control as the pump is run into and removed from the well. At least one subsurface valve of the system is hydraulically actuated by the discharge pressure of the pump with the pressure fluid being conducted to the valve by a conducting means located exteriorly of the pump housing. The invention also contem-plates the use of a novel poppet-type subsurface valve which may be suitably pressure balanced so that it is capable of being actuated by relatively low hydraulic control pressure supplied by the pump.
This invention relates to new and useful improvements in submergible pump installations for wells and more particu-larly, to a safety system which maintains the well under control as such installations are run into or removed from the well. The invention also relates to a novel poppet-type safety valve used in said safety system.
Background of the Invention In the production of fluids from oil wells, it is general practice to utilize submergible pumping equipment when the subsurface formation pressure has fallen to a level at which some flow of well liquids to the surface occurs but said pressure is insufficient to bring the well liquids to the surface at the desired product rate. One type of pumping unit now in use is the submergible pump which is lowered into the well and which operates beneath the surface of the liquid, being powered by an electric motor.
Since formation pressure is adequate to produce some flow to the surface without the pumping unit, it is necessary to control the well and protect against blowout during the run-ning in and removal of the pumping unit from the well. Such control and protection of the well is accomplished with safety systems which include various types of subsurface safety valves. Most subsurface safety valves are designed to control the fluid flow through a tubing string but in some instances the safety valve controls fluid flow in the annulus formed between the usual well casing and well tubing. This latter type is frequently referred to as an "annular" or poppet~type safety valve and one example of such valve is shown in U.S.
Patent 4,049,052.
Examples of nrior art submergible pump installations inçluding safety systems which utilize subsurface safety valves are disclosed in many prior patents and of particular interest are the installations and safety systems shown in prior U.S. Patent Nos. 3,853,430, 4,121,659, 4,128,127 and 4,134,453.
In certain of such prior systems, the main subsurface safety valve is hydraulically controlled by the pump discharge pressure so that when the pump is operating, the valve is open; when pump operation ceases, the safety valve automati-cally closes. Pressure communication between the pump and the safety valve has heretofore been accomplished through the housing or jacket of the pump and this has made it necessary to physically connect the safety valve directly with the pump.
As a result, removal of the pump from the well also removes the valve with the result that the well is left unprotected V9Sl with no safety valve. Patents ~,13~,45~ and ~,128,1~7 illus-trate this type of arrangement.
In order to provide some means of shutting the well in so that the pumping equipment and safety valve may be removed, the prior Patent 4,121,659 adds a second valve which is inde-pendently mounted in the well tubing below the pump and the hydraulically controlled safety valve. Although not phy-sicaliy connected to the pump, this second or foot valve must be opened during the pumping operation and opening is accom-plished mechanically by means of a prong which extends down-wardly from the pump-safety valve asser~ly. When such pump-safety valve assembly is removed from the well, the prong disengages the foot valve to permit its closure by spring force. In this type of installation, the second or foot valve is essential and since it is mechanically controlled, it must be located relatively close to the pump unit.
Also in those prior systems which utilize the pump dis-charge pressure for actuating the safety valve, the internal passages which establish communication between the pump unit and the safety valve are relatively small in volume and, therefore, it becomes necessary to employ an accumulator in order to provide sufficient liquid volume for developing immediate pressure to open said safety valve. Such accumu-lator, together with the structure required to conduct the pressure from the pump, then through a swivel or articulated joint, and finally to the safety valve, results in a complex and expensive assembly.
Summary of the Invention It is, therefore, one object of this invention to provide a submergible pump installation having a safety system in-cluding a subsurface safety valve which is not physically and directly connected to the pumping unit and which is controlled by a hydraulic actuating pressure, wherebv the disadvantages inherent in physically and directlv connecting the safety valve with the pumping unit are eliminated.
Another object of the invention is to provide a submerg-ible pump installation including a hydraulically controlled subsurface safetv valve whe~ein the hydraulic pressure whicn controls the valve is conducted to the valve from the exterior of the well pipe or tubing in which the pump is installed to thereby eliminate the complexity of conducting pressure to said valve through the interior of the pump unit housing.
A further object is to provide a subsurface safety valve for a submergible pump installation which is hydraulically actuated, either by the discharge pressure of the pump or by a pressure from some other source so that mechanical means is not depended upon to operate the valve, thereby making it possible to locate the valve at a substantial distance from the pump unit.
Still another object is to provide a submergible pump in-stallation including an improved "annular" or poppet-type sub-surface safety valve (as distinguished from the usual ball or flapper type valve) which is hydraulically actuated by suit-able pressure either from the discharge side of the pump or from an outside source, with said valve being capable of being pressure-balanced to assure smooth and positive movement of said valve upon the application of actuating pressures; the valve being particularly adaptable for use where flow volumes are relatively low.
A particular object is to provide an improved annular or poppet-type subsurface safety valve for controlling the flow of fluid being pumped by a submergible pump assembly, which valve has means for equalizing pressures across said assembly g~
to thereby facilitate running in and removal of the assembly from the well.
A further object is to provide an improved poppet-type valve whicn may be combined with the usual ball-type safety valve, said poppet valve being so constructed that it func-tions as an equali2ing means to equalize pressures across the ball valve to facilitate operation o~ the ball valve with lower control pressures.
An important ohject is to provide a safety system of ~he character described, which permits a selection of primary and secondary safety valves for use in the system and in accord-ance with the particular well conditions, whereby only a single safety valve or a number of safety valves, some hy-draulically actuated and some mechanically operated, may be used in the system.
Statement of the Invention In accordance with this invention there is provided in a safety system for a well, a subsurface safety valve including, an elongate tubular valve body having an internal annular valve seat in its bore, a tubular valve element within the bore of the body, means for mounting said valve element for sliding movement within the bore of the body from a first position to a second position, said valve element having an annular external valve seat adapted to engage and seal with the internal valve seat in the body when the valve element is : in said first position to close flow through the valve, movement of the valve element to its second position disengag-ing said valve seats of the valve element and the body and permitting flow through the valve, resilient means urging the valve element toward its first position, means for applying hydraulic pressure to the valve element to urge the valve element to its second position to permit flow through said valve, means for supporting and loc`~in~ the val~e within a well tubin~ in said well, and means on the valve body for connecting a wireiine running tool theretQ whereby said safetv valve may be lowered into a well pipe by said running tool, and said last-named means also being engageable by a wireline retrieving tool so that the safety valve may be removed from the well pipe by said retrieving tool, and equalizing means mounted in the tubular valve element for equalizing the pressures interiorly and exteriorly of the valve body and valve element when the subsurface valve is being run into and removed from the well.
In accordance with this invention there is further provided in a safety system for a well, a subsurface safety valve including, an elongate tubular valve body having an internal annular valve seat in its bore, a tubular valve element within the bore of the body, means for mounting said valve element for sliding movement within the bore of the body from a first position to a second position, said valve element having an annular external valve seat adapted to engage and seal with the internal valve seat in th~ body when the valve element is in said first position to close flow through the valve, movement of the valve element to its second position disengaging said valve seats of the valve element and the body and permitting flow through the valve, resilient means urging the valve element toward its first position, means for apply-ing hydraulic pressure to the valve element to urge the valve element to its second position to permit flow through said valve, means for supporting and locking the valve within a well tubing in said well, and means on the valve body for connecting a wireline running tool thereto whereby said safety valve may be lowered into a well pipe by said running tool, and said last-named means also being engageable by a wireline ~g~
retrie~ing tool so that the safety valve may be removed from ~he well pipe by ~aid retrieving tool, a downwardly extending val~e ho~lsing secured to the lower end of said first valve body, a safety valve member carried by said housins and having a straight-througn, flow passage adapted to be aligned with the bore of said well tubing, and an actuating member slidable in said housing and coacting with the valve member to open and close the same.
In accordance with this invention there is further provided in a safety system for a well, a subsurface safety valve including, an elongate tubular valve body having an internal annular valve seat in its bore, a tubular valve element within the bore of the body, means for mounting said valve element for sliding movement within the bore of the body from a first position to a second position, said valve element having an annular external valve seat adapted to engage and seal with the internal valve seat in the body when the valve element is in said first position to.close flow through the valve, movement of the valve element to its second position disengaging said valve seats of the valve element and the body and permitting flow through the valve, resilient means urging the valve element toward its first position, means for apply-ing hydraulic pressure to the valve element to urge th,e valve element to its second position to permit flow through said valve, means for supporting and locking the valve within a well tubing in said well, and means on the valve body for connecting a wireline running tool thereto whereby said safety valve may be lowered into a well pipe by said running tool, and said last-named means also being engageable by a wireline retrieving tool so that the safety valve may be removed from the w~ll pipe by said retrieving tool, a downwardly extending valve housing secured to the lower end of said first valve g~1 ~dy, a ro,~table ~all-type valve mounted in said valve hcusing, ~n ~-~nnl1lar ac~ua~ing member slidable in said housing and ~oactinq with said ball-type valve to open and close the same, and means on tlle tubular valve element adapted to engage the upPer end of said actuating member after said valve element moves from its first position, whereby movement of the valve element to open position also moves the rotatable ball valve to open position.
~rief Description of the Drawings These and other objects and advantages of the present invention are hereinafter set forth and explained with refer-ence to the drawings wherein:
Figure 1 is a schematic view of a pump installation with a hydraulically actuated ball type safety valve spaced below the pump and actuated by pump discharge pressure through a conductor located exteriorly of the well tubing in which the pump is mounted;
Figure 2 is a similar view in which the annulus between the well casing and the well tubing is utilized for conducting pressure to the safety valve;
Figure 3 is a view, similar to Figure 1, wherein the operating pressure is conducted to the safety valve from the surface;
Figure 4 is a view similar to Figure 1, and showing a mechanically operated safety valve interposed between the pump and the ball type valve;
Figure 5 is a schematic view substantially the same as Figure 1, excepting that a poppet-type valve is substituted for the ball type valve, with pump discharge pressure actuat-ing said valve;
Figure 6 is a view substantially the same as Figure 5 but showing the poppet-type valve combined with a ball type valve;

~as~l ~ igure 7A is a quarter-section sectional view of the upper portion of the poppet-type safety valve with said valve in closed position;
Figure 7B is a continuation of Figure ?A showing the lower portion of the valve with the valve in a c~osed posl-tion;
Figure 7C is a view, similar to 7B, and illustrating the valve in open position;
Figure 8 is a view, partlv in section and partly in ele-1~ vation of the hydraulically actuated ball type valve which is adapted to be connected to the lower portion of the poppet-type valve sho~Jn in Figures 7A-7C;
Figure 9 is a quarter-section sectional view illustrating the connection of a pressure balancing line to the poppet-type valve of Figures 7A-7C;
Figure 10 is an enlarged sectional view of the valve seats which seal off flow through the poppet valve when it is in closed position;
Figure 11 is a diagrammatic view illustrating the com-
2 bination of the poppet valve of Figures 7A and 7B with the ball tvpe valve shown in Figure 8, with specific details of structure omitted for the sake of clarity; and Figure 12 is a view similar to Figure 11 with the poppet valve open to equalize pressures across the ball valve prior to opening of the latter.
Description of the Preferred Embodiments In the drawings (Figure 1) a pump installation and safety system, constructed in accordance with the present invention i5 schematically illustrated. The usual well tubing 10 ex- -
3 tends axially within the well casing 11 and conducts fluids from the producing formation 12 upwardly to the surface. The usual well packer 13 seals off the annular space between the _g_ lo.~er portion Or the tubing and the well casing while a sur-~ace control valve 14 controls flow ~rom the casing through a side outlet 15. A similar side outlet 1~ extends from the upper portion of the tubing and flow therethrough is con-trolled by a surface valve 17. At the upper end of the tubing, the usual blowout preventer 18 is mounted and arranged to close off the upper end of the tubing.
The pump installation which is schematically shown in Figure 1 includes an electric pump P which is suspended on a cable C extending downwardly within the well tubing. The electric pump may be of any construction and includes a pump motor 20 which is directly connected with the cable C; the cable is a suspenqion cable which has both weight supporting and electrical power conducting capabilities.
For mounting the pump, motor and associated parts within the tubing, a pump shoe 21 is connected in the tubing string and is adapted to receive a lock and seal assemblv L. The assembly L lands and locks within the shoe and both suspends and seals the pump in position. The particular submergible pump, the pump shoe 21 and the assembly L are all units which are available on the market and are distributed b~ the REDA
Pump Division of TRW of Bartlesville, Oklahoma. The lower end of the pump P is connected through a ball or flex joint 22 ; with an accumulator chamber 23. The pump inlet 24 is at the lower end of the pump and its outlet 25 is just above the pump shoe. When the pump is operated, the well fluids are drawn upwardly into the intake 24 and discharged through the dis-charge ports 25 so that the liquid is pumped upwardly through the tubing string in the usual manner. The accumulator 23 is provided for the purpose of assuring that as soon as the pump starts its operation, there is a sufficient liquid volume to create a pressure at the discharge openings 25 of the pump.

As will be e~plained, i~ is de~irable with the installation of Figure 1 to provide such immediate pressure upon the pump starting in operation.
Connected within the tubing string lQ a~ a Doint below the pump P is a conventional landing nipple 26. Such conven-tional nipple is well known in the art, one example of which is a "Type R Otis Landing Nipple" manufactured by the Otis Engineering Corporation of Dallas, Te~as. The particular landing nipple illustrated has an internal pro-ile or groove 27 which is adapted to coact with locking dogs 28 provided on a locking mandrel 29. The locklng mandrel may be of the types identified as Types ~ and R, manufactured ~y the Otis Engi-neering Corporation and are modified to the extent of provid-ing an upper sealing ring 30 and a lower sealing ring 31.
When the locking mandrel is in position within the landing nipple, the seals 30 and 31 are disposed above and below a radial port 32 which extends through the wall of the landing nipple 26. The lower end of an external conductor 33 has connection with the port 32 and extends through the annular space between the tubing 10 and casing 11 with its upper end terminating in a connection with a port 34 formed in a collar 35 which is connected into the tubing string. The port 34 is located adjacent and ~ust above the discharge end 25 of the pump P so that when the pump is operating, the discharge - pressure of said pump is conducted downwardly through line 33 and through port 32 to the locking mandrel 29.
The locking mandrel has the conventional safety valve S
secured thereto and depending therefrom. This safety valve, as shown in Figure 4, includes a standard rotatable ball type valve 36 which is actuated through a piston controlled by the pressure in line 33. Since safety valves of this type are well known, reference is made to the Otis wireline-retrievable safety val~res which are identified on page 5323 o~ the CO~IPOS-ITE CATALOG, 1~ 1979 edition. The hydraulic pressure generated on the discharge side of the pump P is transmitted to the control piston OL safety valve 36 and functions to aintain this valve in an open position as inaicated in Figure 1. When the pump discontinues operating, the pressure in line 33, conducted to the control piston of the valve 36, is reduced so that a spring schematically shown at 37 in Figure 1 may rotate the valve to a closed position.
In the operation of the installation and the use of the safety system, the pump shoe 21, the landing nipple 26 and the ported collar 34 are connected in the tubing string. The con-ductor 33 extending from the discharge side of the pump to the landing nipple 26 is also connected to parts 32 and 34. The tubing string is then run in the hole in the usual manner and the packer 13 is properly set.
Thereafter, the locking mandrel having the hydraulically actuated safety valve 36 connected therewith is landed and locked in the landing- nipple 26 in the conventional manner.
The valve S is a normally closed ball safetv valve which is opened by hydraulic pressure when such pressure is applied through the conductor 33 which, as has been noted, is located exteriorly of the well tubing.
The pump P and its associated parts are then lowered downwardly within the well tubing until the lock and seal assembly L enters and locks in and seals with the pump shoe 21. At this time, the safety valve S remains in its closed position. After the pump P is in the position illustrated in Figure 1, its operation may begin and its discharge pressure will immediately act upon the safety valve S to open the ball type valve 36. The ball valve thus responds to the discharge pressure of the pump and so long as the pump is operating the ~ ~65~g~1 valve will remain in its open position. When the pump is si~ut down for any reason, the ball valve 3~, due ~o its design will automatically clcse. Thus r the pump a~ld its associated parts may be readily withdrawn from the well and the safety valve 36 will close to maintain the well in a s~u-t-in condition until the pump is returned to its landed position in the pump shoe and is again operated.
In prior installations the hydraulically actuated safety valve was connec~ed physically and ~irectly to the lower end of the pump assembly and the pressure necessary to open the valve was conducted downwardlv through internal passages in said assembly. This provided for a complex arrangement because the pressure had to be conducted through the pump housing as well as downwardly past the flex joint 22. Other structures, such as that shown in Patent 4,121,659 separated the landing nlpple and the safety valve from the pump but required an actual, direct physical contact between the pump assembly and the valve in order to open it. In this latter case, the valve was mechanically operated by a depending prong which, of course, limited the distance between the pump assembly and the safety valve.
As will be readily seen from the foregoing description of Figure 1, the distance between the safety valve S and the pump P is subject to considerable variation. There are no passages through the pump h~using or through any of the other parts of the assembly for the purpose of conducting fluid pressure to the safety valve S. Instead, the pressure fluid is conducted downwardly to said safety valve through the conductor 33 which is located exteriorly of the well tubing. It is therefore possible to provide a hydraulically actuated safety valve which responds to pump operation without providing a direct ~9J~

ph~-sical conneclion be~we~n tlle salCety va}vP and the pump assembly.
Referring next to Figure ~, this Figure illustrates a slight modification to the assembly shown ir Figure 1. In-stead of providing the exterior conductor 33 of Figure 1, the structure is modified to omit the conductor 33 and the ported collar 35. In place thereof, a second packer 13a is set between the tubing 10 and the casing 11 at a polnt above the discharge end 25 of the pump P. A collar 3~a having a plur-ality of ports 35a establish a communication between the interior of the tubing and the casing. The discharge pressure from the pump may pass through these ports 35a and into the annulus between the tubing and the casing and in the area between the packers 13 and 13a. Obviously, this annular space substitutes for the conduc~or 33 and transmits discharge pressure from the pump to the port 32 in the landing nipple 26 of the safety valve S.
The operation of the form illustrated in Figure 2 will be identical to that previously described with the only differ-ence being that the annulus provides the communication betwee~
the pump discharge and the safety valve instead of the con-ductor 33 shown in Figure 1. The safety valve S may be located at any distance below the pump assembly and there is no requirement that there be any type of direct physical connection or contact between said valve and said pump assem-bly.
There may be instances where it becomes desirable to control the safety valve from the surface of the well and Figure 3 illustrates such an installation. A surface con-trolled manifold M is located at the surface and a conductor 33a extends from said manifold downwardly through the annulus between tubing 10 and casing 11 to the port 31 which is 39~

located in the landing nipple 26. In this instance, the ported collar 34 is omitted since there is no need to conduct pump discharge pressure to the safety valve S. The operation of this installation is similar to that of 'he installations in Figures 1 and ~ with the exception that the safety valve is responsive, not to the discharge pressure of the pump, but to the control pressure at the surface.
In certain installations, it may be desirable to provide a second or back-up valve, commonly referred to as a foot valve, in addition to the safety valve S. This would assure that when the pumping assembly is out of the tubing and the safety valve S is closed, any leak developed by such safety valve would be prevented by the use of such foot valve. Such installation is illustrated in Figure 4. As shown in this Figure 4, the landing nipple 26 which coacts with the locking mandrel 27 and ball valve 36 is spaced a greater distance below the pump shoe 21 in which the pump P is landed. By providing this additional space, it is possible to locate a foot valve designated S-2 between the pump assembly P and the first safety valve S. The foot valve includes a landing nipple 38 which is connected in the tubing string 10. The landing nipple 38 is adapted to receive a safety valve locking mandrel 39 which provides a valve body and the foot valve of this unit is a pivoted flapper valve 40. Flapper type safety valves are in common use and are offered by several companies including the Otis Engineering Corporation, with one example of such valve being the Type QO valve which Otis offers to industry. Since the flapper valve is spring closing, it is constantly in a closed position and requires an actual mechan-ical motion to move it to an open position.
The pumping unit assembly of Figure 4 is modified as com-pared to the asse~bly of Figure 1 by adding a second flex 9~

joint 22a below the accumulator ~3. ~elow said second fle~
joint is a perforated pipe 41 from which projects a depending tubular prong 42 having inlet openings 43 at its lower end.
The spacing of the parts and particularly of the depend-ing prong 42 on the pump assembly is such that when th~ pump is landed and sealed in the pump shoe 21, said prong extends downwardly through the bore of the valve body 39, engages the pivoted flapper valve 40 and swings it to an open position as shown in Figure 4. Thus, the positioning of the pump assemhly within the pump shoe will properl~ locate the prong 42 and swing the flapper valve to its open position.
The operation of the installation of Figure 4 is believed to be obvious. Landing of the pump assembly in proper posi-tion within the pump shoe swings the flapper 40 of the foot valve to an open position and at this time the hydraulically actuated safet~ valve S is in its closed position. However, as soon as pump P begins to operate, the discharge pressure of the pump is conducted downwardly through the line 33 and acts upon safety valve S open the valve 36. Therefore, positioning of the pump opens th~ flapper 40 of the foot valve S-2 and pump operation develops the necessary pressure to open the ball valve 36 so that liquids can be pumped to the surface.
When the pump stops operating, pressure on the lower safety valve S is relieved and the ball valve 36 is returned to a closed position. Removal of the pump assembly will remove the depending prong 42 from the foot valve assembly S-2 and allow the flapper 40 of the said valve to be swung by spring force to its closed position. Thus when the pump is removed from the well, the two valves close to assure that the well is maintained under control.
It might be noted in connection with the assembly of Figure 4 that two flex joints are shown and these are provided 9~1 or ~he purpose o~ assuring that the pump assembly, which has increased length because of the prong, can move downwardlv through various cur~Jes or bends in the tubing.
In Figures 1 through 3, the particular sa'ety valve which is schematically iliustrated is well known and in general use and involves a rotating ball valve member. The rotating ball safety valve is particularly adaptable for use under high flow volume conditions and will he preferable in such environment.
However, flapper type or other type safety valves, such as those described in U.S. Patent 3,273,588 may be substituted for the ball type and will operate effectively without re-quiring any direct physical connection with the pumping unit.
In some instances, as where flow volumes are low, an annulus or poppet-type valve may be more desirable and one such type of safety valve, SA, is shown in Figures 5, 7A, 7B, 7C and 10. As used herein, the terms "poppet-type valve~ or "annulus valve" means a valve in which the closure is effected by relative longitudinal movement of two tubular members, each of which has a sealing surface engageable with the seaIing surface of the other member.
The poppet-type valve is easily pressure kalanced so that reduced control pressure is required to open the valve, as compared to the ball type valve. Also, poppet valves are particularly adaptable for use with an elastomeric to metal seal because the engaging surfaces forming the seal move longitudinally or axially with respect to each other to open and close the valve. In the ball type valve, elastomeric seals are subject to damage because of the rotative movement of the ball as it moves from one position to the other.
Referring specifically to Figure 5, the pressure is con-ducted to the poppet-type safety valve SA through the con-ductor 33 whereby said valve is responsive to the discharge 9~1 ~ressure de~eloped by pump P. As will appear more clearly from the detailed description, the operation of the poppet type safety valve has substantially the same basic operation as all safety valves. It is open so long as there is pressure applied to its piston element and it automatically closes when such pressure is relieved.
In Figure 6, the annular valve SA is shown combined with the rotatable ball type safety valve S-l to provide dual safety valves when the pump assembly is removed. This com-bination is capable o~ accommodating high flow rates which are possible with a submergible pump~
In Figures 7A, 7B, 7C and 9, the poppet-type valve SA is illustrated in detail. Referring to Figures 7A and 7B, the usual type of landing nipple 50 comprises an elongate tubular body which is connected by couplings 51 in the tubing string 10. Within the upper portion the bore of said landing nipple, the usual profile of annular grooves 52 is formed for receiv-ing the keys 52a of a locking mandrel LM. A suitable packing assembly 52b is carried by the body of the locking mandrel and seals with the bore of the landing nipple. Spaced below the grooves 52, the bore of the landing nipple is formed-with an internal annular shoulder 53 which reduces said bore as indi-cated at 54. A second smaller shoulder 55 is formed in the bore 54 and functions as a stop shoulder to properly locate the valve and its locking mandrel within the landing nipple.
The body 50 of the landing nipple is formed with an angular inlet port 56 which communicates with the bore of the body at a point above the upper shoulder 53. The outer por-tion of the port 56 has connection with the conductor 33 which conducts the pressure into the bore of the landing nipple and as will be explained, into the valve for actuation of said valve.

T.l~ e is o ~h~ ponpet type, as ~is~inguished frc~ a ~otating ball t~e and is adap~ed to be lowered into t~e well and re~oved therefrom by the locking mandrel L21. The upper end of the valve is connected to tne lower por~ion of the tubuiar body of the locking mandrel by a coupling C-l. The mandrel is run on the usual wireline equipment which is com-monly used and well known in the well industry.
As shown in Figures 7A, 7B, and 7C, the valve comprises an outer main valve section V-l and an inner valve section V-2. The outer valve section includes a tubular body having a cylinder 57 at is upper end, with the bore of the cylinder being enlarged with respect to the bore through the upper portion of the valve body to provide an upwardly facing shoul-der 58. The upper end of the cylinder 57 is connected through the coupling C-1 with the body of the locking mandrel LM and has a radial port 62 (Figure 7A) which communicates through the angular port 56 with the conductor 33, whereby actuating pressure may be introduced into the upper end of said cylin-der. A suitable sealing assembly 63 (Figure 7B) surrounds the exterior of the body of the valve section V-1 and provides a seal between said body and the bore of the landing nipple when the valve is in position within the said nipple.
Below the seal 63 the bore of the body of the valve section V-1 is formed with a downwardly facing internal annular seating surface 65 which is preferably a hard faced weld which resists corrosion (Figure 10). Below the seating surface 65, a plurality of inclined flow openings 66 are formed in the wall of the body V-l and communicate with the interior of the tubing 10. The outer valve section V-1 extends some distance downwardly below the flow openings 66 and an internal annular shoulder 67 is provided at a point spaced above the lower end of this section (Figure 7B). For w~

purposes of assembly, the outer valve section V-l is made up of several members which are threaded together and the lower portion of said section includes a tubular element or end piece 68, the upper end of which forms the shoulder 67. T~e lower end of the bore 68a of ~he element 68 is closed by a plug 69 which is held in place by a frangible pin 70 which may be sheared when it is desired to remove said plug.
The inner valve section V-2 comprises an elongate sleeve or tube 71 which has a piston 72 secured to its upper end (Figure 7A). The piston 72 has an O-ring 72a sealing with and movable within the cylinder 57 of th~ outer valve section V-l and has an upwardly extending tubular extension 73 which not only functions as a guide during movement of the inner valve sleeve V-2, but also has a sliding seal with an O-ring 73a mounted within an annular groove in the bore of the coupling C-l. The space between the upper end of piston 72 and the lower end of coupling C-l, sealed off by O-rings 72a and 73a, communicates with the pressure port 62 and forms a variable volume chamber 72b. The wall of the sleeve of the the inner valve section is provided with a plurality of flow openings 74 spaced downwardly from the piston 72 (Figures 7B and 7C) and said openings are similar to the flow openings 66 formed in the body of the outer valve section. With the piston 72 in its upper position, the flow openings 66 and 74 are mis-aligned, as shown in Figure 7B.
Below the sleeve of the inner valve section V-2 is a valve seat assembly 75 which has an upwardly facing, external annular shoulder 77 (Figure 10). This shoulder or surface preferably has an annular elastomeric sealing element 76 mounted thereon and said element is adapted to engage the seating surface 65 of the outer section V-l of the valve.

This arrangement forms a poppet-type valve which assures a positive seal when the valve is closed.
The seat assembly of the tubular valve section V-2 is formed with an enlarged counterbore 78 within which an equal-izing valve collar 80 is slidable. Normally, the collar 80 is in the position shown in Figure 7B, abutting the upper end of the counterbore and held so by flexible finger elements 81 which engage an internal shoulder 81a of a downwardly project-ing extension 86 threaded onto the lower end of the valve assembly 75. The equalizinq collar &0 has spaced external seal rings 82 which are disposed on each side of a radial port 83 extending through the wall of the valve assembly 75. When the collar 80 is in the positlon shown in Figure 7B, the port 83 is closed but when said collar is moved downwardly, the bore o the outer valve section V-l may communicate with the bore of the inner valve section V-2 and interior and exterior pressures across the valve are equalized.
The upper inclined surface 75a of the valve seat assembly 75 is held in engagement with the lower inclined surface 71a of the inner valve section V-2 by a coil spring 84. The upper end of the spring engages a downwardly facing external shoul-der 85 on the tubular extension 86 which forms the lower portion of the valve seat assembly 75. The lower end of the spring 84 contacts a bearing ring 87 which is supported upon the internal shoulder 67 of the tubular end piece 68 at the lower end of the outer valve section V-l. A pressure balanc-ing ring 86a is interposed between the exterior of the exten-sion 86 and the end piece 68 and is sealed therewith by seal-ing rings 86b. The area of the ring is related to the area of seating surface 76 and 65 and function to balance the pressure acting on such surfaces.

The spring 8~ e~erts i~ force up~a~clly against the valve seat asse~ly 75 to urge sai~ assembly 7~ and the inner valve section V-2 up~ardly to maintain the elasto~eric sealing element 76 in sealing engagement with ihe seating surface 55.
~his is the closed position of the valve an~ is shown in Figures 7A and 7B. When the valve is closed, the piston 72 on the inner valve section V-2 is in its upper position within the cylinder 57 of the valve section V-l.
In the operation of the valve, after the parts are posi-1~ tioned within the well tubing in the manner shown in Figures 7A and 7B, the pressure is built up within the conductor 33 and is applied to the upper end of the annular piston 72.
~hen the force of control fluid pressure acting on piston 72 exceeds the force of the spring 84, the inner valve section V-2 and its seating assembly 75 are moved downwardly to the position shown in Figure 7C. In such position, the elas-tomeric sealing element 76 and seating surface 65 of the valve sections V-l and V-2 are disengaged and the poppet-type valve formed by said element and said surface is in an open posi-.0 tion. So long as the pressure in the conductor 33 is main-tained, the parts will be held in the position of Figure 7C
and fluid may flow upwardly from the lower portion of the tubing through the openings 66 and 74 and then upwardly within the well tubing. If for any reason pressure is lost in con-ductor 33, as for example when the pump P is discontinued in its operation or for other reasons, the spring 84 will return the parts to the position shown in Figures 7A and 7B to automatically close the valve.
During normal operation and after the valve is in posi-tion within the well, the equalizing valve 80 within the counterbore 78 of the valve assembly 75 prevents flow through the equalizing port 83 and remains in the position shown in Figures 7B and 7C. However, during the time that the valve is being run into the well or removed from the well it is desir-able that pressures interiorly and exteriorly of the valve be equalized and this may be accomplished by said equalizing valve.
To accomplish this, the equalizing collar 80 is moved downwardly so that the equalizing port 83 may equalize pres-sures between the bores of the main valve sections V-l and V-2. Such movement of collar 80 is effected by providing a downwardly projecting prong or extension 89 (F'gure 9) on ~he standard types of running and pulling tools. As is well known, the standard running and pulling tools engage the annular recesses 88a in the fishing neck 88 (Figure 7A) which is provided at the upper end of the locking mandrel LM. As shown in Figure 9, a running or pulling tool need only have the prong or extension 89 formed with an external shoulder 90 which will engage the beveled upper end 80a of the equalizing collar 80 and by properly spacing said external shoulder, the equalizing collar will be moved downwardly just prior to the time that the running or pulling tool will engage the recesses 88a of the fishing neck 88 of the assembly. In this way, the tool can be run intG the well or removed therefrom with pres-sure around the tool fully equalized.
The particular advantage of the poppet-type valve here-tofore described (and shown schematically in Figure 5) is that a larger volume of liquid may move through the poppet valve as compared to a ball valve sized for the same diameter of tubing. Also, poppet valves may be operated by a considerably lower pressure than is required for the normal ball type safety valve. In the ball type valve, large forces are caused by a pressure differential across a large unbalanced seal area of the ball and require higher control fluid opening pre~s~^es. ~ e provision o~ the annular seatin~ surface ~5 and the elastomeric sealing element 76 which form a poppet-type of valve assure a positive seal when ~he valve is closed.
I'he area of the seal defined by 76 and ~5 is balanced b the area of the outer seal 86a operating in sealing bore 68a.
Seating and unseating of said sealing elements presents little resistance to movement of valve section V-~.
Experience has shown that although the annular or poppet-type valve has certain advantages with respect to operating at the lower pressures, it may not be totally satisfactory where flow volumes are exceptionally high. However, where flow volumes increase, the annular or poppet valve disclosed herein lends itself to a combination with the usual rotating ball type valve which is shown in Figure 8. Figures 11 and 12 illustrate the poppet valve combined with the ball type.
Referring specifically to Figures 8, 11 and 12, the lower end piece 68 of the valve heretofore described is replaced by a coupling lO0 the valve shown in Figures 7A and 7B with the outer tubular body lOOa of the usual or well known rotating ball type safety valve. Such valve includes the tubular actuating piston lOl which is slidable within the bore of the body and which is urged to the upper position as shown in Figure 8 by a spring 104. Upon movement of the actuating piston in a downward direction against the spring force ~; rotation is imparted to the ball valve 102 through the usual pin and groove connection 102a.
In the position shown in Figure 8, a passage 103 extend-ing through the ball is misaligned with the bore through the body lO0 and flow into the tubing above said body cannot occur. At such time, the valve is closed with the surface of the ball sealing against the annular seat 103a formed in the actuating piston. When the actuating piston moves downwardly wi~hin the body lona~ the ~all is rotated so that tne passa~e 103 tnrough said valve is aligned with the bore through the tu~ing to ~nich the valve is connectea. To impart downward movement to ~he tu~ular actuatins piston, such piston is aliglled with the extellsion 86 of the ~nnular or poppet valve, whereby as downward movement of said extension occurs to open said poppet valve, the ball valve is also opened.
~ hen pressure is applied through the conductor 33 to the piston 72, both valves are opened and will remain so long as said pressure is applied. When pressure in the conductor is reduced, both valves are closed by their respective spring forces. Thus, a double valve for protection purposes is provided and a relatively high volume of fluid can be handled.
In Figures 11 and 12, the combination of the poppet-type valve with the ball-type valve is illustrated diagrammati-call~. Certain portions and details of the structures, which are fully shown in Figures 7A, 7B and 8, have been omitted in order to illustrate the sequential operation which occurs when the poppet valve is coupled to the ball-type valve through the coupling 100.
Referring specifically to Figure 11, when both valves are in a closed position, the piston 72, which is moved downwardly by control pressure being conducted to its upper surface through the conductor 33, is at the upper end of its travel.
The total travel of piston 72 is designated by the space between the lines A-l. At the time that piston 72 of the poppet valve is in the position of Figure 11, said valve is closed by the engagement of sealing ring 76 with the sealing surface 65, and the lower end of the extension 86 of said poppet valve is spaced upwardly from the actuating piston 101 of the ball valvs. This space between the lines A-2 is con-siderably less than the total travel of piston 72 and its ~i(19~1 i `
aas~cial-ecl ~r;~ e ~r~s. U~cn ~he e~tension 8~ of the poppet val~e e~a~3~r.~ the actua~ing piston 1~1 and continuing its dol.nward ~ov_ment, the piston moves sufficiently to rotate the all valve to its open position. The actuating piston 101 can ~e moved for a distance designated by the space between the lines A-3. The space, like space A-2, is lesser than the space between the lines designated A-l.
In operation, with the parts in the position shown in Figure 11, control pressùre is conducted downwardly through the linP 33 to the upper end of piston 72 of the poppet valve.
As the valve members V-l and V-2 of the poppet valve move aownwardly against the force of the spring 84, the lower ~nd of the extension 86 of said valve engages the upper end of the actuating piston 101 of the ball-type valve. This position of the parts is shown in Figure 12, and at this time, the poppet valve is open, while the ball-type valve is still in a closed position. By reason of the poppet valve opening, pressure from below the ball valve may flow upwardly through the tubing and into the interior of the poppet valve whereby the pres-2n sures above and below the ball valve are at least partially, if not completely, equalized. With these pressures equalized across the ball valve, the force required to open said ball valve is substantially reduced.
Continued application of pressure to the piston 72 of the poppet valve rotates the ball valve 102 to align its opening 103 with the bore of the assembly. This sequential opening of the two valves allows the opening of the lower ball-type valve with a relatively smaller force than that which would other-wise be required in this type of valve. The same would be true if the poppet-type valve were combined with a flapper valve to effect equalization of pressures across such flapper valve. It might be noted that ball valves and flapper valves .

ar~ rhe ~ost conunon types now used for well tubing safety valves, primarily because they fit the tubular configuraticn of the well and permit a straight-through ,-low.
The sequential operation of opening the Doppet valve, pressure equalization and opening of the ball valve is accom-plished by controlling the length of travel of the operating elements. The length of travel of the actuating piston 72 of the poppet valve ~ust be sufficient to allow the tubular extension 86 of the poppet valve to travel through the space A-2, during which pressure equalization occurs and to there-after travel far enough to move the actuating piston 101 through the space A-3 and assure opening of the ball-type valve.
In certain instances, it is desirable to locate the pump as deep as possible and in some cases, the hydrostatic head present in the well might affect the operation to the extent that sufficient pressure cannot be applied through the con-ductor 33 to properly actuate the valve. If this situation is present, the structure may be modified as shown in Figure 9 wherein a separate balancing line 33b is provided. The pres-sure conducted through both the operating or control line 33 and the balancing line 33b would necessarily have to extend from the surface of the well because accurate control of the pressure in each line would not be possible if both lines were connected to the pump.
To utilize the balancing line it is necessary to provide an additional set of packing 63a around the outer valve sec-tion V-l and such packing is spaced downwardly from the pack-ing 63 of the first form. A second angular port 56a communi-cates with the space between the packings 63 and 63a and with a radial openings 62a and 62b which communicate with the bore of valve section V-l and then with the underside of the g~l actuating piston 72. Thus, by controlling the pressures in l:ines 33 and 33b, pressures on each side of the actuating p;iston may be controlled. By so controlling these pressures, it is possible to properly actuate the valve regardless of the hydrostatic head pressure.

~ ~

,:
`

Claims (8)

The embodiments of the invention in which an -exclusive property or privilege is claimed are defined as follows:
1. In a safety system for a well, a subsurface safety valve including, an elongate tubular valve body having an internal annular valve seat in its bore, a tubular valve element within the bore of the body, means for mounting said valve element for sliding movement within the bore of the body from a first position to a second position, said valve element having an annular external valve seat adapted to engage and seal with the internal valve seat in the body when the valve element is in said first position to close flow through the valve, movement of the valve element to its second position disengaging said valve seats of the valve element and the body and permitting flow through the valve, resilient means urging the valve element toward its first position, means for apply-ing hydraulic pressure to the valve element to urge the valve element to its second position to permit flow through said valve, means for supporting and locking the valve within a well tubing in said well, and means on the valve body for connecting a wireline running tool thereto whereby said safety valve may be lowered into a well pipe by said running tool, and said last-named means also being engageable by a wireline retrieving tool so that the safety valve may be removed from the well pipe by said retrieving tool, and equalizing means mounted in the tubular valve element for equalizing the pressures interiorly and exteriorly of the valve body and valve element when the subsurface valve is being run into and removed from the well.
2. In a safety system for wells, a subsurface safety valve as set forth in claim 1, together with means on the running tool and also on the retrieving tool projecting down-wardly from each tool and coacting with the equalizing means to open said equalizing means and retain it in open position when said running and retrieving tools are connected with the safety valve to thereby equalize pressures interiorly and exteriorly of the valve.
3. In a safety system for a well, a subsurface safety valve as set forth in claim 1, wherein, said equalizing means including an equalizing port extending through the wall of the tubular valve element and in communication with the interior of the valve body, an equalizing annular element within the bore of the tubular valve element and movable from a position closing said port to a position opening the same to establish communication between the exterior of the valve body and the bore of the valve element to thereby equalize the pressure exteriorly and interiorly of the safety valve.
4, In a safety system for wells, a subsurface safety valve as set forth in claim 1, wherein the means for applying hydraulic pressure to the valve element comprises, a cylinder in the tubular valve body and having a pressure inlet port, an annular piston attached to the tubular valve element and slidable within the cylinder, and a conductor located extern-ally of the valve body and having communication with the pressure inlet port for conducting pressure to the piston to thereby move the valve element to its second position.
5. In a safety system for wells, a subsurface safety valve as set forth in claim 1, wherein the means for applying hydraulic pressure to the valve element comprises, a cylinder in the tubular valve body and having a pressure inlet port, an annular piston attached to the tubular valve element and slidable within the cylinder, a conductor located externally of the valve body and having communication with the pressure inlet port for conducting pressure to the piston to thereby move the valve element to its second position, an external balancing line for conducting pressure fluids, means in the valve body establishing communication between the second conductor and the lower end of the cylinder below the annular piston, whereby pressure from the second conductor opposes the pressure from the first conductor, and means for controlling the pressures in said first and second conductors so that the pressures across said piston may be balanced.
6. In a safety system for a well, a subsurface safety valve including, an elongate tubular valve body having an internal annular valve seat in its bore, a tubular valve element within the bore of the body, means for mounting said valve element for sliding movement within the bore of the body from a first position to a second position, said valve element having an annular external valve seat adapted to engage and seal with the internal valve seat in the body when the valve element is in said first position to close flow through the valve, movement of the valve element to its second position disengaging said valve seats of the valve element and the body and permitting flow through the valve, resilient means urging the valve element toward its first position, means for apply-ing hydraulic pressure to the valve element to urge the valve element to its second position to permit flow through said valve, means for supporting and locking the valve within a well tubing in said well, and means on the valve body for connecting a wireline running tool thereto whereby said safety valve may be lowered into a well pipe by said running tool, and said last-named means also being engageable by a wireline retrieving tool so that the safety valve may be removed from the well pipe by said retrieving tool, a downwardly extending valve housing secured to the lower end of said first valve body, a safety valve member carried by said housing and having a straight-through, flow passage adapted to be aligned with the bore of said well tubing, and an actuating member slidable in said housing and coacting with the valve member to open and close the same.
7. In a safety system for a well, a subsurface safety valve including, an elongate tubular valve body having an internal annular valve seat in its bore, a tubular valve element within the bore of the body, means for mounting said valve element for sliding movement within the bore of the body from a first position to a second position, said valve element having an annular external valve seat adapted to engage and seal with the internal valve seat in the body when the valve element is in said first position to close flow through the valve, movement of the valve element to its second position disengaging said valve seats of the valve element and the body and permitting flow through the valve, resilient means urging the valve element toward its first position, means for apply-ing hydraulic pressure to the valve element to urge the valve element to its second position to permit flow through said valve, means for supporting and locking the valve within a well tubing in said well, and means on the valve body for connecting a wireline running tool thereto whereby said safety valve may be lowered into a well pipe by said running tool, and said last-named means also being engageable by a wireline retrieving tool so that the safety valve may be removed from the well pipe by said retrieving tool, a downwardly extending valve housing secured to the lower end of said first valve body, a rotatable ball-type valve mounted in said valve housing, an annular actuating member slidable in said housing and coacting with said ball-type valve to open and close the same, and means on the tubular valve element adapted to engage the upper end of said actuating member after said valve element moves from its first position, whereby movement of the valve element to open position also moves the rotatable ball valve to open position.
8. In a safety system, a subsurface safety valve as set forth in claim 1, wherein the means for supporting and locking the valve includes an internal locking recess, and a locking mandrel secured to the upper end of the tubular valve body of the safety valve and engageable with said recess.
CA000428776A 1980-09-15 1983-05-24 Submergible pump installation Expired CA1160951A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA000428776A CA1160951A (en) 1980-09-15 1983-05-24 Submergible pump installation

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US06/186,980 US4440221A (en) 1980-09-15 1980-09-15 Submergible pump installation
US06/186,980 1980-09-15
CA000382054A CA1158975A (en) 1980-09-15 1981-07-20 Submergible pump installation
CA000428776A CA1160951A (en) 1980-09-15 1983-05-24 Submergible pump installation

Publications (1)

Publication Number Publication Date
CA1160951A true CA1160951A (en) 1984-01-24

Family

ID=27167096

Family Applications (1)

Application Number Title Priority Date Filing Date
CA000428776A Expired CA1160951A (en) 1980-09-15 1983-05-24 Submergible pump installation

Country Status (1)

Country Link
CA (1) CA1160951A (en)

Similar Documents

Publication Publication Date Title
CA1158975A (en) Submergible pump installation
US5706893A (en) Tubing hanger
US4368871A (en) Lubricator valve apparatus
US4197879A (en) Lubricator valve apparatus
US5040606A (en) Annulus safety valve
US7025132B2 (en) Flow completion apparatus
US6612368B2 (en) Flow completion apparatus
US6659181B2 (en) Tubing hanger with annulus bore
US4945993A (en) Surface controlled subsurface safety valve
AU765803B2 (en) Pressure-balanced rod piston control system for a subsurface safety valve
AU2001249385A1 (en) Internal gate valve for flow completion systems
WO2001073255A1 (en) Internal gate valve for flow completion systems
GB2291085A (en) Tubing hanger with annulus valve
US4473122A (en) Downhole safety system for use while servicing wells
EP0349685B1 (en) Annulus valve for concentric tubing hangers
US3901321A (en) Safety valve method and apparatus
US5318127A (en) Surface controlled annulus safety system for well bores
US3897822A (en) Well valve apparatus
GB2259369A (en) Well tieback connector sealing and testing apparatus.
US3726341A (en) Petroleum well tubing safety valve
GB2235938A (en) Annulus safety valve
CA1160951A (en) Submergible pump installation
US5207275A (en) Annulus safety valve
US6866095B2 (en) Downhole safety valve for central circulation completion system
EP1570153B1 (en) Downhole safety valve for central circulation completion system

Legal Events

Date Code Title Description
MKEX Expiry