CA1160436A - Method and apparatus for manufacturing spiral pipe - Google Patents

Method and apparatus for manufacturing spiral pipe

Info

Publication number
CA1160436A
CA1160436A CA000375973A CA375973A CA1160436A CA 1160436 A CA1160436 A CA 1160436A CA 000375973 A CA000375973 A CA 000375973A CA 375973 A CA375973 A CA 375973A CA 1160436 A CA1160436 A CA 1160436A
Authority
CA
Canada
Prior art keywords
strip
pipe
roll means
forming
curvature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
CA000375973A
Other languages
French (fr)
Inventor
Yasumi Shimazaki
Yoshito Tsuyama
Toshio Hirokawa
Kazutoshi Kakita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to CA000375973A priority Critical patent/CA1160436A/en
Application granted granted Critical
Publication of CA1160436A publication Critical patent/CA1160436A/en
Expired legal-status Critical Current

Links

Landscapes

  • Bending Of Plates, Rods, And Pipes (AREA)

Abstract

ABSTRACT OF THE DISCLOSURE
In the manufacturing of a spiral pipe, there is first determined a maximum curvature which should be imparted to a strip of pipe forming material in order that a desired residual moment will be imparted to the finished pipe after the strip bent to the maximum curvature is allowed to spring back from the bent condition, which maximum curvature is determined based on the thick-ness, Young's modulus and yield stress of the strip, the desired curvature of the finished pipe, and the residual moment to be imparted to the finished pipe.
By adjusting the position of three rows of forming rolls positioned at the apexes of a triangle, the flat strip is continuously bent into a spiral that has the thus determined maximum curvature. Then, the spirally formed strip is allowed to spring back toward its unbent shape to the diameter of the finished pipe, being stopped m the expansion due to the springback if it reaches the finished pipe diameter before completing springback or being expanded if it completes springback before it reaches the finished pipe diameter. Finally, the seam of the formed strip is welded when the strip is at the desired diameter of the finished pipe.

Description

l 16043~

This invention relates to a method and apparatus or manufacturing spiral pipe wherein a strip of pipe forming material is bent into a helical form and the abutting edges of the bent strip are welded together.
Methods of manufacturing spiral pipe fall into three general cat-egories: (1) methods using external holding, (2) methods using internal holding, and (3) methods that use no holding.
In the external holding method, the strip is helically bent into a round form using three sets of forming rolls arranged triangularly. While the springback of the spirally formed strip is prevented by means of a multitude of stationary external holding rolls exerting pressure from outside the pipe, the abutting edges of the strip are welded together. Thus, welding is accomplished while the unwelded bent strip is in contact with the holding rolls. Consequent-ly, the pipe is not welded while it is completely free of load. That is, the seam is formed without relieving the elastic strain within the mate~ial of the pipe. Accordingly, when a longitudinal slit is cut in the pipe, the pipe springs back in a direction tçnding to open the pipe because of residual moment 3L~ (hereinafter called the~ri~g-opening; the residual moment being defined as pos-itive). The internal holding method bends strip using similar forming rollsj and then welds together the abutting edges while exerting a force which tends to slightly expand the bent strip by means of a multitude of stationary intern-al holding rolls. In this case, a longitudinal cut made in the pipe causes the pipe to spring back so that the edges of the slit overlap because of residual moment (hereinafter called the ring-opening or the ring-closing; the residu&l moment being defined as negative). The method using no holding roll bends ~he strip so that the bent strip possesses~!the desired outside diameter after alow-ing for full springback, both inward and outward. With residual moment thus eliminated, the welded pipe does not spring back even if a longitudinal slit is 1 1 6~36 cut therein.
As will be understood, a certain amount of springback in a given direction develops in spiral pipe manufactured by most of the conventional methods, despite the intentions of the manufacturer. Therefore, no one has heretofore thought to provide residual moment in the pipe intentionally. As the use of spiral pipe becomes more widespread, however, the inventors have noticed that ignoring this residual moment is responsible for several defects~
or the impairment of several advantages, of the spiral pipe. For example, a po~itive residual moment in a sour-gas spiral pipe accelerates the development o stress corrosion cracks. It is therefore desirable to provide offsetting negative residual moment. Spiral pipe manufactured by the external holding method has much residual stress that develops a positive residual moment. When this type of pipe is used for a pipe line, the pressure of the liquid carried therein expands the pipe so as to lower the strength thereof. If a sheet pile is attached to spiral pipe which has negative residual moment or which has no residual moment at all, the cross-sectional shape of the pipe tends to become warped. If a suitable amount of positive residual moment exists, the same pipe will maintain its original round cross-section. It is thus necessary, depend-ing on the use, to control the residual moment ~internal elastic strain) that causes springback so that it is within a suitable range. Despite this neces-sity, conventional manufacturing methods and apparatus only serve the purpose of making spiral pipe having desired diameters, and do not include means to control residual moment.
Being stationary, the conventional forming apparatus cannot freely con~rol the amount or extent of bending. Therefore, it is di~ficult, not only to selectively provide positive or negative residual moment as desired, but also to control the amount of either type of residual moment by means of a ,~

3 ~

single manufacturing method and apparatus. Therefore, to make spiral pipe with positive or negative residual moment as desired would require at least two dif-ferent types of manufacturing equipment, i.e. which respectively operate on the external and internal holding principles. Providing two different lines in a limited plant space, however, lowers e~uipment utilization rate, entailing an increase in capital investment and production cost and a considerable economic disadvantage.
SUMMARY OF T~IE INVENTION:
An object of this invention is to provide a method and apparatus for manufacturing spiral pipe in which the amount and direction of residual mo-ment imparted to the pipe can be controlled.
Either positive, zero or negative residual moment can be imparted at will by using a single forming appara~us. The disclosed method and appara-tus for manufacturing spiral pipe provide the capability of manufacturing pipe ~ith the desired residual moment by automatically altering the forming con~i-~ions in accordance with a change in the thickness and yield stress of the strip o pipe material.
The invention provides in a method of manufacturing spiral pipe using a forming apparatus having three forming roll~means at the apexes of a triangle and positioned along the circumference of the pipe being manufactured and in which method a flat strip of pipe material is fed in the longitudinal direction thereof through said three roll means and is continuously bent into spiral form by pressing one of the forming roll means which is inside the cir-cumference against the inner surface of the strip toward the outside of the pipe and pressing the other two forming roll means which are respectively ahead of and behind said inside forming roll means in the direction of movement of the strip against the outer surface of the strip toward the inside of the pipe, and the seam of the spirally formed strip is continuously welded, the improve-l 1~0436 ment which comprises the steps of: determining, based on the thickness of the strip and the yield stress of the material of the strip and the curvature of the finished pipe, a maximum curvature of the strip before springback which has a smaller radius of curvature t~an the radius of curvature of the finished pipe and which is sufficiently great, when it is desired that the finished pipe have a positive residual moment, to cause the pipe, when the force causing such bending is released, to spring back to an unstressed bent form with a radius of curvature which is larger than the radius of curvature of the finished pipe, and when it is desired that the finished pipe have a zero residual moment, to cause the pipe, when the force causing such bending is released, to spring back ~o an unstressed bent form with a curvature which is equal to the curvature of the finished pipe, and when it is desired that the finished pipe have a nega-tive residual moment, to cause the pipe, when the force causing such bending is released, to spring back to an unstressed bent form with a radius of curvature~
which is smaller than the radius of curvature of the finished pipe; continuous-ly forming the flat strip into a spiral having said maximum curvature by adjust-ing the positions of said forming roll means in a direction transverse to the thickness of the strip; and, prior to the welding step, when it is desired to impart a positive residual moment to the finished pipe, exerting a force on the exterior of the strip subsequent to the forming roll means in a direction of novement of the strip for restraining the springback of the strip to a curva-ture correspondlng to the curvature of the finished plpe, and when it is de-sired to impart a negative residual moment to the finishéd pipe, allowing the pipe to spring back to the unstressed bent form and then exerting a force on the strip from the interior of the strip subsequent to the forming roll means in the direction of movement of the strip for expanding the strip to a curva-ture corresponding to the curvature of the finished pipe.

.;, 1 ~ 6~36 Furthermore, the ratio of the change in the forming load to the change in the yield stress or the amount of bending is preferably detected while the strip is being bent into spiral form. Using this information, the relative positions of the forming rolls are adjusted when there is a change in the yield stress or thickness of the strip. This enables imparting the desired residual moment to the finished pipe with great precision.
From another aspect, the invention provides a spiral pipe manufact-uring apparatus which comprises: a forming aFparatus having three forming roll means disposed at the apexes of a triangle and positioned along the circumfer-ence of the pipe being manufactured for continuously bending a flat ~trip into spiral form, one of said roll means being an internal forming roll for contact-lng the inner surface of the strip and pressing toward the outside of the pipe and the other two of said forming roll means being outer rolls and respectively being ahead of and behind said internal forming roll in the direction of move-ment of the strip and for contacting the outer surface of the strip and pressing it toward the inside of the pipe, a welding apparatus provided behind said form-ing apparatus in the direction of movement of the strip and along the cIrc~mfer-ence of the pipe being manufactured for continuously welding the seam of the spirally formed strip, and a bending moment imparting roll means adjacent to and behind the forming apparatus in the direction of movement of the strip and adjustably movable in the direction of the pipe diameter for engaglng the strip for holding it in a position as it moves past said bending moment supporting roll means for making the diameter of the spirally bent strip equal to the de-sired diameter of the finished pipe.
The bending moment imparting rolIs maintain the curvature of the spirally bent strip at the value specified for the finished pipe by restraining the springback of, or expanding, the spirally formed strip.

The invention will further be described, by way of example only, with reference to the accompanying drawings, wherein:-Figures la and lb schematically illustrate r~mg-opening ratio, .~: Figure la showing the finished pipe before slit-cutting, and Figure lb showing the pipe after slit-cutting;
Figure 2 is a graph showing the relationship of the curvatures of the pipe midway in the bending and in the finished pipe relative to the bending moment;
Figure 3 is an end elevation of a pipe forming apparatus according to one embodiment of this invention used with pipe manufacturing equipment of the external holding type;
Figure 4 is a side elevation of the apparatus shown in Figure 3;
Figure 5 is a side elevation showing the structure of a stand that supports bending moment imparting rolls in the structure of Figure 4;
Figures 6 and 7 are schematic views illustrating how the bendlng operation is performed according to the external holding method;
Figure 8 is an end elevation of a forming apparatus according~to an embodiment of this invention used with pipe manufacturing equipment of the in-ternal holding type;
~0 Figures 9 and 10 are schematic views illustrating how the bending operation is performed according to the internal holding method;
Figure 11 is an end elevation of a forming apparatus according to an embodiment of this invention used with pipe manufacturing equipment having no~
holding rolls;
Figure 12 is a schematic view illustrating the relative positional relationship of the forming rolls;
Figure 13 is a graph showing the relationship between the position , . . .

1160a.36 of the forming roll ~ ) and the residual moment ~r);
Figure 14 is a diagram illustrating how the residual moment is ad-justed by changing the position of the forming rolls;
Figure 15 is a schematic illustration of a forming apparatus which includes a system that automatically controls the amount of bending by detecting a change in the yield stress of the strip being formed;
Figure 16 is a flow chart showing the arithmetic operation performed ~y the control computer shown in Figure 15;
Figure 17 is a schematic illustration of a forming apparatus which includes a system that automatically controls the amount of bending b~ detecting the ratio between the changes in the amount of bending and the forming load; and ~igure 18 is a flo~ chart showing the arithmetic operation performed by the control computer shown in Figure 17.
To con~rol the amount o bending of a strip of pipe forming material in a forming apparatus and bending moment imparting rollsJ it~is necessary to know the extent of the effect which a change in the yield stress of the strip ~eing formed has on the finished pipe. This information can be obtained from the theory of bending described hereinafter and an inspection prior to manu-facture. This inspection determines the relationship of the residual moment, yield stress and amount ~or reading) of screwdown or screw-up, the same holds throughout this specification on the gauge of the forming apparatus, to the amount of actual screwdown and curvature. The results of the inspection are presented in the form of a graph or table. When the relevant properties of the strip change, the screwdown given to the forming apparatus is adjusted by the use of the graph or table, so that the manufactured pipe always posseses-the desired residual moment.
The following paragraphs describe the process of forming a spiral ~043~

pipe based on a fundamental theory of bending and the control of ~he diame~er and residual moment of the finished pipe based on the results of the study.
~irst, the ring opening or - closing which has a direct relationship to residual moment will be explained.
The ring-opening ratio as shown in Figure 1 has tb~ following geo-metric relations:
~ = 2po sin ~ and
2~p = ~2~ o~
Where ~p is the radius of curvature of the finished pipe, and Po is the radius of curvature of the formed by the ring-opening ratio tha~ where the pipe has been allowed to spring back to the fullest extent.
If the ring-opening ratio r is defined as ~ - ~/Cp, r is expressed as follows, from the above two equations B r = ~ - p sin ~ ~ = sin where ~ _ ~pP

The following describes the change in curvature caused by the occur-or closl nq rence of the ring-opening ~a~e ba'sed on the relationship between bending mom-ent and curvature. As shown in Figure 2, for forming a pipe with a curvature~
l~Pp and with a positive residual moment, the strip of material is ~rst bent to point A where the maximum curvature is 1/ ~. Then the edgcs of the ormed strip are welded together into finished pipe form at point B midway through springback toward an unstressed bent form, the finished pipe having a curvature l/Pp and a positive residual moment ~1 If a longitudinal sllt is cut in th~s pipe, the slit develops into a gap, releasing the residual moment. The pipe thus cut open has a curvature l/Po, indicated at point C ring-opening. For orming a pipe with curvature l/p p with a negative residual moment the strip is ` 8-1 ~043~

bent to point A' where the maximum curvature is made greater to make possible imparting negative residual moment ~. In this case, as seen in Pigure 2, at a zero residual moment, i.e. when springback is completed to the unstressed gre~e~
candition~ the radius of curvature 1/ Po of the slitted pipe is sm~er than that of the finished pipe, and the pipe must be expanded to the desired diameterto~ave a curvature l/Pp. At this diameter it is welded. Then if it is cut~ the edges of the pipe along the cut will overlap. Therefore ~ in Figure 1 becomes nega-tive and, thus r too becomes negative ring-closing. To obtain the finished pipe curvature B' and C', it is therefore necessary to bend the formed strip outward-ly from inside. It will be seen that in both cases the strip of material is irst bent to a curvature which is greater, i.e. with a smaller radius o cur-vature, than that of the finished pipe, because, as is evident from Figure 2, the stress curve at the time of release of the bent strip slopes downwardly to the left, in the case of the bending for a positive residual moment intersecting the zero stress base line to the left of the desired pipe diameter and ln the case of the bending for a negative residual moment, intersecting to the right of ~he desired pipe diameter. Of course if the maximum curvature is such that the llne intersects the base line at the desired pipe diameter, there is a zero re-sidual moment.
The value ~ usually falls in the vicinity of 1. Therefore, ~ ca~

be expressed as follows by approximation.
sin~ C~ - ~) (2) Assuming that the strip of pipe forming material is a perfectly elastic-plastic material, the stress-strain relation of the strip is expressed as follows based on the fundamental theory of bending.

. _g_ 1 ~ 60436 1 = 1 [1 - 3 ~ 6~-PI ~ + I ( ~Y 'Pi ) 3~ ~3) Where E, 6~1 and 2t are Young's modulus, yield stress and thickness af the material strip, respectively.
In ordinary forming, the third term of the part of equation ~3) in brackets it negligible. Therefore, _ PP ; - ~1 _ 2 ~ ) Po Pi 3 ~ ~ ~
When the Young's modulus and yield stress (E and~,Y) of the material of the strip, the pipe dimensions ~2t and Pp ) and maximum bending curvature l/p~
are determined from 0quations ~2) and ~4), the ring-opening ratio ~ is also de-termined.
When the residual moment is positive or zero, B -- y > o ~ < 1) then Po ~ Pp > P, When the residual moment is negative, y < 0, ~ > 1), then Pp ~ ~o > P;
If the residual stress at the outermost surface of the finished plpe is ~R~ the ring-opening ratio is expressed as follows based on the founa-mental theory of bending:
r= ~ ~ 6y~ 5) 1-~ E t 6y Furthermore, the bending moment M per unit length of pipe at a max-imum curvature of l/P, and the residual moment M~ per unit length~of pipe are expressed as follows:
M = ~ ~1 ~ 3 ~ ~E-t~) 1 1 6~36 Mp _ ~yt2 ~ 2-1- ~ .t3 ( p -or 2 3 1 1 2E-t3 r ~7) ~p = ~ ^t ( pp ~ ~~O) ~ 3pp ~+r As is evident from the above-described theory of bending, the strip of material is first bent on the forming appara~us to a radius of curvature PI
that is smaller than the radius ~ specified for the finished pipe. When this formed strip has fully sprung back to reduce the residual moment to zero, the formed strip has a radius of curvature Po. The amount and direction of the re-sidual moment in the finished pipe depends upon how much the radius of curvature ~o is larger or smaller than the radiusPp of the finished plpe. The formed strip is then welded into the final pipe form while being externally or inter-nally held by bending moment imparting or holding rolls that move in the direc-tion of the diameter of the pipe being manufactured, thereby adjusting the radius of curvature P, to the radius Pp of the finished pipe. This permits not only controlling the amount of residual bending moment but also providing pos-itive and negative residual moment at will. ~ ~
It is therefore possible, by the present invention, to provlde neg-ative residual moment in the finished pipe, which has so far been lmpossible when using the external holding method, by first bending the strip to~a~greater extent that the final produc* should be and then holding the formed atrip from the inside using bending moment imparting rolls To provide a negative resid-ual moment M2 on the moment-curvature curve in Figure 2, for example, the bend-ing apparatus bends strip to point A' so that the negatiVe~m~t~M2 is~btained at curvature l/Pp that is specified for the finished pipe. Then, the formed strip is welded into the finished pipe form while the bending moment imparting rolls are pressing the formed strip back to the size of the finished pipe or reducing ~ 1 60~3B

the curvature to that at point B'. By controlling the amount of bPnding by the forming apparatus so that the maximum curvature can be varied between ~ and A', the amount of residual moment in the finished pipe can be adjusted within the range Ml to M2, including a zero residual moment.
On the other hand, a positive residual moment can be provided in the finished pipe by holding the formed strip against springing back by the use of e~ternal stationary holding rolls, particularly by rolls provided immediately after the forming apparatus.
The internal holding method has thus far been unable to provide a finished pipe having a positive residual moment. But it is now possible to do this by first bending the material of the strip to a smaller maximum curvature and then holding the formed strip from outside using the bending moment impart-ing rolls. To provide a positlve residual moment Ml in the moment-curvature curve in Figure 2, the forming apparatus bends the strip to point A so that the positive moment Ml is obtained at curvature 1/~ that is speciied fo~ the finished pipe. Then~ the formed strip is weldëd into the finished pipe form ~hile the bending moment imparting rolls are pressing the formed strip toward the size of the finished pipe, i.e. reducing the curvature to that at point B.
Meanwhile, a negative residual moment can be provided by holding the formed strip by use of internal stationary holding rolls, particularly those disposed immediately after the forming apparatus. Thus, the method of this invention permits imparting a freely controlled amount of either positive or negative re-sidual moment to the finished pipe by use of a single forming apparatus. The method obviously can be used to provide zero residual moment.
The invention will now be described in greater detail by reference to the embodiments thereof illustrated in the accompanying drawings.
Figures 3 and 4 show a pipe manufacturing apparatus of the external 1 1 ~04~6 holding type to which this invention is applied. As shown, an entry-side ex-t~rnal forming stand 12 and an exit-side external forming stand 13 rest on a base 11~ An internal forming stand 14 is suspended rom a frame 15 on the base s~and 11 by a support plate 17 on a pin 16. The internal forming stand 14 is positioned opposite to the entry- and exit-side forming stands 12 and 13.
The entry- and exit-side external forming stands 12 and 13 and the internal forming stand 14 respectively have rotatable forming rolls 18, 19 and 20 thereon. Figure 4 shows the arrangement of the entry-side forming rolls 18.
As can be seen, a plurality of entry-side forming rolls 18 are disposed along ~he length of the pipe to be manufactured, with the axes of the rolls being ske~ with respect to the axis of the pipe at the same angle as the lead angle of pipe spiral. The exit-side external and internal forming rolls 19 and 20 are also arranged in the same mannsr as the entry-side forming rolls 18. When viewed from the end of the apparatus, these forming rolls 18, 19 and 20 are disposed at the apexes of a triangle.
As shown in Figure 4, the entry-side forming stand 12 comprises a moving table 21 that is placed on the base stand ll so as to be movable in the direction of the axis of the pipe and a roll support table 22 that is placed on the moving table 21 so as to be movable up and down. The moving table 21 has a saw-tooth-shaped inclined surface 23 that is inclined in the direction of the axis of the pipe. An axial opening 24, extending in the direction of the axis ~ the pipe, is provided in the rear end of the moving table 21, and a threaded sl~eve 25 is fitted in the rear part of the axial opening 24. In the threaded sleeve 25 is fitted a threaded rod 26 that is rotatably supported in a bearing 27. As the screw rod 26, which is connected to a motor 28 through a reduction gear, rotates, the moving table 21 moves back and forth. The roll support table 22 has an inclined surface 29 similar to that on the moving table 21 ~f,i'~,"

slidably engaged with surface 23. The roll support table 22 is placed on the moving table 21 so that the surfaces 23 and 29 are held in contact with each other. A groove 31 is cut in the front end of the inclined surface 29 of the roll support table 22. A pin 32, which is fastened to the frame ~not shown) of the base stand 11, fits in the groove 31. When the moving table 21 moves back and forth, accordingly, the pin 32 prevents the roll support table 22 from mov-ing back and forth. Consequently, the roll support table 22 moves up and down instead. On the top of the roll support table 22 is a block 33 on which are rotatably supported the entry-side forming rolls 18.
1~ The exit-side forming stand 13 has the same structure as the entry-side forming stand 12 just described. The vertical position of the forming rolls 18 and 19 is adjusted by moving the moving tables 21 back and forth.
When a vertical forming load acts on the moving table 21 during the forming op-eration, the moving table 21 does not move back and forth because of the fric-tion between the inclined surfaces and because of the threaded sleeve, so that the roll support table 22 does not move up and down at all. Accordingly, the entry-side forming roll 18 is held in the preset position. The same is the case with the forming roll 19.
As shown in Figure 3, pillars 35 stand on the base stand 11 and 2~ support a forming case 36 that is C-shaped in cross-section and extends in the direction of the axis of the pipe. The forming case 36 encloses a pipe 2 being manufactured so as to cover an area extending between the point where forming of the pipe 2 begins and the point where welding is performed. The forming case 36 carries a plurality of rotatable external holding rolls 37, which are disposed along the periphery of the pipe 2, by means of support members 38 each including a screw mechanism. The screw mechanism of the support members 38 moves the external holding rolls 37 in and out in the direction of the radius of the pipe to adjust the holding positions thereo. The external holding rolls 37 come in contact with the periphery of the pipe 2, and rotate during the spiral motion of the pipe.
A plurality of bending moment imparting rolls 41 are attached to ~he internal forming stand 14 and are disposed along the axis of the pipe. As sho~n in Figure 3, the bending moment imparting rolls 41 are positioned between the exit-side forming rolls 19 and the external holding rolls 37, i.e. on the exit side in the direction of the circumference of the pipe. It is preferable that the bending moment imparting rolls 41 be positioned as close to the exit-side forming rolls 19 as the apparatus design permits. The bending moment im-parting rolls 41 are attached to the internal forming stand l4 in the same man-ner as the entry- and exit-side forming rolls. That is, a base 42 on the in-ternal forming stand supports a moving table 43 that has a saw-tooth-shaped in-clined surface 44. A threaded rod 45 rotatingly driven by a motor 46 through a reduction gear moves the moving table 43 bac~ and forth in the direction of the axis of the pipe. A roll support table 48 also has a saw-tooth-shaped inclined surface 49. The base 42 supports the roll support table 48 so~that the inclined surace 49 thereof contacts the sliding surface 44 of the moving table 43. As ln the case of the entry-side forming stand 12 described above, the roll sup-port table 48 moves up and down as the moving table 43 moves back and forth.
A welding torch ~ projects from near the front end ~i.e. from near the left end in Figure 4) of the internal forming stand 14. The foremost end of the Nelding torch A~ris directed toward a seam 3 on the inside of the pipe 2. Although not shown, a welding torch to weld the seam on the outside of the pipe is provided near the welding torch ~ .
The following paragraphs describe the method of manufacturing spiral pipe having the desired residual moment by use of the above-described pipe manu-~~~ -15-facturing apparatus.
To begin withJ all rolls are set in predetermined positions. That is, the internal forming rolls 20 are positioned so as to hold the internal surface of the pipe 2 so that the pipe 2 attains the maximum curvature l/Pi at the position of the internal forming roll 20. The external entry- and exit-side forming rolls 18 and 19 are positioned so as to hold the external surface of the pipe 2 so that the pipe 2 attains a curvature substantially identical with that ~l/pp ) of the finished pipe at the position of the external forming roll 19.
~he external holding rolls 37 or the bending moment imparting rolls 41 are so positioned as to come in contact with the external or internal surfaces of the pipe 2, respectively, which has been formed by the forming rolls 18, 19 and 20 to attain the final curvature l/Pp.
A flat strip is horizontally and continuously fed, as shown in Fig-ure 3, into the pipe manufacturing apparatus the rolls of which are all set in positions as described above. The strip 1 is increasingly bent between the entry-side forming roll 18 and the internal forming roll 20, substantially at-taining the maximum curvature l/Pi at the internal forming roll 20. Because of springback~ the curvature of the strip 1 gradually decreases between the inter-nal orming roll 20 and the exit-side forming roll 19, substantially attaining ~0 ~he final curvature l/Pp at the exit-side forming roll 19.
While the final curvature 1/~ is maintained by tke action of the bending moment imparting roll 41 ~d the external holding roll 37, the seam 3 a the spirally ormed strip is welded by the welding torch A~
The way in which negative residual moment is imparted to the finish-ed pipe according to the pipe manufacturing method'described above will now be described. As shown in Figure 6, the forming rolls 18 and 19 are adjusted so that the strip is bent to such a curvature that it develops the desired nega-
3 6 tive residual moment. The strip thus bent as indicated by a dotted line is ~hen pushed back from inside to the desired pipe diameter, as indicated by the solid lines, using the bending moment imparting roll 41. That is, the strip pre-formed to the curvature 1/~ at point A' in Figure 2 on the forming appara-tus is pushed out from inside ~C' ~ B~), using the bending moment imparting roll 41, until the desired finished pipe diameter is established. Then, with the strip in this state, the seam of the strip is welded to complete the manu-$acture of ~he spiral pipe. As a consequence, the fin~shed spiral pipe has a negative residual moment M2.
On the other hand, positive residual moment is imparted as follows:
the strip is first bent as indicated by the dotted lines in Figure 7, by the Use of the forming apparatus, and then pressed inwardly or back by the external holding roll 37 to the desired finished pipe diameter, as indicated by the solid lines. That is, the strip pre-formed at point A in Figure 2, to such an extent that the strip expands to point C upon springback, is held at point B by the 0xternal holding roll 37. In this state, the seam of the strip is welded, leaving a positive residual moment Ml in the pipe. Therefore~ it is possible to impart a desired amount and direction of residual moment wlthin the range of ~ to B' by setting the maximum bending curvature to that at a point between A
and A'.
Obviously the strip can be first bent to a point between A and A' so that on springback it expands precisely to the diameter of ~e finished pipe, at which time it is welded.
Figure 8 is an end view of an embodiment of an internal holding type pipe manufacturing apparatus according to this invention. Parts similar to those in the apparatus shown in Figures 3 and 4 are designated by similar reference ~numerals, and will not be described again.

7~

1 160~3~

A forming apparatus, or a so-called three roll bender, which com-prises external forming rolls 18 and 19 and an internal forming roll 20, bends a strip into a spiral pipe 2. In this spiral pipe forming operation, the pipe diameter Dp(- ~p) is maintained by a plurality of internal holding rolls 52, which are each supported on a stand 51 so as to be movable back and forth in the direction of the axis of the pipe. The stand 51 is a combination of a roll support table and a moving table each having the same saw-tooth-shaped inclined surface as described before, the apparatus further has bending moment imparting rolls 55 supported on stand 54. The bending moment imparting rolls 55 are pro-vided behind and on the outside of the exit-side external rolls 19 o the three rollben~e~-8. The bending moment lmparting rolls 55 are moved by a mechanism that utilizes the action of a wedge the same as in the apparatus of the external holding type. The internal forming stand 14 and stand 51 are supported by an internal holding roll support table 57 that is positioned on the inside of the pipe 2 being manufactured.
To impart positive residual moment, as shown in Figures ~ and 9, the strip is first pre-formed at point A as indicated by dotted lines, and then pressed imYard, as indicated by the solid lines, by the bending moment imparting rolls 55, so as to be ready for welding. The pre-formed strip which will at-tain a curvature as at the point C in Figure 2 at the time of complete spring-back, is pressed back to point B in Figure 2, thereby establishing the desired finished pipe diameter, and the seam is welded with the pipe in this state.
~onsequently, the finished pipe has a positive residual moment 1~1. For impart-ing negative residual moment, the strip pre-formed to a curvature indicated by the dotted lines in Figure 10 is expanded from inside, using the internal hold-ing rolls 52, ~o ~he desired finished pipe diameter as indicated by solid lines.
In other words, the strip bent to a curvature at point A' in Figure 2 is expand-l 160436 ed back to point B' by use of the internal holding rolls 52, ana is welded in that state. This~results in a negative residual moment M2. By thus changing the curvature of the strip in the range of curvatures between ~ and A', the re-sidual moment can be varied within ~he range of B to B'.
Figure 11 is an end view of an embodiment of a pipe manufacturing apparatus which does not use holding rolls according to this invention. As shown, two bending moment imparting rolls 61 and 62 are provided after the form-ing apparatus respectively lying on the inside and outside of the path of the pipe being manufactured, respectively. Residual moment is imparted by using either of or both the internal and external bending moment imparting rolls 61 and 62. Details of the operating method will not be described here since they are similar to those for the external and internal holding types of apparatus ~escribed previously.
According to this invention, the desired amount a~d dlrection of re-sidual moment can be imparted to the product pipe at will. ~urthermore, this can be accomplished on a single pipe manufacturing line, i.e. without using dif-ferent lines. This means that spiral pipe having positive, zero and negative residual moment can be manufactured at will on the same equipment. If desired, in addition, it is also possible to manufacture a single piece of spiral pipe in which the residual moment changes continuously from positive to negative from one end thereof to the other.
Next, the basic concepts of controlling residual moment will be des-cribed.
(1) Setting the Initial Value of Residual Moment or the Ring-Opening Ratio When the Young's modulus and yield stress (E and6y) of the material of the strip, the pipe dimensions ~2t and P~) and the desired residual moment or the ring-opening ratio y are given, for example, the maximum curvature l/P; ko 1 16~436 be given to the strip by the forming apparatus is derived ~rom equations ~2) and ~4) as follows:
~ 3 ~ ) ~8~

Usually,Pl is difficult to measure directly. Therefore, the ini-tial value of ~ can be established, for example, by first determining the re-lationship between the curvature of the strip directly under the internal form-ing rolls of the forming apparatus and the position of the rolis m the forming apparatus, and then determining the position of the rolls that corresponds to Pl in equation ~8). The following paragraphs discuss this~point at length.
As a result of a theoretical analysis of the forming of strip by use Qf three forming rolls disposed at the apexes of a triangle, the inventors have found that the ring-opening ratio ~) can be controlled by adjusting the rela-tive position of the forming rolls. This finding will be described specifically ~y reference to Figure 12 which shows the positional relationship bet~een the forming rolls. As seen, there are three forming rolls; an entry-side roll 18, an internal roll 20, and an exit-side roll 19. These rolls all have the~same diameter 2r. In this figure r~ designates the equivalent radius of each forming roll; and re = r ~ t ~where strip thickness = 2t). The figure is drawn as if ~he forming rolls were in contact with a line N extending along the center of the thickness of the strip. The entry- and exit-side forming rolls 18 and 19 are spaced from the internal forming roll 20 the same horizontal distance L.
The vertical position of the entry- and exit-side forming rolls 18 and 19 is ex-pressed by the distance ~ and ~2 between a horizontal line H which is tagent to the periphery of the internal forming roll 20 at the lowermost point thereof, and the periphery of each roll 18 and 19 at the highest point thereof. I the mean screwdown or screw-up distance given to the forming rolls is expressed as 2) /2, the value ~m ~ )depends upon the Young's modulus E and yield .~ .;

1 1 6043~

stress 6~ of the material of the strip, and the radius P~ , wall thickness 2t and ring-opening ratio ~.
Figure 13 shows graphically the relationship between y and ~/L2 that has been empirically proven. The experiment which proved the relationship ~as carried out under the conditions that the pipe radius P~ = 400 mm, strip thickness 2t = 9 mm, the forming roll radius r = 40 mm, and the yield stress ~
= 30 ~g/mm2. As seen, the residual moment changes from positlve to negative as the value of ~/L2 increases.
Generally, the radius r of the forming rolls and the distance L
t~erebetween are fixed in the forming apparatus, so the only value that can be varied, ~ith respect to the positional relationship among the forming rolls, during the forming operation is the mean screwdowm position ~ described before.
The mean screwdolm dis~ance ~ can be adjusted by changing the distance ~, of the entry-side forming roll 18 above line H by changing its screwdown position and the distance ~2 of the exit-side forming roll 19 above line H by changing its screwdown position. The inventors have also found that the residual moment can be exactly controlled if ~ is fixed at a suitable value and ~ is alone changed, as described in the following.
Ideally, the exit-side forming roll 19 should be held in contact with the periphery of the strip being bent to the final curvature Pp , as shown ln Figure 12. The figure is drawn as if the exit-side forming roll having the~
equivalent radius re were contacting the center line N of the strip point P.
Unless such a contact is achieved, or if, for example, the exit-side forming roll 19 is positioned higher (i.e. when ~2 iS greater), that part of the strip in the vicinity of the point at which the forming roll 19 contacts it bends op-positely so that the external surface of the formed pipe becomes depressed.
This results in a waste of forming energy and makes impossible the control of 1 160~36 residual moment. If, conversely, the exit-side forming roll 19 is positioned lower (i.e. when ~ is smaller), the strip is spaced from the forming roll 19, whereby the strip fails to be bent to the desired curvature.
B By reference to Figure ~, the appropriate position or optimum screwdown position to set distance ~a of the exit-side forming roll 19 above line H is determined as follows: If the effective bending length at the center of strip thickness is ~ and the inclination angle o bending is 9, ~ and ~ can be expressed as follows from the geometric relationship:
Q = P~ sin~
L = ~ ~ ~ sinO ~10) From equations (9) and ~10), L = ~ P~ + ~e ) sin~
The effective scre~down position ~or the roll height at contact point P) ~* is expressed as ~* = ,~ r,~ ~1 - cos~ Pp ~1 - cOSa) ~12) From this, pp + rè ) ~1 - cos~) ~13) From equations ~11) and ~13), L2 (~p+r~ ~ )2 1 (14) ~pp ~)2 ~re)2 From equation (1~), ~ = Pp + ~ _ ~/(gp + ~ )2 L2 (15) Thus, the screwdown position to be given to the exit-side forming roll 19 to position it at a distance ~ above line H should be preset as given by equation 15.
As stated previously, there exists a certain relationship between ~/L2 and the ring-opening ratio r or the residual moment in the product pipe.
It is therefore possible to control the residual moment by varying the mean 1 1 6~36 screwdown distance ~m~ 2~ /2 of the forming rolls. If the screwdown distance ~2 of the exit-side forming roll 19 is established by equation ~15), the residual moment can be controlled by varying the screwdown distance ~1 f the entry-side forming roll 18 alone.
~2) Measures to Cope with Disturbances ~or Changes in ~y and 2t) The following paragraphs describe how the residual moment ~ should be controlled when a disturbance occurs due to a change in the yield stress 6y and thickness of the strip being formed.
Because of the elastic deformation of the screwdown mechanism, the housing, etc. of the forming apparatus, the apparent screwdown distance S~ and the real screwdown distance ~ of the forming rolls do not agree with each otner. The relationship between the two can be expressed as follows:
Q = K~S~ 16) where Q is the bending load, and K is the spring constant of the forming stand.
The inventors have empirically found that the bending force Q can ~e considered to be substantially the function of~y , 2t and ~. Therefore, Q = ~ , 2t, ~ 17) Figure 14, which will be described hereunder, is a graph that qual-itatively shows the relationship Q = ~ , 2t, ~
Since ~ ~ l/p approximately, ~ is the function o ~;.
Namely, ~ n~ 18) From equations (16) to (18), Sm = K ~ (~r~ ~ ~l9) The way in which to adjust the residual moment will be described by 1 ~60436 assuming that ~y changes to ~y during forming.
To keep the product pipe diameter 2 P~ and residual moment y con-stant, Pi must be changed to Pi as ~y changes to ~y according to the relation-ship expressed by equation ~8).
Namely, the screwdown distance of the ~orming rolls should be cha-nged from Sm to Sm, according to equation ~19), as follows:
Sm = ~ ~j, 2t, ~
Figure 14 graphically illustrates the above-described calculation.
A group of straight lines Sm, Sm and ~m~ representing the elastic characteristic o the forming apparatus, express equation 16, using Sm as a parameter. A group o curves Q, Q~and Q/i, representing the forming load, express equation 17, using Yield stress ~y as a parameter. Actually, the strip thickness 2t is also a variable in equation 17. But here 2t is considered to be constant. The straight line Mp (or~) indicates the desired residual moment. If the desired residual moment Mp is givenl the straight line AC, for example, in Figure 2 can be approximately expressed by the straight lineMp~ in Figure 14, since ~;- Q`'Q
and, approximately, ~ ~ l/p.
In ~igure 14, point ~ indicates that a pipe having a residual mo-ment ~p can be obtained by forming a strip that has a yield stress 6y with a screwdown distance Sm. If the yield stress changes to ~ , the forming load changes, according to equation 17, to produce a load curve Q'. To obtain the desired residual moment, forming should be effected with a load at point ~
~rhere the straight line ~p and the curve Q' intersect. At this time, the ap-parent screwdown distance is expressed as ~ by the straight line that passes through the intersection point~.
When the strip thickness 2t changes, the desired residual moment can be imparted to the finished pipe in the same manner as described above.

;, -24-1 1 6043~

The following paragraphs describe a method of automatically control-ling the amount of strip bending in order to impart the desired residual moment to the finished pipe when the yield stress 6y and/or thickness 2t of the mater-ial strip changes.
Figure 15 shows schematically a forming apparatus incorporating a Control device. Before being bent, a strip 1 is flattened by a roller leveler 65. In the roller leveler, there exists a functional relationship between the load W on the rollers 66 of the roller leveler 65 and the yield stress ~y of the strip 1. Therefore, if this function, Gy = f~W), is empirically determined, the yield stress ~y can be determined by measuring the load W. The load W is continuously measured on-line by means of a load meter 67 utilizing a load cell or the like. The measured load W is imputted in a control computer 68 where the yield stress ~ is determined from the function f~W). A thickness gauge 69 i~ provided along the path of movement of the strip for measuring the thickness 2t of ~he strip, and the measured thickness is inputted to the control computer 68.
The control computer 68 is programmed to compute according to two unctions Q = ~(~y~ 2t, ~m) and Q = K(Sm - ~m) as shown in Figure 14. The com-puter 6~ calculates the screwdown distance ~ for the forming apparatus~from these functions in accordance with the changes in the yield stress 6y and/or thickness 2t of the material strip, following the same procedure as described previously.
Figure 16 is a flow chart showing the arithmetic operation perform-ed by the control computer 68. The desired pipe diameter Dp and residual mom-ent Mp are preset in the computer 68. Then, the yield stress ~y and thickness 2t of material strip are measured, and supplied as initial values ~yo and to in the computer 68. Based on these initial values, the screwdown distance Slm is 1 160~36 determined by the calculation shown in Figure 14 and, then, set in the computer 68.
When the above setting has been completed, the manufacturing of pipe is started and the values of6y , and 2t are measured. If the measured values ~y and 2tl are equal to the initial values 6y and 2tl respectively, the pipe manufacturing is continued with the initially calculated screwdown dlstance Sm.
I the measured and initial values are not equal, the screwdown distance Sm is corrected and, at the time,~yo and 2tl are set in the computer 68 as new in-i~ial values.
The thus determined screwdown distance Sm is inputted to a screw-do~n device 70. The time lag due to the distance between the forming apparatus and the roller leveler 65 is corrected by using the travel speed v o the strip 1 that is detected by a speed meter 72 coupled to a pinch roller 71. That is, when the part of the strip 1 where the load W of the roller leveler 65 is measured reaches the forming apparatus, the screwdown distance Sm required for that part is set in the forming apparatus.
The real screwdown ~m~ of the forming apparatus is detected by a screwdown detector 73 that detects the position of the roll or roll shaft. The screwdown ~m thus detected is fed back to the computer 68.
Figure 17 is a schematic view of a forming apparatus incorporating a control device operating on another principle.
This device detects the load Q and real screwdown ~m of the form mg roll 20 using a load meter 75 and a screwdown detector 76, respectively. The detected values Q and ~m are inputted to a control computer 77. The control computer 77 is programmed for the function Q = ~(6y, 2t, ~m), the aimed-for value ~Q/~m = k, and ~p shown in Figure 14. As mentioned previously, the line Mp in Figure 14 is a straight line. Therefore, the real screwdown distance ~m is controlled by controlling the apparent screwdown distance Sm so that ~Q/~m is at all times a constant value K.
Let it be assumed, for example, that the yield stress of the strip changes from 6y to 6y when forming is being carried out at point ~ on the form-ing load curve Q in Figure 14. Because of this change, the orming load curve changes from Q to Q'. Therefore, if the forming operation is continued while maintaining the screwdown position of the forming rolls at the same distance ~, the forming condition changes from point ~ to point ~. At this time, the ratio of the change in the forming load Q to the change in the real screwdown ~m be-comes ~Q~ m~ which is wide of the aimed-for value. As a consequence, the mo-ment in the finished pipe becomes ~p, instead of the desired Mp. Therefore the computer 77 issues a command to change the screwdown distance from Sm to S~m, whereupon point c, which indicates the forming condition, moves along the curve Q' until point b is reached. At this time, the ratio ~Q/~m becomes equal to the aimed-for value k, so that the desired residual moment Mp is imparted to the product pipe.
Figure 18 is a flow chart showing the arithmetic operation of the control computer 77. The desired pipe diameter Dp and residual moment Mp are preset in the computer 77. Also, the preliminary measured yield stress ~ and thickness 2t of the strip are supplied as initial values. Based on these in-puts, the screwdown distance Sn is determined by the calculation shown in Figure 1~, and the obtained value is set in the computer 77.
When the above setting has been completed, the manufacturing of pipe is started, and the forming load and screwdown distance are measured, as initial values Qo and ~o. While continuing the manufacturing operation, the forming load Ql and screwdown position ~1 are measured. If Ql equals Qo, the operation is continued. If Ql is not equal to Qo, the ratio ~Q/Q~ is deter-mined. If, then, QQ/~ equals k, the operation is continued. If ~Q/~ is not equal to k, ~he screwdown distance Sm is adjusted by screwdown device 78 so that ~Q/~ becomes equal to k.
This invention is by no means limited to the embodiments described above, For example, the forming rolls in the foregoing embodiments are of the split type; in other words, a plurality of rolls are used for performing the forming function. But a single forming roll can serve the same purpose. Also, the table having the saw-tooth-shaped inclined surface, which is used for ad-justing the position of the forming roll, can be replaced with a threaded or hydraulic screwdown device.

Claims (13)

THE EMBODIMENTS OF THE INVENTION IN WHICH AN EXCLUSIVE
PROPERTY OR PRIVILEGE IS CLAIMED ARE DEFINED AS FOLLOWS:
1. In a method of manufacturing spiral pipe using a forming apparatus having three forming roll means at the apexes of a triangle and positioned along the circumference of the pipe being manufactured and in which method a flat strip of pipe material is fed in the longitudinal direction thereof through said three roll means and is continuously bent into spiral form by pressing one of the forming roll means which is inside the circumference against the inner sur-face of the strip toward the outside of the pipe and pressing the other two forming roll means which are respectively ahead of and behind said inside form-ing roll means in the direction of movement of the strip against the outer sur-face of the strip toward the inside of the pipe, and the seam of the spirally formed strip is continuously welded, the improvement which comprises the steps of: determining, based on the thickness of the strip and the yield stress of the material of the strip and the curvature of the finished pipe, a maximum curvature of the strip before springback which has a smaller radius of curvature than the radius of curvature of the finished pipe and which is sufficiently great, when it is desired that the finished pipe have a positive residual mo-ment, to cause the pipe, when the force causing such bending is released, to spring back to an unstressed bent form with a radius of curvature which is larger than the radius of curvature of the finished pipe, and when it is desired that the finished pipe have a zero residual moment, to cause the pipe, when the force causing such bending is released, to spring back to an unstressed bent form with a curvature which is equal to the curvature of the finished pipe, and when it is desired that the finished pipe have a negative residual moment, to cause the pipe, when the force causing such bending is released, to spring back to an unstressed bent form with a radius of curvature which is smaller than the radius of curvature of the finished pipe; continuously forming the flat strip into a spiral having said maximum curvature by adjusting the positions of said forming roll means in a direction transverse to the thickness of the strip; and, prior to the welding step, when it is desired to impart a positive residual mo-ment to the finished pipe, exerting a force on the exterior of the strip sub-sequent to the forming roll means in a direction of movement of the strip for restraining the springback of the strip to a curvature corresponding to the curvature of the finished pipe, and when it is desired to impart a negative re-sidual moment to the finished pipe, allowing the pipe to spring back to the un-stressed bent form and then exerting a force on the strip from the interior of the strip subsequent to the forming roll means in the direction of movement of the strip for expanding the strip to a curvature corresponding to the curvature of the finished pipe.
2. The improvement as claimed in claim 1, in which said maximum curva-ture 1/Pi is expressed as where 6y = yield stress of the material strip multiplied by a predetermined coefficient E = Young's modulus of the material of the strip 2t = thickness of the material strip ?p = radius of the finished pipe and y is derived from Mp = where Mp is the desired residual moment.
3. The improvement as claimed in claim 1, in which said adjusting of the position of the forming roll means comprises moving only the forming roll means that is positioned ahead of, in the direction of movement of the strip, the internal forming roll means while keeping the internal forming roll means and the forming roll means that is positioned behind the internal forming roll means in predetermined positions.
4. The improvement as claimed in claim 1, in which the yield stress and the thickness of the strip being formed is measured, and the position of the forming rolls is adjusted based on the values thus determined.
5. The improvement as claimed in claim 1, in which one of the charac-teristics of the strip being formed taken from the characteristics of yield stress and thickness is measured.
6. The improvement as claimed in claim 4 or 5, in which the yield stress of the strip is determined by providing a roller leveler ahead of the forming roll means, measuring the leveling load applied by said roller leveler, and converting the measured load into yield stress.
7. The improvement as claimed in claim 1, further comprising measuring the bending load applied to the strip by the forming roll means and the posi-tion of the forming roll means relative to the path of movement of the strip during the forming step, and adjusting the position of the forming roll means for making the ratio of a change in the position of the forming roll means to a change in the bending load such that the desired residual moment is obtained.
8. A spiral pipe manufacturing apparatus which comprises: a forming apparatus having three forming roll means disposed at the apexes of a triangle and positioned along the circumference of the pipe being manufactured for con-tinuously bending a flat strip into spiral form, one of said roll means being an internal forming roll for contacting the inner surface of the strip and pressing toward the outside of the pipe and the other two of said forming roll means being outer rolls and respectively being ahead of and behind said internal forming roll in the direction of movement of the strip and for contacting the outer surface of the strip and pressing it toward the inside of the pipe, a welding apparatus provided behind said forming apparatus in the direction of movement of the strip and along the circumference of the pipe being manufactured for continuously welding the seam of the spirally formed strip, and a bending moment imparting roll means adjacent to and behind the forming apparatus in the direction of movement of the strip and adjustably movable in the direction of the pipe diameter for engaging the strip for holding it in a position as it moves past said bending moment supporting roll means for making the diameter of the spirally bent strip equal to the desired diameter of the finished pipe.
9. An apparatus as claimed in claim 8, in which said other two forming roll means are adjustably movable toward said one of said forming roll means, and further comprising means for sensing the characteristics of the strip being bent and adjusting the position of at least one of the other two forming roll means in response to the sensed characteristics for applying the desired bend-ing force to the strip.
10. An apparatus as claimed in claim 9, in which said sensing and ad-justing means comprises means for adjusting the position of only one of said other two forming roll means.
11. An apparatus as claimed in claim 8, in which said bending moment imparting roll means comprises an outer bending moment imparting roll means mounted on said apparatus for movement toward and away from the path of movement of the strip and on the outside of the circumference of the pipe being manufac-tured.
12. An apparatus as claimed in claim 8, in which said bending moment imparting roll means comprises an inner bending moment imparting roll means mounted on said apparatus for movement toward and away from the path of movement of the strip and on the inside of the circumference of the pipe being manufac-tured.
13. An apparatus as claimed in claim 8, in which said bending moment imparting roll means comprises an outer bending moment imparting roll means mounted on said apparatus for movement toward and away from the path of move-ment of the strip and on the outside of the circumference of the pipe being manufactured, and an inner bending moment imparting roll means mounted on said apparatus for movement toward and away from the path of movement of the strip and on the inside of the circumference of the pipe being manufactured.
CA000375973A 1981-04-22 1981-04-22 Method and apparatus for manufacturing spiral pipe Expired CA1160436A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA000375973A CA1160436A (en) 1981-04-22 1981-04-22 Method and apparatus for manufacturing spiral pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CA000375973A CA1160436A (en) 1981-04-22 1981-04-22 Method and apparatus for manufacturing spiral pipe

Publications (1)

Publication Number Publication Date
CA1160436A true CA1160436A (en) 1984-01-17

Family

ID=4119794

Family Applications (1)

Application Number Title Priority Date Filing Date
CA000375973A Expired CA1160436A (en) 1981-04-22 1981-04-22 Method and apparatus for manufacturing spiral pipe

Country Status (1)

Country Link
CA (1) CA1160436A (en)

Similar Documents

Publication Publication Date Title
CA1047327A (en) Conduit making machine with diameter control and method
US4491004A (en) Apparatus for manufacturing a metal pipe
KR20080032091A (en) Roll-former apparatus with rapid-adjust sweep box
US5970764A (en) Roll forming apparatus
CN104985036B (en) Steel wire bender
US6732906B2 (en) Tapered tower manufacturing method and apparatus
US3851376A (en) Method for producing helical seam welded steel pipe
US4436239A (en) Method and apparatus for manufacturing spiral pipe
JP2008028049A (en) Apparatus, machine and method for bending rectangular wire
JPS6031572B2 (en) How to form a ring from a straight strip
CA1160436A (en) Method and apparatus for manufacturing spiral pipe
JPH07185671A (en) Roll bender
GB2099539A (en) Manufacturing pipe
EP0748661B1 (en) A welded steel pipe manufacturing apparatus and method
JPH06198337A (en) Method for correction welded steel tube
CN211135026U (en) Intelligent automatic adjusting straightening machine for round pipes and round bars
JPH0312977B2 (en)
US4208004A (en) Method for making augers
JPH0333414B2 (en)
EP1021257B1 (en) Method and plant for the production of frustoconical pipes
JP3550314B2 (en) U-bending method with bending roll
EP0672483A1 (en) Rotary forging apparatus
JP7276533B1 (en) Steel pipe end processing device, steel pipe end processing method, and steel pipe manufacturing method
CN210305179U (en) Small-bore toper veneer reeling machine
JP3599824B2 (en) Metal tube manufacturing equipment and forming roll

Legal Events

Date Code Title Description
MKEX Expiry