CA1153522A - Parison mold-core apparatus - Google Patents

Parison mold-core apparatus

Info

Publication number
CA1153522A
CA1153522A CA000409358A CA409358A CA1153522A CA 1153522 A CA1153522 A CA 1153522A CA 000409358 A CA000409358 A CA 000409358A CA 409358 A CA409358 A CA 409358A CA 1153522 A CA1153522 A CA 1153522A
Authority
CA
Canada
Prior art keywords
parison
mold
core rod
shoulder
sidewall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
CA000409358A
Other languages
French (fr)
Inventor
John A. Marcinek
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Emhart Industries Inc
Original Assignee
Emhart Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CA317,873A external-priority patent/CA1134112A/en
Application filed by Emhart Industries Inc filed Critical Emhart Industries Inc
Priority to CA000409358A priority Critical patent/CA1153522A/en
Application granted granted Critical
Publication of CA1153522A publication Critical patent/CA1153522A/en
Expired legal-status Critical Current

Links

Landscapes

  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

PARISON MOLD-CORE APPARATUS

ABSTRACT OF THE DISCLOSURE

Mold and core rod combination for forming a plastic parison for stretch/blowing into a plastic bottle com-prising a core rod with an end mated to the mold so as to permit formation of a parison with a flat bottom wherein the bottom corners of the parison have a sharp taper. The core rod is preferably shaped to include a shoulder having a substantially straight outer wall at the mouth end of the parison mold, and constructed and arranged with the mold to permit deposit of additional plastic at the inner wall of the shoulder of the parison.
The design of the mated mold and core rod combination is based on the recognition that in a continuous bottle forming process a particular area of the parison can be made hotter or cooler by increasing or decreasing the thickness of that area of the parison. Parisons formed with the disclosed mold-core rod combination permit a deeper and longer stretch of the parison without tearing or deformation of the parison bottom or deformation or wrinkling at the shoulder of the finished bottle while providing essential wall strength.

Description

~ his application is a division of Canadian Serial No. 317,873, filed December 13, 1~78.
FIELD OF INVENTION AND BACKGRO~ND

This invention is directed to a method and apparatus for molding plastic bottles. More particularly, it is directed to a parison mold and core rod combination which forms a parison having a flat bottom wall with sharply tapered corners, and a shoulder having a substantially straight outer wall and additional plastic at the inner wall thereof which permits a deeper or longer stretch without having the stretch rod damage the parison bottom and/or without deformation in the shoulder of the fin-ished bottles. The shoulder of the finished bottle is slightly thicker than the sidewall.
In recent years substantial effort has been directed to the formation of molecularly oriented plastic bottles as a replacement or partial replacement for glass bottles.
According to the prior art, a plastic parison is first injection molded in a parison mold and the parison there-after stretch/blown into the finished bottle using eitherof two commonly employed processes, the first being the so-called reheat or two-stage process, and the second being the so-called hot blow or one-stage process. In the reheat or two-stage process the parison, after for-mation in the parison mold, is removed from the parison mold, cooled to room temperature, and stored for sub-sequent stretch/blowing in a blow mold into the finished bottle. At the time of the stretch/blowing operation, the parison is reheated and brought to the stretch/blow temperature of the plastic by means of heaters prior to blowing. In the reheat system, if a particular section of the parison is to be at a higher heat, more heat is put into that particular area by using hotter heaters, or the like. In the hot blow or one-stage process after the parison is injection molded in a parison mold it is transferred to a blow mold substantially immediately after formation and while still retaining the heat neces-sary for the parison to be stretch/blown into the fin-ished bottle. In the hot blow or one-stage process, the cooling of the parison is essentially uniform throughout '~
,. . . ..

the parison and, accordingly, provided the thickness of all areas of the parison is the same, all areas of the parison will be at substantially the same temperature.
Various plastics have been suggested for use in the formation of molecularly oriented plastic bottles. The plastics most commonly suggested are polyacrylonitrile or polyethylene terephthalate (P~T). Basically the steps of the bottle formation are the same with all plastics.
However, each individual plastic will have its own char-acteristics, and certain modifications -- as known to one skilled in the art -- are required with respect to han-dling including modification of temperature conditions, and the like.
As known in the art, the parison to a substantial extent controls the shape and size of the finished bottle.
Accordingly, it is essential in order to obtain a bottle without deformations or other imperfections to carefully control the thickness of the parison walls and bottom in addition to controlling the neck finish. Control of the parison during formation has permitted the manufacture of high quality bottles of small and intermediate size with acceptable quality control being possible. However, it has been found in the manufacture of large size bottles, i.e., up to 64 fluid ounces, which are becoming increasingly popular, that problems are encountered including tearing and/or puncturing of the parison bottom by the stretch rod during stretching; deformation at the shoulder of the bottle, and overall poor quality control due primarily to the longer or deeper stretch operation necessary in the formation of bottles of large size.

~, . .. .

~S3S22 SUMMARY OF THE INVENTION

The invention as disclosed comprehends a method and apparatus for formation of parisons capable of being stretch/
blown into bottles of large size with improved and consistent quality and more particularly seeks to provide a method and apparatus for the formation of a parison capable of being stretch/blown into a large size bottle without substantial deformation or imperfections in the bottom of the bottle or in the shoulder of the bottle and wherein the shoulder is of slightly greater thickness than the sidewall.
The invention to which this divisional application is directed pertains to a parison mold-core rod combination for forming an injection molded plastic parison comprising a parison mold having a sidewall, a flat bottom surface and a sharply tapered annular corner, and a core rod having a flat end portion and a tapered wall. The flat end portion and tapered wall of the core rod and the flat surface and annular corner of the mold are constructed and arranged to mate and form the cavity for molding a parison to provide a parison having a thin flat bottom portion, a thin sharply tapered annular corner and a relatively thick sidewall, there being a rapid transition from the thickness at the flat of the parison bottom and the parison sidewall.
These and other aspects of the present invention will be apparent from the following description, particular reference being made to the drawing.

-, .

~5352Z

Briefly, the aforesaid and other objects of the invention are accomplished based onthe recognition that in a continuous or hot blow process a particular area of the parison can be made hotter by increasing the thick-ness of that area of the parison, coupled with the dis-covery that the bottom thickness of the parison is criti-cal in determining the stretch characteristics of the parison. The thinner the bottom wall, the less the amount of heat contained in the bottom of the parison which permits a longer or deeper stretch of the shoulder and sidewall portions without having the stretch rod puncture, tear, or deform the bottom of the parison. Ac-cordingly, formation of a parison with a bottom thinner than the sidewall permits the manufacture of a bottle of larger size with a relatively thinner sidewall.
! It was further discovered that deeper and longer stretch of the parison without tear or deformation is possible by providing a parison having less or an equal amount of plastic material deposited at the corner of the parison bottom than at the middle of the parison bottom.
The latter is accomplished, for example, by utilizing a core rod having a flat end mated with a parison mold ' having a sharply tapered annular corner. The result is a parison bottom having an annular corner thickness equal to or thinner than the parison bottom at the middle of the bottom. The extra plastic in the sidewall of the parison relative to the parison bottom provides additional heat, permitting a greater stretch. The parison bottom, being cooler in relation to the sidewall, is not punctured or otherwise deformed by the stretch rod.
It was also discovered that deformation and wrinkling of the shoulder portion of the finished bottle can be prevented by increasing the amount of plastic at the shoulder. Preferably, the outer wall of the shoulder will be substantially straight, with the additional plas-tic being at the inner wall of the shoulder. Further, it was found that with the increased amount of plastic in the shoulder area it was possible to provide a bottle wherein ~lS3SZZ

the thickness of the shoulder is substantially equal to or preferably slightly greater than the side~lall. With-out having the parison shoulder of a greater thickness, it was found that the shoulder of the finished bottle was thinner than the sidewall of the bottle, leading at times to deformation or wrinkling during manufacture.
Finally, it was discovered that there is a direct relationship in the thickness desired in the bottom, shoulder, and sidewall areas of the parison in order to provide uniformity in the finished bottle and to provide the essential tensile yield strength for a given bottle diameter at the bottom, shoulder, and sidewall areas. The bottom of the parison is preferably thinner in comparison to the sidewall and shoulder portions to permit a greater stretch without puncture of the bottom wall. It is also desirable to have the shoulder area thicker in comparison to the sidewall to compensate for the flow of material in the shoulder area. The desired characteristics are provided by programming the core rod and parison mold design to obtain the desired bottom thickness relative to the sidewall portion of the parison and thereafter shaping the core rod adjacent to the mouth of the parison mold to provide the desired thickness at the shoulder area.
Final adjustment is achieved by moving the core rod ; within the mold.

DRAWING AND DETAILED DESCRIPTION OF INVENTION

In the drawing which illustrates preferred embodi-ments and mode of operation of the invention, FIGURE 1 is a fragmentary cross-sectional view of a split parison mold including a split neck ring finish in closed position with the core rod in place;
FIGURE 2 is a cross-sectional view of a molded parison with a shaped core rod in place, showing the relationship between the thickness of the bottom, sidewall, and shoulder areas of the parison;
. . .

l~S35ZZ

FIGURE 3 is a fragmentary cross-sectional view of a conventional or prior art parison with the core rod in place;
FIGURE 4 is a fragmentary enlarged cross-section of the shoulder of a parison made in accordance with this invention;
FIGURE 5 is a fragmentary enlarged cross-section of the bottom of a parison made in accordance with this invention;
FIGURE 6 is a fragmentary cross-sectional view of a solid parison mold including a split neck finish in a closed position with the core rod in place; appear-ing with FIGURES 1, 2 and 3;
FIGURE 7 is a broken-away view of a finished bottle partly in cross-section; and FIGURE 8 is a fragmentary enlarged cross-section of the bottom of another embodiment of a parison made in accordance with this invention.
Referring primarily to FIGURES 1 and 2, there is illus-trated a partable injection mold 10 having a parison cavity 12 for molding a parison in a conventional manner through gate opening 14. The illustrated mold 10 is designed for molding a tubular parison, generally identified by numeral 20, for a container which includes a threaded neck finish 22 as shown in FIGURE 2 wherein the core rod remains in place.
For convenience of handling the parison, the mold 10 is provided with a split neck ring 18 to provide the threaded neck finish. Cooperating with mold 10 and split neck ring 18 for the formation of the parison is a core rod generally identified by the numeral 30. The core rod includes a base portion 32 and a core rod proper 34 having a flat end 36 which in cooperation with flat mold section 11 forms the bottom 24 of the parison 20. Additionally, the core rod includes a shoulder 38 which in cooperation with curved mold section 13 forms the shoulder portion 26 of the pari-son. The bottom thickness of the parison is controlled by the upward or downward adjustment of the core rod. Addi-tionally, the shape of and amount of plastic deposited at the parison shoulder 2~ is controlled hy machining the cor~

1~535Z;2 rod shoulder 38. As apparent, however, movement of the core rod will affect the shoulder and bottom thickness and, accordingly, bottom thickness, sidewall thickness, and shoulder thickness must be programmed for each parison, as determined by the dimensions of the desired finished bottle, and the parison mold and core rod mated accordingly.
FIGURE 2 illustrates a parison having a thin bottom, a sharply tapered bottom corner wall X, and a thick shoulder wall Y relat~ve to sidewall Z. It has been found, in accor-dance with the present invention, that the relative thick-ness of the bottom of the parison and the thickness of the shoulder to form a bottle having substantially uniform wall thickness with the essential tensile yield strength and without imperfections is at a substantially direct ratio.
In other words, the thinner the bottom, the thicker the shoulder to provide a parison sidewall of intermediate thickness~ As will be apparent, the thickness of the shoul-der relative to the bottom and sidewall of the parison is determined by machining of the core rod to the desired shape after the thickness of the bottom and sidewall has been de-termined.
As is further apparent, by using a mold 10 having the flat and sharply tapered cornered bottom 11 and a core rod 30 with a flat end 36, the molded parison will have a cor-ner wherein there is a rapid transition from bottom to side-wall. The enlarged fragmentary cross-section of the bottom of the parison as shown in FIGURE 5, made with a parison mold assembly shown in FIGURE 1, more clearly illustrates the bottom-to-sidewall relationship. FIGURE 8 is a view showing the same relationship. However, in the view of FIGURE 8, the portion of the bottom wall which is flat is substantially reduced from the embodiment shown in FIGURE 5.
Accordingly, the taper from the flat bottom wall section to the sidewalls, while still being sharply tapered, is substantially longer. As is apparent, the bottom wall in-cluding the flat section and the tapered section, in both embodiments, has a thickness less than the thickness of the parison sidewall. This rapid transition is highly advan-r ' ;

~1535Z2 tageous during a stretching operation to provide a bo-ttle of large size, such as a 64 fluid ounce or the like bottle, since the bottom, including the annular corner, will be cooler, permitting rapid anddeep stretch without puncture or deformation. Moreover, as above stated, in order to provide the increased plastic needed to prevent deformation at the bottle shoulder, the core rod is to be machined so as to provide the additional plastic deposit S as best seen from the enlarged fragmentary view shown in FIGURE 4. Also, as illustrated, preferably the outer wall of the shoulder will be substantially straight with the additional plastic S deposited on the inner wall, as shown in FIGURE 4.
After the stretch/blow operation, the bottle 40 will have the shape as shown in FIGURE 7 wherein the wall thick-ness at the shoulder A is slightly greater than the side-wall thickness as shown at B, providing a bottle which will have the essential strength at the sidewall and at the shoulder areas.
FIGURE 6 illustrates a parison mold-core rod assembly substantially similar to that shown in FIGURE l. However, in FIGURE 6 the assembly split or partable mold lO has been replaced with a solid mold lO. The solid mold permits better and more uniform cooling in that there is no split in the mold. Further, the solid mold requires less clamping pressure. In order to remove the parison and core rod assembly from the solid mold wihtout damage to the parison, the mold has a slight taper from the gate end to the neck ring end. Moreover, the split neck ring assembly 18 is modified in order that the neck ring assembly can be directly withdrawn from association with the parison mold 10 without splitting of mold 10. The slight taper in the mold is not sufficient to impart noticeable variation in the finished bottle.
To contrast the parisons of the present invention from the prior art, FIGURE 3 is a fragmentary illustration of a conventionally employed or prior art core rod 30a having parison 20a formed thereon. As apparent, the rounding of the core rod in conjunction with the mold pro-vides a uniform thickness to the parison sidewall and bottom.

. .
,' ~1535ZZ
g With the configuratlon of EIGURE 3 in a deep stretch or long stretch operation to provide a large sized bottle, rupture of the bottom often occurs, the disadvantages of such occurrence being apparent.
Although the parison mold-core rod assembly can be used in the formation of parisons of any biaxially oriented plastic material, it is of particular value when working with polyethylene terephthalate (PET). It has been found that with PET it is essential to have a definite relation-ship between the parison diameter and the average bottlediameter particularly to obtain the essential tensile yield strength in the hoop direction. Accordingly, since it is normally not possible or desirable to control the bottle diameter to obtain a bottle of a desired volume, in most instances it is essential to control the diameter of the parison through an adjustment in the diameter of the core pin used to produce the parison for forming the bottle.
Further, it has been found that PET, when stretching the parison longitudinally, requires substantial heat in the sidewall and shoulder areas relative to the bottom and, thus, requires a parison with a thin bottom relative to the shoulder and sidewall areas. Furthermore, although the present invention is primarily concerned with parisons for use in a continuous or one-step process, the parison of this invention can also be of value in the so-called reheat or two-stage process. As will be apparent to one skilled in the art, various modifications can be made within the hereinbefore described apparatus and process with respect to making improved bottles. The preferred embodiments described are not to be construed as a limitation of the invention.

Claims (4)

The embodiments of the invention in which an exclusive property or privilege is claimed are defined as follows:
1. A parison mold-core rod combination for forming an injection molded plastic parison comprising a parison mold having a sidewall, a flat bottom surface and a sharply tapered annular corner, and a core rod having a flat end portion and a tapered wall, said flat end portion and tapered wall of said core rod and said flat surface and annular corner of said mold being constructed and arranged to mate and form the cavity for molding a parison to provide a parison having a thin flat bottom portion; a thin sharply tapered annular corner and a relatively thick sidewall, there being a rapid transition from the thick-ness at the flat of said parison bottom and said parison sidewall.
2. The combination of claim 1 wherein said core rod has an annular shoulder and said mold has a curved portion at the mouth thereof, said curved portion and annular shoulder being mated to provide a parison shoulder.
3. The combination of claim 2 wherein the shape of the core rod shoulder is adjusted so that the thickness of the parison bottom is thinner than the parison shoulder.
4. The combination of claim 2 wherein said core rod and parison mold are adjusted to provide a parison having a thin bottom and a thick shoulder relative to said sidewall.
CA000409358A 1977-12-23 1982-08-12 Parison mold-core apparatus Expired CA1153522A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA000409358A CA1153522A (en) 1977-12-23 1982-08-12 Parison mold-core apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US86374677A 1977-12-23 1977-12-23
US863,746 1977-12-23
CA317,873A CA1134112A (en) 1977-12-23 1978-12-13 Method and apparatus of making molecularly oriented plastic bottles
CA000409358A CA1153522A (en) 1977-12-23 1982-08-12 Parison mold-core apparatus

Publications (1)

Publication Number Publication Date
CA1153522A true CA1153522A (en) 1983-09-13

Family

ID=27166010

Family Applications (1)

Application Number Title Priority Date Filing Date
CA000409358A Expired CA1153522A (en) 1977-12-23 1982-08-12 Parison mold-core apparatus

Country Status (1)

Country Link
CA (1) CA1153522A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5762981A (en) * 1996-09-10 1998-06-09 Wentworth Mould And Die Company Limited Base for a mold assembly
US6428302B1 (en) 2000-07-14 2002-08-06 Wentworth Mold Inc. Universal blow mold assembly

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5762981A (en) * 1996-09-10 1998-06-09 Wentworth Mould And Die Company Limited Base for a mold assembly
US6428302B1 (en) 2000-07-14 2002-08-06 Wentworth Mold Inc. Universal blow mold assembly

Similar Documents

Publication Publication Date Title
US4432530A (en) Mold-core rod combination for forming an injection molded plastic parison
KR0166578B1 (en) A preform for a monobase container
US4512735A (en) Apparatus for blow molding a container having an upward bulged bottom
US8100687B2 (en) Injection blow molding device for the manufacture of a thin-walled part
US4108937A (en) Method of making hollow articles from plastic material
US5389332A (en) Heat resistant container molding method
US4177239A (en) Blow molding method
EP0511617B1 (en) Process of injection stretch blow molding hollow article having thick-walled bottom
US4780257A (en) One piece self-standing blow molded plastic bottles
US5840350A (en) Modified plastic bottle injection blow-molding apparatus and method
US5447766A (en) Plastic vessel preform and mold for forming the same
IE53312B1 (en) Method and device for moulding a container
JPH0694158B2 (en) Preform for molding a can body made of synthetic resin and method for manufacturing a can body made of synthetic resin using the same
CN103587106A (en) Preform and mold stack for producing the preform
US3969060A (en) Apparatus for deforming a tubular slug of thermoplastic material
CA1134112A (en) Method and apparatus of making molecularly oriented plastic bottles
EP0503086B1 (en) Plastic vessel preform and a mold for molding a plastic vessel preform.
US4256789A (en) Injection molded, polyethylene terephthalate parison for blow molding
JPS62109620A (en) Method and device for finishing neck section of blow molding vessel
US4588620A (en) Parison for making molecularly oriented plastic bottles
GB2124543A (en) Parison for oriented plastic containers
KR0184322B1 (en) Method of molding heat-resistant container and a set of molds for the method
US4521369A (en) Method of making molecularly oriented plastic bottles
CA1153522A (en) Parison mold-core apparatus
US4397808A (en) Production of a bottle of saturated polyester resin

Legal Events

Date Code Title Description
MKEX Expiry