CA1142525A - Magenta dye developers - Google Patents

Magenta dye developers

Info

Publication number
CA1142525A
CA1142525A CA000350519A CA350519A CA1142525A CA 1142525 A CA1142525 A CA 1142525A CA 000350519 A CA000350519 A CA 000350519A CA 350519 A CA350519 A CA 350519A CA 1142525 A CA1142525 A CA 1142525A
Authority
CA
Canada
Prior art keywords
dye
image
photosensitive element
group
diffusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
CA000350519A
Other languages
French (fr)
Inventor
Louis Locatell, Jr.
Howard G. Rogers
Ruth C. Bilofsky
Ronald F. Cieciuch
Charles M. Zepp
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Polaroid Corp
Original Assignee
Polaroid Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Polaroid Corp filed Critical Polaroid Corp
Application granted granted Critical
Publication of CA1142525A publication Critical patent/CA1142525A/en
Expired legal-status Critical Current

Links

Landscapes

  • Silver Salt Photography Or Processing Solution Therefor (AREA)

Abstract

ABSTRACT
Diffusion transfer color processes and products are disclosed employing image-dye providing materials providing magenta image dyes having the chromophoric 5 system represented by the formula

Description

630~

This invention relates to photography, and, more particularly, to magenta dyes for use in providing diffusion transfer color images, and to photographic products and processes employing such magenta image dyes.
Multicolor images formed in accordance with the principles of subtractive color photography employ yellow, magenta and cyan image dyes. The yellow dye ideally transmits only green and red light and absorbs only blue light, and thus is sometimes referred to as "minus blue".
10 In like manner, the magenta ("minus green") dye ideally absorbs only green light and transmits only blue and red light, and the cyan ("minus red") dye ideally absorbs only red light and transmits only blue and green light.
Unfortunately, the dyes available for use in subtractive 15 color photography are not "ideal" dyes, but tend to absorb some of the light that they ideally should transmit.
This extra absorption results in less effective reproduc-tion by the final image of one or more colors present in the original subject.
This problem may be illustrated by considering the reproduction of blue light: A multicolor photosensi-tive elemen-t, comprising a blue-sensitive silver halide layer, a green-sensitive silver halide layer and a red-- sensitive silver halide layer, said silver halide layers 25 having associated therewith, respectively, a yellow image dye-providing material, a magenta image dye-provid-ing material, and a cyan image dye-providing material, is '~

5,45 exposed to blue light in an amount effective to fully expose the blue-sensitive layer. Only the blue-sensitive silver halide layer is exposed; the green-sensitive and red-sensitive silver halide emulsion layers remain unexposed. If such an exposed photosensi-tive element were processed by diffusion transfer techniques, the yellow image dye-providing material would remain in the developed photosensitive element (negative component) but magenta and cyan image dyes would be transferred to the image-receiving layer (positive component). Since the magenta and cyan image dyes are "minus green" and "minus red" respectively, the combination of magenta and cyan dyes appear blue, i.e., they transmit blue light to the viewer and absorb green and red, thus reproducing the blue record of the original subject.
From this illustration it will be readily apparent that if either the magenta or cyan image dyes also absorb blue light, the purity and quality of the "blue image" will be impaired. In the world of practical color photography, such unwanted absorption, sometimes referred to as "tail" absoption, is the rule rather than the exception. Magenta image dyes typically exhibit significant absorption in the blue region.
The present invention is concerned with providing magenta image dyes exhibiting reduced blue absorption, i.e., in-creased blue transmission.
This invention is concerned with providing magenta image dye-providing materials which yield diffusion transfer color images exhibiting more desirable color characteristics; and which preferably transmit a high proportion of blue light, The magenta image dye-providing materials of this
- 2 invention are useful in dye release diffusion transfer processes, e.g., of the redox dye release or the silver-catalyzed dye release types, to provide magenta image dyes exhibiting high blue trans-mission.
Additionally, this invention is concerned with providing magenta image dye-providing materials which exhibit good absorpt-ion of green light while transmitting a high proportion of blue light, For a fuller understanding of the nature and objects of the invention, reference should be had to the following detailed description.
This invention is particularly directed to photographic processes wherein the desired image is obtained by processing an exposed photosensitive silver halide material, with a processing composition distributed between two sheet-like elements, one of said elements including said photosensitive material. The process-ing composition is so applied and confined within and between the two sheet-like elements as not to contact or wet outer surfaces of the superposed elements, thus providing a film unit or film packet whose external surfaces are dry. The processing composi-tion may be viscous or non-viscous, and preferably is distributed from a single-use rupturable container; such pressure rupturable processing containPrs are frequently referred to as "pods". The final image may be monochrome or multicolor, and is formed in an image-receiving layer included in one of said sheet-like elements.
In a first embodiment the invention provides a diffusion transfer color process wherein a photosensitive element containing a silver halide emulsion and an image dye-providing material is ZS

exposed and developed with an aqueous alkaline processing composi-tion, and an imagewise distribution of a diffusible image dye is formed from said image dye-providing material as a function of said development, and at least a portion of said imagewise distribution of diffusible image dye is transferred to an image-receiving layer in superposed relationship with said silver halide emulsion to provide a diffusion transfer dye image, and wherein said image dye is a magenta dye containing the chromophoric system represented by the formula:
R R

N ~ N

~ SO3-wherein each R is the same or different and is an alkyl group, and each X is the same or different and is hydrogen or an alkyl group.
In a second embodiment the invention provides a photo-sensitive element comprising a support, a silver halide emulsion in a layer carried by said support, and an image dye-providing material in a layer carried by said support on the same side there-of as said silver halide emulsion, said image dye-providing material containing at least one diffusion control moiety and providing a magenta image dye containing the chromophoric system represented by the formula:

- 3a -R R

N ~ X

~ S03-wherein each R is the same or different and is an alkyl group, and each X is the same or different and is hydrogen or an alkyl group.
In a third embodiment the invention provides a photo-graphic image containinga magenta image dye, wherein said magenta image dye is a magenta dye containing the chromophoric system represented by the formula:

R X

N ~ N

~ S03-wherein each R is the same or different and is an alkyl group, and each X is the same or different and is hydrogen or an alkyl group.
In a fourth embodiment the invention provides a compound of the formula:

- 3b -C' R

~$ ~,r so3-~.X
Yn wherein each R is the same or different and is an alkyl group, each Y is a diffusion control substituent containing a diffusion control moiety D, each X' is the same or different and is hydrogen, alkyl or -(CH2-X2-D)n wherein x2 is a divalent linking group, and n is O
or 1, provided that at least one n is 1.
As is well known in diffusion transfer photography, image dye-providing materials which may be employed in such pro-cesses generally may be characterized as either (1) initially soluble or diffusible in the processing composition but which are selectively rendered no~-diffusible imagewise as a function of development; or (2) initially insoluble or non-diffusible in the processing composition but which selectively provide a diffusible product imagewise as a function of development.

.
~,i - 3c -5~5 These image dye-providing materials may be complete dyes or dye intermediates, e.g., color couplers. The requisite differential in mobility or solubility may, for example, be obtained by a chemical action such as a redox reaction, a 5 coupling reaction, or a cleavage reaction.
In accordance with this invention, it has been found that magenta image ~yes containin-j the chromophoric system represented by X
~ N ~ N ~3 ~ SO3-Formula A

wherein each R is an alkyl group and each X is either hydrogen or an alkyl group (including substituted alkyl), exhibit highly desirable spectral properties, including high blue transmission. Each R and each X may be the 15 same or different. In the preferred embodiments, each R
is an alkyl group of 1 to 4 carbons, and preferably each R is a methyl group. In particularly useful and preferred embodiments, each R and each X is an alkyl group, with at least one said X being a substituted al~yl, such as an 2~ aralkyl.
Image dye-providing materials capable of providing image dyes containing the chromophoric system of Formula A may be provided by including a diffusion control substituent Y which substituent includes a 25 diffusion control moiety D. One such group of image dye-providing materials may be represellt~ by Formllla R:

X X

n ~
~-' ~SO
Yn Formula B

wherein each Y is a substituent containing a diffusion 5 control moiety D, X' is hydrogen, alkyl (including - substituted alkyl) or -(CH2-X2-D)n wherein x2 is a divalent linking group (preferably an alkylene group of 1-4 carbons), and each n is 0 or 1, provided that at least one n is 1. Image dye-providing materials within 10 Formula B, as a function of the particular diffusion control moiety D, are suitable for use in diffusion transfer processes employing either initially diffusible or initially nondiffusible image dye-providing materials.
As examples of diffusion control moieties D, mention may 15 be made of hydroquinonyl groups, color coupling groups, sulfonamido phenol groups which cleave or ring close following oxidation to release a diffusible dye or dye intermediate, and of thiazolidine groups whose cleavage is silver catalyzed. The diffusion control moiety D may 20 be attached to a covalent bond or a divalent linking group, e.g., an alkylene radical of 1 to 4 carbons to complete the substituent Y. Dyes wherein X' is not hydrogen are preferred, and have been found to exhibit a shift in absorption maximum towards middle green and a narrowed 25 absorption band width, as compared with dyes where X' is hydrogen. Further, dyes wherein X' is not hydrogen show less color shift in alkali. In contrast to dyes where the -SO3 is replaced by a -COO group, the dyes of this invention resist ring closure and resultant decolorization in acidic environments. Where the image dye-providing material is initially diffusible, a suitable ballast group, 5 e.g., a long chain alkyl group, may be attached to the diffusion control group.
One resonance form of the chromophoric system represented by Formula A also may be represented as follows:

~_X X _~
so3 Formula C

In the preferred embodiment of this invention, the diffusion control group is a hydroquinonyl moiety, and the resultinq dye developers are initially diffusible 15 image dye-providing materials. As described in U. S.
Patent No. 2,983,606 issued May 9, 1961 to Howard G.
Rogers, a photosensitive element containing a dye developer and a silver halide emulsion is photoexposed and a processing composition applied thereo, for example, 20 by immersion, coating, spraying, flowing, etc., in the dark. The exposed photosensitive element superposed prior to, during, or after the processing composition is applied, on a sheet-like support element which may be utilized as an image-receiving element. In a p~eferred embodiment, 25 the processing composition is applied to the exposed photosensitive element in a substantially uniform layer as the photosensitive element is brought into superposed relationship with the image-receiving layer. The processing composition, positioned intermediate the photosensitive element and the image-receiving layer, permeates the emulsion to initiate development of the 5 latent image contained therein. The dye developer is immobilized or precipitated in exposed areas as a consequence of the development of the latent image. This immobilization is apparently, at least in part, due to a change in the solubility characteristics of the dye 10 developer upon oxidation and especially as regards its solubility in alkaline solutions. It may also be due in part to a tanning effect on the emulsion by oxidized developing agent, and in part to a localized exhaustion of alkali as a result of development. In unexposed and 15 partially exposed areas of the emulsion, the dye developer is unreacted and diffusible and thus provides an imagewise distribution of unoxidized dye developer, diffusible in the processing composition, as a function of the point-to-point degree to exposure of the silver halide emulsion. At least 20 part of this imagewise distribution of unoxidized dye developer is transferred, by imbibition, to a superposed image-receiving layer or element, said transfer substan-tially excluding oxidized dye developer. The image-receiving layer receives a depthwise diffusion, from the 25 developed emulsion, of unoxidized dye developer without appreciably disturbing the imagewise distribution thereof to provide a reversed or positive color image of the developed image. The image-receiving element may contain agents adapted to mordant or otherwise fix the diffused, 30 unoxidized dye developer. In a preferred embodiment of said U. S. Patent No. 2,983,606 and in certain commercial applications thereof, the desired positive image is revealed by separating the image-receiving layer from the photosensitive element at the end of a suitable imbibition 35 period. Alternatively, as also disclosed in said U. S.
Patent No. 2,983,606, the image-receiving layer need not be separated from its superposed contact with the photosensitive element, subsequent to transfer image formation, if the support for the image-receiving layer, as well as any other layers intermediate said support and image-receiving layer, is transparent and a processing composition containing a substance, e.g., a white pigment, 5 effective to mask the developed silver halide emulsion or emulsions is applied between the image-receiving layer and said silver halide emulsion or emulsions.
Dye developers, as noted in said U. S. Patent No. 2,983,606, are compounds which contain, in the same 10 molecule, both the chromophoric system of a dye and also - a silver halide developing function. By "a silver halide developing function" is meant a grouping adapted to develop exposed silver halide. A preferred silver halide develop-ment function is a hydroquinonyl group. In general, the 15 development function includes a benzenoid developing function, that is, an aromatic developing group which forms quinonoid or quinone substances when oxidized.
Multicolor images may be obtained using dye developers in diffusion transfer processes by several 20 techniques. One such technique contemplates obtaining multicolor transfer images utilizing dye developers by employment of an integral multilayer photosensitive element, such as is disclosed in the aforementioned U. S.
Patent No. 2,983,606 and in U. S. Patent No. 3,345,163 25 issued October 3, 1967 to Edwin H. Land and Howard G.
Rogers, wherein at least two selectively sensitized photosensitive strata, superposed on a single support, are processed, simultaneously and without separation, with a single common image-receiving layer. A suitable arrange-30 ment of this type comprises a support carrying a red-sensitive silver halide emulsion stratum, a green-sensitive silver halide emulsion stratum and a ~lue-sensitive silver halide emulsion stratum, said emulsions having associated therewith, respectively, for example, a 35 cyan dye developer, a magenta dye developer and a yellow dye developer. The dye developer may be utilized in the silver halide emulsion stratum, for example in the form of particles, or it may be disposed in a stratum behind 5~5 _9_ the appropriate silver halide emulsion strata. Each set of silver halide emulsion and associated dye developer strata may be separated from other sets by suitable interlayers, for example, by a layer or stratum of 5 gelatin or polyvinyl alcohol. In certain instances, it may be desirable to incorporate a yellow filter in front of the green-sensitive emulsion and such yellow filter may be incorporated in an interlayer. However, where desirable, a yellow dye developer of the appropriate 10 spectral characteristics and present in a state capable of functioning as a yellow filter may be so employed and a separate yellow filter omitted.
Particularly useful products for obtaining multicolor dye developer images are disclosed in U. S.
15 Patent No. 3,415,644 issued December 10, 1968 to Edwin H.
Land. This patent discloses photographic products and processes wherein a photosensitive element and an image-receiving element are maintained in fixed relationship prior to exposure, and this relationship is maintained as 20 a laminate after processing and image formation. In these products, the final image is viewed through a transparent (support) element against a light-reflecting, i.e., white background. Photoexposure is made through said transparent element and application of the process-25 ing composition provides a layer of light-reflecting material to provide a white background. The light-reflecting material (referred to in said patent as an "opacifying agent") is preferably titanium dioxide, and it also performs an opacifying function, i.e., it is 30 effective to mask the developed silver halide emulsions so that the transfer image may be viewed without interference therefrom, and it also acts to protect the photosensitive silver halide emulsions from post-exposure fogging by light passing through said transparent layer if 35 the photoexposed film unit is removed from the camera before image-formation is completed.
U. S. Patent No. 3,647,437, issued March 7, 1972 to Edwin H. Land, is concerned with improvements in - 1 o -products and processes disclosed in said U. S. Patent No.
3,415,644, and discloses the provision of light-absorbing materials to permit such processes to be performed, outside of the camera in which photoexposure is effected, 5 under much more intense ambient light conditions. A
light-absorbing material or reagen-t, preferably a pH-sensitive phthalein dye, is provided so positioned and~or constituted as not to interfere with photoexposure but so positioned between the photoexposed silver halide emulsions 10 and the transparent support during processing after photo-exposure as to absorb light which otherwise might fog the photoexposed emulsions. Furthermore, the light-absorbing material is so positioned and/or constituted after processing as not to interfere with viewing the desired 15 image shortly after said image has been formed. In the preferred embodiments, the light-absorbing material, also sometimes referred to as an optical filter agent, is initially contained in the processing composition together with a light-reflecting material, e.g., 20 titanium dioxide. The concentration of the light-absorbing dye is selected to provide the light trans-mission opacity required to perform the particular process under the selected light conditions.
In a particularly useful embodiment, the 25 light-absorbing dye is highly colored at the pH of the processing composition, e.g., 13-14, but is substantially non-absorbing of visible light at a lower pH, e.g., less than 10-12. This pH reduction may be effected by an acid-reacting reagent appropriately positioned in the 30 film unit, e.g., in a layer between the transparent support and the image-receiving layer.

11~.'~5~5 The dye developers are preferably selected for their ability to provide colors that are useful in carrying out sub-tractive color photography, that is, the previously mentioned cyan, magenta and yellow. The dye developers employed may be incorporat-ed in the respective silver halide emulsion or, in the preferred embodiment, in a separate layer behind the respective silver halide emulsion, and such a layer of dye developer may be applied by use of a coating solution containing the respective dye develop-er distributed, in a concentration calculated to give the desired coverage of dye developer per unit area, in a film-forming natural, or synthetic, polymer, for example, gelatin, polyvinyl alcohol, and the like adapted to be permeated by the processing composition.
In accordance with the present invention magenta dye developers containing the chromophoric system of Formula A may be provided by dye developers as defined in Formula B wherein the diffusion control moiety D is a silver halide developing moiety, e.g., a hydroquinonyl group. In such image dye-providing materials the diffusion control substituent Y may be represented by -A-D
wherein D is a hydroquinonyl group and A is a covalent bond or a divalent linking group, e.g., alkylene.
Examples of such dye developers include:

~l~Z52S

CH~ +

~ S03 CH2--CH2 CH2 . bH

Dye 1 CH CH
CH~

6C3 ~,503 C3 6 Dye _?_ il~2525 C2H5~ 1C2 C 3 OH

6C3 ~503 3 6 OH H

Dye_3 [~ Cl H 3~ CEI ~ ~

SO3 _3 Dye 4 ZS

H H OH

~:[ CH~ 1~502-NH-CH-CH

Dye 5 C~ ~ ~C~ ~ CH

OH

Dye 6 j~ - 14 -ll'~Z5~S

CH CH
~ ~i~3 ~ li ~, ~

~3--so3--C132-C~32 ~i Dye 7 OH

Dye 8 I H H

N ~ ~ -502-NH-CH-C

OH

Dye 9 CS~ ~3 OH

Dye 10 , CH ~'H

`H~3-CHI~ OH
[~-.503 CH2 CH2--C11 OH
Dye 1 1 CHCH

~ N ~ ICHi~ OH
[~H6C3 ~ 503 C3H

Dye 1 2 ~l'l.'ZS;~S

3 ~1 H CH 3 01 ~ '3H6 OH

Dye 1 3 3 H C ~ 3 OH ~H3G~H3~ OH

(~H6C3 ~-- S03 C3 6 OH
OH

Dye 1 4 5f-5 2)3 ~ ~ 3 H

Dye 1 5 CH~= CH~

3 ~ S03 CH2--CH2 CH

Dye 1 6 i~ S~5 C114N~3 50~ IH2CH3 NO
Dye 1 7 OH

$ CH~_ ~6C3 ~SO3- C3i36 H H

Dye 1 8 ~1~25Z5 OH OH
CH2--CH2 CH2 fH2--CH3 CH

H C ~ '1$ OH
ยข~ 6 3 [~ 53-C3~6 OH

Dye 1 9 N ~ N ~lb (CH ) 1~j3 ~ 3_S03- 'S)3 HO ~OH HO ~ OH

Dye 2 0 il~ 5~5 CH CH

; r I

OH (3 53 (C 2) 3 OH
Dye 2 1 ~N~N~3 NH

Dye 2 2 OH

S~S

OH OH

[~( CH~3 ~(CH2~ 3 ~so3 ( 2) 3 OH
Dye 2 3 CH ~OH HO~CH 3H

[~( 1 2 )~ ICH~
~SO3 Dye 2 4 11'~;~525 HO ~ CH3 (CH2)3 ~ (CH2) OH OH

Dye 25 CH ~ ~H ~

(CH2)3 ~ so3 NH SO

OH
Dye 26 OH
Dyes 18 and 19 are the subject of applications which have issued as United States Patents 4,264,507 and 4,264,704 respectively.

, - 24 -Dye developers of the type described above may be prepared, for example, by the reaction of dichloro-sulfone fluorescein Cl ~ Cl [~S2 5 with, e.g., a compound of the formula OR

~R

wherein X, R and Y are as defined above, and each R2 is the same and is hydrogen or a lower alkyl group. Where R is alkyl, dealkylation of the resulting product 10 regenerates the hydroquinone moiety. Where it is desired to have only one hydroquinonyl group in the dye developer, the dichloro starting material is first reacted to replace one chloro group with an anilino group, followed by the above described reaction to introduce the hydroquinonyl-15 containing anilino group. Alternatively, an aminoalkyl-hydroquinone may be reacted with a sulfonyl chloride-substituted anilino-substituted sulfone fluorescein to obtain dye developers such as Dyes 5 and 6 above.
Compounds within Formula D wherein A is an 20 alkylene group of 1 to 5 carbons are described in U. ~.
Patent No. 3,236,893, issued February 22, 1966 to Blout, Green, Rogers, Simon and Woodward. Compounds within Formula D wherein A is a covalent bond are described in U. S. Patent No. 3,134,811 issued May 26, 1964 to Simon.
Compounds within Formula C wherein A is -SO2- are described in U. S. Patent No. 3,218,312 issued November 16, 1965 to Green. Compounds within Formula D wherein A is 5 -S-alkylene ("alkylene" containing 1-5 carbons), e.g., 2 2 ~ NH2 OH
are described in U. S. Patent No. 3,009,958 issued November 21, 1961 and U. S. Patent No. 3,081,339 issued March 12, 1963, both issued to Green and Rogers.
10 Compounds within Formula D wherein A is -S- are described in U. S. Patent No. 3,009,958 issued November 21, 1961 to Green and Rogers. Compounds within Formula D where A is -O- are described in U. S. Patent No. 3,061,434 issued October 3, 1961 to Green and Solodar. For 15 convenience, the disclosures of these U. S. patents are hereby incorporated herein.
Where the anilino group(s) contain an amino or an aminoalkyl substituent, a hydroquinonyl group may be introduced by reaction with a carboxylic acid-substituted 20 hydroquinone, e.g., homogentisic acid lactone or homogentisic acid chloride, following the procedures described in U. S. Patent No. 3,288,778 issued November 29, 1966 to Blout, Cohen, Green, Rogers, Simon and Woodward. Alternatively, a compound such as CH2- C -NH ~ CH3 OH

may be rea~ted with one or both chlorines Qf dichloro-sulfone fluorescein; compounds of this type are described in U. S. Patent No. 3,214,469 issued October 26, 1965 to Green and Husek.
The following examples of the preparation of dye developers in accordance wi~h this invention are given for purposes of illustration and are not intended to be limiting.
~xample 1 5.0 g. (0.012 m) of dichlorosulfone fluorescein and 5.0 g. (0.041 m) of 2,6-dimethylaniline were refluxed together in 50 ml. of methanol for 0.5 hour. Excess methanol was stripped off, and the residue was triturated with diethyl ether until it was solid. The solid was 15 filtered off, washed well with diethyl ether and dried.
Chromatography on florisil (90/10 chloroform/methanol, by volume, as solvent) gave 3.0 g. (44%) of the monochloro intermediate Cl 20 as an orange powder. 25 ml. of ethylene glycol was heated in an oil bath set at 130C and nitrogen was bubbled in, with stirring, for 1 hour. To the hot, deoxygenated ethylene glycol was added 3.0 g.
(5.2 x 10 ~m) of the above monochloro intermediate and 25 4.0 g. (15.7 x 10 3m) of OH
~( CH2 ) 3~CCNH3 H

This solution was stirred at 130C while nitrogen was slowly bubbled through. Aliquots were periodically worked up (TLC in methanol~chloroform, 15/85 parts by volume).
After 4 hours, the hot reaction mixture was poured into 5 5~ hydrochloric acid. The precipitate was filtered off, washed with water and dried. A small amount of the monochloro intermediate was found to be present, and this was removed by extraction with chloroform in a Soxlet extractor. 3.0 g. (81~ yield) of the thus purified 10 Dye 1 CH CH
~ CH ~ T ~

~ SO3 CH2--CH2----CH2 ~
H

was obtained, and this product exhibited maximum absorp-tion in methyl cellosolve*at 534 nanometers, epsilon 64,000. Column chromatography with methanol/tetrahydro-15 furan, (15/85 parts by volume) gave a more pure sampleof Dye 1 exhibiting an epsilon of 79,000 at 534 nanometers in methyl cellosolve.
Example 2 In a 250 ml. flask were placed 30 ml. of 20 dimethyl sulfoxide, 6.0 g. (0.0148 m) of dichlorosulfone fluorescein, 9.0 g. (0.0300 m) of OCH~
(CH2)3 ~ C~13 CH3 * cellosolve is a trademark; methyl cellosolve is 2-; methoxythanol.
.: ~
.

and 6.0 g. of magnesium oxide. Argon was bubbled through the stirred mixture for a few minutes, and the flask was then placed in an oil bath set at 140C. The reaction was followed by TLC (QSF plates, 10/90 methanol/chloroform, 5 by volume). After 2 1/2 hours the reaction appeared to be nearly complete. Sodium sulfanilate ~10.0 g.) was added, and the reaction mixture kep at 140C for an additional hour. After cooling to 90C, 30 ml. of water was added, and the mixture was stirred and cooled until 10 the dye mass solidified. The solid was filtered off, washed well with water, dissolved in chloroform and dried over calcium sulfate. Evaporation of the chloroform ga~e 15.0 g. of crude dye. The crude dye was redissolved in chloroform and placed upon a florisil column. The column 15 was eluted with methanol/chloroform (15/85 parts by volume), and dye being collected as it washed off the column. Evaporation of the eluent gave 8.0 g. (58%) of CH CH
N ~ ICH ~ CN3 6C3 ~ ~o3 C3H

CH

A solution of 8.0 g. (8.6 x 10 3m) of this dye in 500 ml.
20 of chloroform was cooled in a dry ice-acetone bath, and 8.0 ml. (21.1 g., 0.084 m) of boron tribromide dissolved in 50 ml. of chloroform was 510wly dripped into the stirred solution. Upon complete addition of the boron tribromide, the mixture was allowed to come to room 25 temperature and was then stirred overnight. A solution of 50 ml. of concentrated hydrochloric acid in 450 ml. of water was cautiously added, and the mixture was stirred S

and refluxed for 1 hour. The warm mixture was filtered, and the solid was washed well with water and dried to give 6.0 g. (80~) of Dye 2:

H OH

5 Dye 2 was found to exhibit maximum absorption in methyl cellosolve at 548 nanometers, epsilon 104,000.
The dimethoxy intermediate (CH2)3 ~ UHI CH3 employed in Example 2 above was prepared as follows:
Example 2-A
600 g. (362 ml.) of concentrated sulfuric acid and 100 g. (71.5 ml.) of concentrated nitric acid (d. 1.42) were combined in a 3-liter three neck round bottom flask and cooled to 0C in an ice-salt bath. To this was added 15 120 g. (1 mole) of tolualdehyde, with stirring and dropwise at a rate that kept the temperature at about 5C. After addition of the aldehyde, the solution was stirred at 0C for one hour and then dumped onto ice.
Crude 4-methyl-3-nitrobenzaldehyde precipitated as a 20 pale yellow solid which was filtered off, washed with water and dried (m.p. 41-43C). 18.0 g. (0.1 m) of Sf~5 2,5-dimethoxyacetophenone and 16.5 g. (0.1 m) of 4-methyl-3-nitrobenzaldehyde were dissolved in 75 ml. of absolute ethanol by gentle heating on a steam bath. Gaseous hydrogen chloride was bubbled in with stirring for a few 5 minutes. The now hot, green solution was stoppered and left at room temperature overnight. Crystalline 3-nitro-
4-methyl-2',5'-dimethoxy chalcone [~ C--CH=CH~CH 3 NO

was filtered off and washed well with cold alcohol;
10 yield 28 g. (86%). Material recrystallized from toluene melted at 146-147C. 30 g. (0.046 m) of this chalcone was hydrogenated on a Parr apparatus in ethanol at 40 lbs./in.2 pressure using 10% palladium-on-charcoal catalyst. After hydrogen uptake ceased, the bottle was lS removed and the precipitate dissolved by heating. The catalyst was filtered from the hot solution. Upon cooling of the filtrate ~C--CH2--CH2~CH3 crystallized out as white crystals. 5.8 g. (0.019 m) of 20 this ketone was refluxed in 25 ml. of absolute ethanol with 2.5 g. (0.05 m) of hydrazine hydrate for 1 hour.
The ethanol was stripped off, an~ 4.0 g. (0.071 m) of powdered KOH was added. This mixture was stirred and heated under nitrogen at 235 (oil ~ath temperature) for 25 45 minutes. After cooling, the residue was stirred in water to dissolve crystallized KOH, and the oily material 11f~2525 was taken up in diethyl ether. After washing with water, the ether solution was dried over drierite. Evaporation of the diethyl ether gave an oil which solidified upon standing. This solid was dissolved in 5 ml. of hot
5 toluene and 15 ml. of boiling petroleum ether was added.
On cooling the amine (C~2~3 ~ CH3 crystallized out as a white powder (3.1 g., 57% yield;
m.p. 65-66C). 10.0 g. (0.035 m) of this amine was 10 refluxed in 150 ml. of toluene containing 6 g. of 88%
formic acid. Water was removed by a Dean-Stark trap;
when no more water came over (about 2 hours), the solution was cooled slightly and another 6 g. of formic acid was added. The solution was again refluxed until water did 15 not come over. TLC (50/50, by volume, diethyl ether/-petroleum ether) showed all startinq material was gone and that a second compound had been formed. The solvent was evaporated under vacuum and the residual oil was dissolved in boiling ether. Upon cooling, the formamide OCH
(C~2)3 ~ CH3 NH-CH
~CH3 o precipitated as a white powder (m.p. 107-108C; 95% yield).
4.5 g. (0.0144 m) of the formamide was dissolved in 50 ml.
of tetrahydrofuran and treated with 6.6 g. (0.087 m) of ~S~5 BH3 DMS (boron-dimethyl sulfide). The solution was stirred over a weekend at room temperature, during which time a gelatinous precipitate formed. The reaction mixture was poured, with stirring, into 150 ml. water containing 10 ml.
5 of concentrated hydrochloric acid. After cooling, the mixture was made strongly basic by the addition of solid sodium carbonate. The organic layer was taken up in diethyl ether and dried over drierite. Evaporation of the solvent gave an oil which crystallized on cooling. The 10 solid was triturated in petroleum ether and filtered to give 4.0 g. (93% yield) of (CH2)3 ~ C 3 as a pure white powder, m.p. 39-40C.
The following example illustrates the prepara-15 tion of a sulfonyl chloride-substituted intermediate which may be employed to prepare a variety of dye developers within the scope of this invention.
Example 3
6.0 g. (0.012 m) of the monochloro intermediate Cl ~ SO3-and 8.0 g. (0.036 m) of S03Na 3 ~1 1 ~ CH3 were heated in ethylene glycol overnight. The hot purple solution was poured into aqueous HCl, and the solid filtered off. The solid was slurried in water and solid 5 potassium carbonate was added until a solution resulted.
The solution was extracted twice with chloroform, and the aqueous layer was isolated and acidified to about pH 1 with concentrated hydrochloric acid. After heating to 90C, salt was slowly added with stirring until solid 10 dye began to precipitate. Stirring was continued until the temperature fell to 45-50~C, and the dye was filtered.
Purification gave 4.0 g. of N ~ ~ SO3Na ~ SO3-4.0 g. (6 x 10 3m) of this dye was slurried in S0 g. of 15 thionyl chloride. 2 0 ml. of dimethyl formamide was added, and the solution was stirred at room temperature for 1 hour. After pouring onto ice, with stirring, the sulfonyl chloride was filtered off and washed well with water. After sucking under a rubber dam, the damp 20 material was dissolved in tetrahydrofuran, dried over drierite and evaporated to give 'Z525 CH CH
N ~ ~ 502-Cl ~ S03-The sulfonyl chloride prepared in Example 3 may be reacted with a wide variety of amino-substituted hydroquinones to provide dye developers within the scope S of this invention. Thus, for example, Dye 5 above may be prepared by reacting this sulfonyl chloride with followed by demethylation. It will be readily recognized that a dye developer containing two such sulfonamido-10 linked hydroquinonyl groups may be obtained by replacingboth chlorines of dichlorosulfone fluorescein with, e.g., - NH
~S02Cl and reacting the resulting bis-sulfonylchloride with two equivalents of the desired amino-substituted hydroquinone.

The following example is given to illustrate the use of a dye developer of this invention in a diffusion transfer process.
Example 4 A photosensitive element was prepared by coating a subcoated transparent 4 mil polyethylene terephthalate film base with a solution of Dye 2 and cellulose acetate hydrogen phthalate dissolved in a 50:50 mixture, by volume, of acetone and methyl cellosolve to provide a layer 10 containing approximately 24 mg./ft.2 of Dye 2 and approximately 24 mg.~ft.2 of cellulose acetate hydrogen phthalate. Over this dye layer was coated a green-sensi-tive silver iodobromide emulsion at a coverage of about 44 mg./ft.2 of silver and 88 mg./ft.2 of gelatin. Over 15 the silver halide emulsion layer there was coated a gelatin layer containing about 30 mg./ft.2 of gelatin and 7.5 mg./ft.2 of 4'-methylphenylhydroquinone. The resulting photosensitive element then was exposed (2 meter-candle-seconds) on a sensitometer to a test exposure scale or 20 step-wedge. In the dark, a layer approximately 0.0020 inch of a processing composition containing (approximate concentrations):
Potassium hydroxide (45% solution) 380 g.
Carboxymethyl hydroxyethyl cellulose 52 g.
Titanium dioxide 2028 g.
6-methyl uracil 14.2 g.
bis-(~-aminoethyl)-sulfide 1 g.
5-bromo-6-methyl-4-azabenzimidazole1.5 g.
Benzotriazole 27 g.
Lithium nitrate 0.1 g.
Colloidal silica (30% aqueous solution) 88 g.
N-2-hydroxyethyl-N,N',N'-tris-carboxymethyl-ethylene diamine40 g.
Lithium hydroxide 5 g.
Polyethylene glycol (molecular weight 6,000) 26 g-11'~;~,5~5 N-phenethyl-~-picolinium bromide (50% aqueous solution) 70 g.
N-benzyl-~-picolinium bromide (50% aqueous solution) 121 g.
6-benzylamino-purine 19 g.
Water 1757 g.
between the exposed photosensitive element and a trans-parent image-receiving element as said elements were brought into superposed relationship. The resulting 10 laminate was kept in the dark for 10 minutes (to avoid fogging the developed silver halide emulsion by light passing through the transparent film base). When brought into the light, a well defined positive magenta dye image (reflection density DmaX 1.70, Dmin 15 through the transparent base of the image-receiving element against the white layer of titanium dioxide provided by the processing composition, without separating the superposed elements. Inspection of the developed photosensitive element through the transparent film base 20 of the photosensitive element showed a well defined negative silver image in the developed silver halide emulsion layer, and very little magenta dye developer left in undeveloped areas, indicating an efficient use of the coated dye developer.
The image-receiving element used in Example 4 comprised a 4 mil transparent polyethylene terephthalate carrying, in order:
1. a mixture of about 8 paxts, by weight, of a partial butyl ester of polyethylene/maleic anhydride and 30 about 1 part, by weight, of polyvinyl butyral to provide a polymeric acid layer having a coverage of about 2500 mg./ft.2;
2. a mixture of about 7 parts, by weight, of hydroxypropyl cellulose (Klucel J12HB, Hercules, Inc., 35 Nilmington, Delaware), and about 4 parts, by weight, of polyvinyl alcohol; to form a spacer layer having a coverage of about 500 mg./ft. ; and 3. a mixture of about 3 parts of (a) a mixture of about 2 parts of polyvinyl alcohol and 1 part of poly-4-vinylpyridine and 1 part of a graft copolymer of 4-vinylpyridine and vinyl benzyl trimethyl ammonium chloride 5 on hydroxyethyl cellulose (mole ratio 1:0.5:1) to form an image-receiving layer having a coverage of about 300 mg-/ft.
The FIGURE is a graph of the percent reflectance of visible light against wavelength in nanometers of a 10 magenta monochrome reflection print prepared in substan-tially the same manner as in the above example, made three days after processing and using magnesium carbonate as the reference material.
As noted above, magenta image dye-providing 15 materials containing the chromophoric system:

~ SO3-in accordance with this invention are not restricted to dye developers, but include many other types of initially diffusible and initially non-diffusible image dye-provid-20 ing materials.
Thus, for example, an initially diffusiblecoupling dye useful in the diffusion transfer process described in U. S. Patent No. 3,087,817 issued April 30, 1963 to Howard G. Rogers may be prepared by substituting 25 one or both of the anilino groups with a color coupling moiety, such as a phenol or naphthol having a free position para to the hydroxyl group. As an example of such a coupling dye, mention may be made of:

ll~Z525 ~H~O~ ~ qH

~ SO3-This dye is initially diffusible, but is rendered non-diffusible by coupling with the oxidation product of a color developer, e.g., a p-phenylene diamine or a 5 p-aminophenol, to form a less diffusible product. If the coupling position is substituted by a substituent which renders the dye initially nondiffusible by virtue of a ballast group and which substituent is displaceable upon coupling, such a dye may be employed to provide a 10 diffusible dye where coupling occurs, employing the principles described, e.g., in U. S. Patent No. 3,227,550 issued on January 6, 1966.
As an example of an initially non-diffusible "redox dye releaser" dye useful in the diffusion transfer 15 process described in V. S. Patent No. 4,076,529 issued February 28, 1978 to Fleckenstein and Figueras, mention may be made of ~S2 - NH
o3 ~C15H3 Other sulfonamido phenol or naphthol groups known in the art, e.g., in U. S. Patent No. 4,053,312 issued October 11, 1977 to Fleckenstein and in U. S. Patent No. 4,055,428 issued October 25, 1977 to Koyama et al, to cleave, in 5 alkaline solution, at the sulfonamido group following oxidation may be used in place of the p-sulfonamido-naphthol group illustrated above.
U. S. Patent No. 3,719,489 issued March 6, 1973 to Cieciuch, Luhowy, Meneghini and Rogers discloses 10 diffusion transfer processes wherein a diffusible image dye-providing material is formed by the silver-catalyzed cleavage of a thiazolidine group of an initially non-diffusible image dye-providing material. Examples of image dye-providing materials within the scope of this 15 invention and which may be used in said thiazolidine dye-release system include:

S02~ 0!1 3 ~ -C18H37 ( H3)2 ~_ ~C2~_ ~C2 52 [~ ~B2 ( H3C ) 2Ts~ ~45~CH 3 ) 2 Ot~ 0~1 I
~37~ C18~37 $ lH ~_ ICH~

Z ~ S03- Z

Z = -C-NH-cH2-cH2-NH-so2~oH

S C1~3~37 (H3C)2 Another class of initially non-diffusible image dye-providing materials are described in U. S. Patent 3,433,939 issued May 13, 1969 to Bloom and Rogers release a diffusible dye following oxidation and intra-5 molecular ring closure. An example of an image dye-providing material within the scope of this invention which may be used in the processes of said patent is So2- NH

3- ~ C15H31 OH
It will be recognized that the above illustra-10 tive initially non-diffusible image dye-providing materials may be prepared in a routine manner from, e.g~, sulfonyl chloride of the chromophore-containing moiety (e.g., the sulfonyl chloride prepared in Example 3) and the appropriate amino-substituted diffusion control lS group, the syntheses of which are described in the noted patents and to which reference may be made for detailed descriptions, including photographic utilization.
Other image dye-providing materials which cleave in alkali following oxidation may be provided by use of a 20 compound within Formula D above wherein A is -O- or -S-and the hydroquinonyl group contains a ballast group, e.g., 2 ~ ~ ~ C15H31 OH

in accordance with the disclosure of U. S. Patent No.
3,725,062 issued April 3, 1973 to Anderson and Lum.
While the ballast group in the above illustra-tions has been a long chain alkyl group, it will be 5 understood that other ballast groups shown in the cross-referenced patents may also be used.
In the use of a non-diffusible image dye-providing material which releases a diffusible image dye-providing material following oxidation in an alkaline 10 environment, the requisite oxidation may be effected by the oxidation product of a mobile developing agent used to develop the photoexposed silver halide emulsion. A
particularly effective developing agent for this purpose is l-phenyl-4,4-dimethyl-3-pyrazolidone; other suitable 15 developing agents are described in the cross-referenced patents.
Example 5 A film unit was prepared as follows: the negative element was made up of a polyethylene 20 terephthalate photographic film base with the following layers coated thereon in succession:
1. a magenta dye developer layer at a coverage of 32 mgs/ft2 (344.4 mgs/m2) of Dye 19 dispersed in 32 mgs/ft2 (344.4 mgs/m2) of cellulose acetate hydrogen 25 phthalate;
2. a green-sensitive gelatino silver iodobromo emulsion coated at a coverage of 75 mgs/ft2 (807.3 mgs/ft2) of silver and 88 mgs/ft2 (947.2 mgs/m2) of gelatin;
3. a layer of 30 mgs/ft2 (322.9 mgs/m2) of 30 gelatin.
The image-receiving element comprised a transparent polyethylene terephthalate photographic film base with the following layers coated thereon in succession:
1. as a polymeric acid layer, approximately 9 parts of a half-butyl ester of polyethylene/maleic anhydride copolymer and 1 part of polyvinyl butyral coated at a coverage of about 2600 mgs/ft2 (27,986 mgs/m2) and ll'~;~S25 including an ultraviolet absorbing material;
2. a timing layer containing about 450 mgs/ft (4843.8 mgs/m2) of a 60-30-4-6 tetrapolymer of butyl acrylate, diacetone acrylamide, styrene and methacrylic 5 acid including about 7~-8~ polyvinyl alcohol; and 3. a polymeric image-receiving layer of: (a) 3 parts of a mixture of 2 parts polyvinyl alcohol and 1 part poly-4-vinylpyridine and (b) 1 part of a graft copolymer comprised of 4-vinylpyridine (4VP) and vinyl-10 benzyl trimethyl ammonium chloride (TMQ) grafted ontohydroyethyl cellulose (HEC) at a ratio of HEC/4VP/TMQ of 2.2/2.2/1 coated at a coverage of about 300 mgs/ft (3229.2 mgs/m ).
The film unit was processed with a processing 15 composition comprised of:
Water 1757 gms Bis-(~-aminoethyl)-sulfide 1.04 cc Titanium dioxide 2028 gms Potassium hydroxide (50% solution) 380.3 gms Carboxymethyl hydroxyethyl cellulose 51.8 gms Benzotriazole 26.9 gms 6-methyluracil 14.2 gms N-Hydroxyethyl-N,N',N'-tris-carboxymethyl ethylene diamine40.2 gms 6-methyl-5-bromo-4-azabenzimidazole1.34 gms 6-benzylaminopurine 19.0 gms Lithium nitrate 4.72 gms Polyethylene glycol (MW 6000)26.1 gms Colloidal silica (50~ aqueous dispersion) 88.5 gms N-benzyl-~-picolinium bromide (50~ solution) 121.3 gms N-phenethyl-~-picolinium bromide (50% solution) 70.0 gms The film unit was exposed (2 meter-candle-seconds) on a sensitometer to a test exposure scale with green and blue light and then passed through a pair of rollers at a gap spacing of about 0.0020 inches. The unit was allowed to remain in the dark for about 10 minutes. The film unit was kept intact and maximum and minimum reflection densities were measured.
Example 6 The procedure of Example 5 was repeated with 5 the exception that the dye developer layer of the negative element was made up of 28.0 mgs/ft2 (301.4 mgs/m2) of Dye 18 and 28.0 mgs/ft (301.4 mgs/m ) of cellulose acetate hydrogen phthalate.
Example 7 The procedure of Example 6 was repeated with the exception that the gelatin layer of the negative element also included 7.5 mgs/ft2 (80.7 mgs/m of 4'-methylphenyl hydroquinone.
Example 8 The procedure of Example 7 was repeated with the exception that the gelatin layer of the negative element also included 7.5 mgs/ft2 (80.7 mgs/m2 of 4'-methylphenyl hydroquinone.
Example 9 The procedure of Example 5 was repeated with the exception that the dye developer layer of the negative element was made up of 24.6 mgs/ft2 of Dye 2 and 24.6 mgs/ft2 of cellulose acetate hydrogen phthalate.
Example 10 The procedure of Example 9 was repeated except that the gelatin layer of the negative element also included 7.5 mgs/ft2 (80.7 mgs/m2) of 4'-methylphenyl hydroquinone.
The monochrome, magenta transfer images 30 obtained in Examples 5-10 exhibited the following reflection densities to green light:

S~5 max min Example 5 2.09 0.69 Example 6 2.03 0.64 Example 7 2.20 0.25 Example 8 2.00 0.22 Example 9 2.22 0.57 Example 102.33 0.30 Example 11 A multicolor photosensitive element using, as 10 the cyan and yellow dye developers CH
HC--NH--02S ~
cyan: 2 ~ Cl H 3 ~ H ~ ~N~ H S2 - NH - CH

CH3 ~ ~ C/ ~ C ~ ~ OH
Hl--NH--O2S N C~ ;~C -- N HO

2 ~=< fH3 ~OH ~S2--NH--CH
HO
~/ ~OH
H~J

/ ~ 7 NO2 ~ /0~
yellow:\ Cr / H2O
O o OH

~C--C~ CH2~

OH

and Dye 18 as the magenta dye developer, by coating a gelatin-subcoated 4 mil opaque polyethylene terephthalate film base with the following layers:
1. a layer of cyan dye developer dispersed in gelatin and coated at a coverage of about 630 mg/m of dye, about 391 mg/m2 of gelatin, about 280 mg/m2 of N-n-dodecylaminopurine, and about 88 mg/m2 of 4'-methyl-phenyl hydroquinone;
2. a red-sensitive gelatino silver iodobromide emulsion coated at a coverage of about 1054 mg/m2 of silver and about 6324 mg/m of gelatin;
3. a layer of a 95:5 mixture cf a 60-30-4-6 copolymer of butylacrylate, diacetone acrylamide, styrene 15 and methacrylic acid and polyacrylamide coated at a coverage of about 1076 mg/m2;
4. a layer of magenta dye developer dispered in gelatin and coated at a coverage of about 648 mg/m2 of dye and about 324 mg/m2 of gelatin;
5. a green-sensitive gelatino silver iodobromide emulsion coated at a coverage of about 749 mg/m2 of silver and about 330 mg/m of gelatin;
6~ a layer containing the copolymer referred to above in layer 3 and polyacrylamide in a 91:9 ratio coated 25 at a coverage of about 1816 mg/m ;
7. a layer of yellow dye developer dispersed in gelatin and coated at a co~erage of about 659 mg/m of dye, about 318 mg/m2 of gelatin, and about 108 mg/m2 of N-n-dodecylamino-purine;
8. a blue-sensitive gelatino silver iodobromide emulsion layer coated at a coverage of about 990 mg/m2 of silver, about 495 mg/m2 of gelatin; and
9. a layer of gelatin coated at a coverage of about 320 mg/m of gelatin.
A transparent 4 mil polyethylene terephthalate film base was coated, in succession, with the following layers to form an image-receiving component:
1. as a polymeric acid layer, a mixture of a partial butyl ester of polyethylene/maleic anhydride 15 copolymer and polyvinyl butyral at a ratio of about 9:1 at a coverage of about 2,500 mg/ft2;
2. a timing layer containing about a 45:0.7 ratio of a 60-30-4-6 copolymer of butylacrylate, diacetone acrylamide, stryene and methacrylic acid and polyvinyl 20 alcohol at a coverage of about 450 mg/ft2; and 3. an image-receiving layer containing a 2:1:1 mixture of polyvinyl alcohol, poly-4-vinyl pyridine and a graft copolymer of 4'-vinyl pyridine and vinylbenzyl trimethyl ammonium chloride on hydroxyethyl cellulose 25 (2.2:1:2.2 ratio) at a coverage of about 300 mg/ft2.
Over the image-receiving layer there was coated about 100 mg/ft of a 70:30 mixture of Pluronic F-127 polyoxyethylene polyoxypropylene block copolymer and polyvinyl alcohol as a decolorizing layer. (Such 30 "decolorizing" layers are the subject of the copending application of Edwin H. Land, Leon D. Cerankowski and Neil Mattuci, Serial No. 33,001, filed April 24, 1979.) The photosensitive component was photoexposed and then taped to one end of the image-receiving component with a 35 rupturable container retaining an aqueous alkaline processing solution fixedly mounted on the leading edge of each of the components, by pressure-sensitive tapes to make a film unit, so that, upon application of 5~S

compressive pressure to the container to rupture the container's marginal seal, its contents would be distributed between the decolorizing layer and the gelatin overcoat layer of the photosensitive component The aqueous alkaline processing composition comprised:
Water 100 g.
Potassium hydroxide (85~) 10.1 g.
N-phenethyl-~-picolinium bromide2.6 g.
Titanium dioxide 77.1 g.
6-methyl uracil 0.6 g.
bis-(~-aminoethyl)-sulfide 0.04 g.
Benzotriazole 1.1 g.
Colloidal silica (solids based on 30% SiO2 dispersion) 0.56 g.
N-2-hydroxyethyl-N,N',N'-tris-carboxymethyl-ethylene diamine1.52 g.
4-aminopyrazolo ( 3, 4d)pyrimidine 0.51 g .
polyethylene glycol (molecular weight about 4000) 0.91 g.
poly-diacetone acrylamide oxime1.6 g.

OH OH 2,74 g.
C 1 8 H 3 7 ~:`OOH HOOC~

HOOC H }l ~HS2C16~33 n 0 6 g ~``0 A layer approximately 0.0030" thick of the processing composition was distributed by passing the film unit between a pair of pressure-applying rolls and into a 5 lighted area. The resulting laminate was maintained intact to provide a multicolor integral negative-positive reflection print which exhibited good color quality and separation.
Example 12 Dye 18 was prepared as follows:
10 g of a xanthene dye represented by the formula c~3 CIH3 OCH3 ~ ~ ~ OCH3 --(C112)3 @J--so~3 (CH2)3 ~

was suspended in 75 ml of dimethyl sulfoxide at room 15 temperature under nitrogen gas. To this suspension there was added 1.8 g of a 50~ sodium hydride dispersion in oil and the mixture stirred for 30 minutes at room temperature.
A blue solution developed. To the solution there was 5~,5 added 10 g of a tosylate compound represented by the structural formula OCH ~
(CH2)3-3s ~ CH3 OCH~ ~

and the solution stirred for 3 hours at room temperature.
5 TLC on silica gel with 5/95 methanol/methylene chloride, by volume, showed that none of the dye intermediate remained. Methyl iodide (2 ml) was added and the mixture was stirred for one hour. TLC showed that the reaction was complete. The reaction mixture was poured into 1 liter 10 of water containing 1 ml of conc. HCl and the precipitate was filtered off. The precipitate was placed back into water, stirred well, collected by filtration and vacuum dried to give 14.0 g. The product was dissolved in 400 ml of methylene chloride and 125 g of silica gel added to the 15 solution. The stirred mixture was placed in a sintered glass funnel and filtered while washing with methylene chloride. The dye was then extracted with 5/95 methanol/
methylene chloride, by volume, and evaporated to dryness.
The dye is represented by the structural formula 5~5 ~ Cll2 3 1 ~ CH3 (CH2)3 ~

A solution of 5.0 g of the thus-prepared dye in 100 ml of methylene chloride was added to a stirred solution of 15 ml of boron tribromide ln 500 ml of 5 methylene chloride, under nitrogen and cooled to 5C.
The magenta solution was allowed to warm to room tempera-ture. TLC on silica gel showed two spots. A sample of the solution was heated to reflux with no apparent change in the TLC results. Water was added dropwise to the 10 solution and a magenta precipitate formed. The precipitate was collected by filtration, washed well with methylene chloride and vacuum dried at 80C to give 9.0 g of solid.
The solid was dissolved in methanol containing several drops of conc. HCl, refluxed, and poured into 1000 ml of 15 ether. The precipitate was collected by filtration and dried to give 3.8 g of product.
The 3.8 g sample was placed on 60 g of sea sand with methanol. The mixture was placed in a steel column and an additional 250 g of sea sand were added. The column 20 was placed on line on a high pressure chromatography unit and washed with a succession of solvents as follows (parts are by volume):

1 liter methylene chloride 2 liters 1/99 methanol/methylene chloride 4 liters 2/98 methanol/methylene chloride 4 liters 3/97 methanol/methylene chloride 12 liters 5/95 methanol/methylene chloride 3 liters 6/94 methanol/methylene chloride The appropriate solvent fractions as determined by thin layer chromatography were collected and evaporated to give 1.8 g of the dye developer.
TLC of the material showed traces of impurities.
The sample was again placed on 60 g of sea sand and placed back in the steel column (which was first washed with 9/91 methanol/methylene chloride, by volume, and then with methylene chloride). The column was washed with a 15 succession of solvents as follows ~parts are by volume):
1 liter methylene chloride 3 liters 2/98 methanol/methylene chloride 3 liters 3/97 methanol/methylene chloride 1 liter 4/96 methanol/methylene chloride 10 liters 4/96 methanol/methylene chloride 3 liters 6/94 methanol/methylene chloride The appropriate solvent fractions as determined by thin layer chromatography were collected and evaporated to give 1.7 g of Dye 18 which was shown to be pure by TLC.
25 The product exhibited maximum absorption in methyl cellosolve at 553 nm, ~ = 117,500. An NMR spectrum of the product confirmed the structure.
Example 13 A film unit was prepared as follows:
The photosensitive element comprised an opaque subcoated polyethylene terephthalate film base on which the following layers were coated in succession:
(1) a layer of sodium cellulose sulfate coated at a coverage of about 21 mgs/m2;
~2) a cyan dye developer layer comprising about 635 mgs/m2 of the cyan dye developer used in Example 11, about 429 mgs/m2 of gelatin, about 238 mgs/m of dodecylaminopurine and about 128 mgs~m2 of 4'-methyl-phenyl hydroquinone;
(3) a red-sensitive gelatino silver iodobromide (1.8 microns) emulsion layer coated at a coverage of about 5 1900 mgs/m2 of silver and about 1140 mgs/m2 of gelatin;
(4) an interlayer comprising about 2000 mgs/m2 of a 60-30-4-6 tetrapolymer of butylacrylate, diacetone acrylamide, styrene and methacrylic acid and about 30 mgs/m2 of polyacrylamide;
(5) a magenta dye developer layer comprising about 666 mgs/m of Dye 18, about 323 mgs/m2 of gelatin and about 150 mgs/m2 of dodecylaminopurine;
(6) a green-sensitive silver iodobromide (1.11 microns) emulsion layer coated at a coverage of about 15 700 mgs/m2 of silver and about 308 mgs/m2 of gelatini (7) a green-sensitive silver iodobromide (1.8 micrans) emulsion layer coated at a coverage of about 600 mgs/m2 of silver and about 288 mgs/m of gelatin;
(8) an interlayer comprising about 1380 mgs/m 20 of a 60-30-4-6 tetrapolymer of butylacrylate, diacetone acrylamide, styrene and methacrylic acid and about 30 mgs/m2 of polyacrylamide;
(9) a spacer layer comprising about 285 mgs/m2 of 2-phenylbenzimidazole and about 142.5 mgs/m of 25 gelatin;
(10) a yellow dye developer layer comprising about 820 mgs/m of the yellow dye developer used in Example 11 and about 328 mgs/m2 of gelatin;
(11) a blue-sensitive silver iodobromide (1.5 30 microns) layer coated at a coverage of about 1050 mgs/m2 of silver, 660 mgs/m2 of gelatin and about 306 mgs/m2 of 4'-methylphenyl hydro~uinone; and
(12) an overcoat layer of about 484 mgs/m2 of gelatin.
The image-receiving element comprised a transparent subcoated polyethylene terephthalate film base on which the following layers were coated in succession:

(1) as a polymeric acid layer approximately 9 parts of a 1/2 butyl ester of polyethylene/maleic anhydride copolymer and 1 part of polyvinyl butyral coated at a coverage of about 2450 mgs/ft2 (26,372 mgs/m2);
S (2) a timing layer coated at a coverage of about 270 mgs/ft2 (2906 mgs/m2 of a 60-30-4-6 tetrapolymer of butylacrylate, diacetone acrylamide, styrene and methacrylic acid and about 30 mgs/ft2 (323 mgs/m2 of polyvinyl alcohol;
(3) a polymeric image-receiving layer coated at a coverage of about 10 mgs/ft2 (108 mgs/m2 of 1,4-butanediol diglycidyl ether and about 300 mgs/ft2 (3229 mgs/m2 of: (a) 3 parts of a mixture of 2 parts polyvinyl alcohol and 1 part poly-4-vinyl pyridine and 15 (b) 1 part of a graft copolymer comprised of 4-vinyl pyridine (4VP) and vinyl benzyl trimethyl ammonium chloride (TMQ) grafted onto hydroxyethyl cellulose (HEC) at a ratio HEC/4VP/TMQ of 2.2/2.2/1; and (4) a topcoat layer of polyvinyl alcohol coated 20 at a coverage of about 40 mgs./ft2 (430 mgs/m2).
A second film unit was prepared which was identical with the exception that the magenta dye developer layer included about 540 mgs/m2 of Dye 2 instead of Dye 18.
The amounts of Dyes 2 and 18 used in the above film units were chosen so as to provide substantially equivalent molar amounts of the dye developers. Thus 617 x 10 mole of Dye 18 (MW 1011) and 617 x 10 5 mole of Dye 2 (MW 875) were present in the respective film 30 units.
The film units were exposed on a sensitometer to a test exposure scale with white light and then processed by passing them through a pair of rollers so as to distribute a layer of the following processing 35 composition approximately 0.0030 inch thick between the superposed photosensitive and image-receiving elements:

S;~5 Water 1622 ml TiO2 2312.0 gms Oximated polydiacetone acrylamide 32.0 gms Potassium hydroxide (45~ solution) 486.6 gms Benzotriazole 22.0 gms 4-Aminopyrazolo-(3,4d) pyrimidine10.0 gms 6-Methyl uracil 12.0 gms N-hydroxyethyl-N,N',N'-tris-carboxymethyl ethylene diamine30.0 gms Polyethylene glycol (M.W. 4000)18.0 gms Bis(2-aminoethyl)sulfide 0.8 gms Colloidal silica (30~ solids)37.0 gms N-phenethyl-~-picolinium bromide (50~ solids) 102.0 gms 15 Since the processing composition did not contain opacifying dyes the film units were kept in the dark for a period of about five minutes after the processing composition was applied. The reflection densities of the neutral area of the images were:
Red Green Blue Dye 18: D 1.87 2.36 2.18 max Dmin 0.12 0.16 0.24 Dye 2: D 1.82 1.88 2.12 Dmin 0.12 0.15 0.26 25 It will be noted that Dye 18 gave a much higher transfer density than Dye 2. It has been determined that Dye 2 transfers at a much slower rate than Dye 18. Since the dyes are insolubilized by the pH reduction effected after a predetermined time by the polymeric acid neutralizing 30 layer, it will be apparent that the difference in the magenta transfer density is due to the combination of the difference in transfer rates and the p~ reduction. Other experiments have shown that if the pH is not reduced, i.e,, the neutralizing layer is omitted, substantially 35 similar transfer densities may be obtained even though the rate of density build-up is slower. Similar experiments have also shown that the transfer rate of ~Z5Z5 Dye 2 also is reduced by the presence in the processing composition of opacifying dyes such as used in Example 5.
The magenta image dyes provided by this invention have been found to provide very desirable 5 spectral properties, particularly high green absorption and high blue transmission, together with high extinction coefficients, thereby providing multicolor images exhibit-ing improved reproduction of blues, greens and pastel colors. The preferred magenta dyes of this invention 10 exhibit maximum absorption at about 540 to 555 nanometers (dissolved in methyl cellosolve) and have a narrow band width. The dye developers of this invention have been found to give very good transfer control, with very good deltas between maximum and minimum densities. While it 15 is general practice in dye developer transfer processes to have an auxiliary developing agent, e.g., 4'-methyl-phenyl hydroquinone present, it has been found that the dye developers of this invention exhibit very good silver halide developing action without such auxiliary developing 20 agents, and that the total amount of auxiliary developing agent in a given system therefore may be reduced. In turn, this reduces the potential for stain in highlight regions of the transfer image due to oxidized auxiliary developing agent. It has also been observed that the 25 oxidized form of these dye developers, illustrated for example by Dyes 2 and 18, exhibits a large difference in alkali solubility compared with the unoxidized form. The dye developers of this invention also exhibit a strong resistance to post-processing transfer, e.g., solubiliza-30 tion and transfer after pH-reduction to impart a stain or "pinking" to highlight areas. While the reasons for these desirable properties are not well understood, it is believed that the presence of the positive charge associated with the nucleus is a significant factor.
Dyes of similar chromophoric systems, commonly referred to as rhodamine or xanthene dyes, tend to exhibit fluorescence, an undesirable property. N-alkyla-tion has tended to increase fluorescence. The presence ZS

of a phenolic group, particularly a hydroquinonyl group, unexpectedly has been found to reduce fluorescence, particularly where X' is not hydrogen.
In the above examples the neutralizing and 5 timing layers were positioned between the image-receiving layer and its transparent support. In certain embodiments it is advantageous to position the neutralizing and timing layers in the photosensitive element, i.e., between the cyan dye developer layer and the opaque support, in the 10 manner described in U. S. Patent No. 3,573,043 issued March 30, 1971 to Edwin H. Land.
It will also be understood that the image dye-providing materials of this invention may be used in film structures of the type described in U. S. Patent No.
15 3,594,165 issued July 20, 1971 to Howard G. Rogers.
Since certain changes may be made in the above product and process without departing from the scope of the invention herein involved, it is intended that all matter contained in the above description shall be 20 interpreted as illustrative and not in a limiting sense.

Claims (58)

THE EMBODIMENTS OF THE INVENTION IN WHICH AN EXCLUSIVE
PROPERTY OR PRIVILEGE IS CLAIMED ARE DEFINED AS FOLLOWS:
1. A diffusion transfer color process wherein a photosensi-tive element containing a silver halide emulsion and an image dye-providing material is exposed and developed with an aqueous alkaline processing composition, and an imagewise distribution of a diffusi-ble image dye is formed from said image dye-providing material as a function of said development, and at least a portion of said image-wise distribution of diffusible image dye is transferred to an image-receiving layer in superposed relationship with said silver halide emulsion to provide a diffusion transfer dye image, and wherein said image dye is a magenta dye containing the chromophoric system represented by the formula:

wherein each R is the same or different and is an alkyl group, and each X is the same or different and is hydrogen or an alkyl group.
2. A diffusion transfer color process as defined in claim 1 wherein each R is an alkyl group and each X is an alkyl group.
3. A diffusion transfer color process as defined in claim 1 wherein said image dye-providing material is a compound of the formula:

wherein R is as defined in claim 1,each Y is a diffusion control substituent containing a diffusion control moiety D, X' is hydrogen, alkyl or -(CH2-X2-D)n wherein x2 is a divalent linking group, and n is O or 1, provided that at least one is n.
4. A diffusion transfer color process as defined in claim 3 wherein said image dye-providing material is a magenta dye developer, said diffusion control moiety D being a silver halide developing moiety.
5. A diffusion transfer color process as defined in claim 3 wherein said diffusion control substituent Y is the group -A-D, A
is a covalent bond or a divalent linking group, and each D is a hydroquinonyl group.
6. A diffusion transfer color process as defined in claim 3 wherein said diffusion control moiety D is a color coupling moiety.
7. A diffusion transfer color process as defined in claim 1 wherein said image dye-providing material is diffusible in said aqueous alkaline processing composition.
8. A diffusion transfer color process as defined in claim 1 wherein said image dye-providing material is non-diffusible in said aqueous alkaline processing composition.
9. A diffusion transfer color process as defined in claim 3 wherein said image dye-providing material is non-diffusible and said diffusion control moiety D is a sulfonamido phenol group.

- 60a-
10. A diffusion transfer color process as defined in claim 3 wherein said image dye-providing material is nondiffusible and said diffusion control group is a thiazolidine group.
11. A diffusion transfer color process as defined in claim 4 wherein said photosensitive element comprises a red-sensitive silver halide emulsion associated with a cyan dye developer, a green-sensitive silver halide emulsion associated with said magenta dye developer, and a blue-sensitive silver halide emulsion associated with a yellow dye developer, and said diffusion transfer dye image is a multicolor image.
12. A diffusion transfer color process as defined in claim 3 wherein X` is aralkyl.
13. A diffusion transfer color process as defined in claim 4 wherein said dye developer is:

14. A diffusion transfer color process as defined in claim 4 wherein said dye developer is
15. A diffusion transfer color process as defined in claim 4 wherein say dye developer is:

16. A diffusion transfer color process as defined in claim 4 wherein said dye developer is:

17. A diffusion transfer color process as defined in claim 4 wherein said dye developer is:

18. A diffusion transfer color process as defined in claim 4 wherein said dye developer is:

19. A diffusion transfer color process as defined in claim 4 wherein said dye developer is:

20. A diffusion transfer color process as defined in claim 4 wherein said dye developer is:

21. A photosensitive element comprising a support, a silver halide emulsion in a layer carried by said support, and an image dye-providing material in a layer carried by said support on the same side thereof as said silver halide emulsion, said image dye-providing material containing at least one diffusion control moiety and providing a magenta image dye containing the chromophoric system represented by the formula:

wherein each X is the same or different and is an alkyl group, and each X is the same or different and is hydrogen or an alkyl group.
22. A photosensitive element as defined in claim 21 wherein each R is an alkyl group and each X is an alkyl group.
23. A photosensitive element as defined in claim 21 wherein said image dye-providing material is a compound of the formula:

wherein R is as defined in claim 21 each Y is a diffusion control substituent containing a diffusion control moiety D, X' is hydrogen, alkyl or -(CH2-X2-D)n wherein X2 is a divalent linking group, and n is 0 or 1, provided that at least one n is 1.
24. A photosensitive element as defined in claim 23 wherein said image dye-providing material is a magenta dye developer, said diffusion control moiety D being a silver halide developing moiety.
25. A photosensitive element as defined in claim 23 wherein said diffusion control substituent Y is the group -A-D, wherein A
is a covalent bond or a divalent linking group, and each D is a hydroquinonyl group.
26. A photosensitive element as defined in claim 23 wherein said diffusion control moiety D is a color coupling moiety.
27. A photosensitive element as defined in claim 23 wherein said diffusion control moiety D is a sulfonamidophenol group.
28. A photosensitive element as defined in claim 23 wherein said diffusion control moiety D is a thiazolidine group.
29. A photosensitive element as defined in claim 24 wherein said photosensitive element comprises a red-sensitive silver halide emulsion associated with a cyan dye developer, a green-sensitive silver halide emulsion associated with said magenta dye developer, and a blue-sensitive silver halide emulsion associated with a yellow dye developer.
30. A photosensitive element as defined in claim 23 wherein X' is aralkyl.
31. A photosensitive element as defined in claim 24 wherein said dye developer is:

- 66a -
32. A photosensitive element as defined in claim 24 wherein said dye developer is:

33. A photosensitive element as defined in claim 24 wherein said dye developer is:

34. A photosensitive element as defined in claim 24 wherein said dye developer is:

35. A photosensitive element as defined in claim 24 wherein said dye developer is:

36. A photosensitive element as defined in claim 24 wherein said dye developer is:

37. A photosensitive element as defined in claim 24 wherein said dye developer is:

38. A photosensitive element as defined in claim 24 wherein said dye developer is:

39. A film unit for forming a diffusion transfer color image, said film unit comprising, in combination, a first sheet-like element comprising a photo-sensitive element as defined in Claim 21; a second sheet-like element adapted to be superposed on said photosensitive element during or after photoexposure;
an image-receiving layer positioned in one of said elements; and a rupturable container releasably holding an aqueous alkaline processing composition and so positioned as to be adapted to distribute said processing composition between predetermined layers of said elements.
40. A film unit as defined in Claim 39 wherein said second sheet-like element is transparent and is superposed on said first sheet-like element prior to photoexposure so that photoexposure of said photosensitive element is effected through said second sheet-like element.
41. A film unit as defined in Claim 40 wherein said second sheet-like element comprises said image-receiving layer carried on a transparent support, and said processing composition includes a light-reflecting pigment adapted to provide a white background against which an image formed in said image-receiving layer may be viewed through said transparent support without separating said superposed sheet-like elements.
42. A film unit as defined in Claim 40 wherein the support for said photosensitive element is transparent, said image-receiving layer is positioned in said photosensitive element adjacent said transparent support, and a layer of a light-reflecting pigment is positioned between said image-receiving layer and said silver halide emulsion layer and said image dye-providing material to provide a white background against which an image formed in said image-receiving layer may be viewed through said transparent support.
43. A photographic image containing a magenta image dye, wherein said magenta image dye is a magenta dye containing the chromophoric system represented by the formula wherein each R is the same or different and is an alkyl group, and each X is the same or different and is hydrogen or an alkyl group.
44. A photographic image as defined in claim 43 wherein each R is an alkyl group and each X is an alkyl group.
45. A compound of the formula wherein each R is the same or different and is an alkyl group, each Y is a diffusion control substituent contain-ing a diffusion control moiety D, each X' is the same or different and is hydrogen, alkyl or -(CH2-X2-D)n wherein X is a divalent linking group, and n is O or 1, provided that at least one n is 1.
46. A compound as defined in claim45 wherein X' is not hydrogen.
47. A compound as defined in claim45 wherein said compound is a magenta dye developer, said diffusion control moiety D being a silver halide developing moiety.
48. A compound as defined in claim47 wherein said diffusion control substituent Y is the group -A-D, wherein A is a covalent bond or a divalent linking group, and each D is a hydroquinonyl group.
49. A compound as defined in claim45 wherein said diffusion control moiety D is a color coupling moiety.
50. A compound as defined in claim45 wherein said diffusion control moiety D is a sulfonamido phenol group.
51. A compound as defined in claim45 wherein said diffusion control group is a thiazolidine group.
52. A compound as defined in claim 47 having the formula:

53. A compound as defined in claim 47 having the formula:

54. A compound as defined in claim 47 having the formula:

55. A compound as defined in claim 47 having the formula:

56. A compound as defined in claim 47 having the formula:

57. A compound as defined in claim 47 having the formula:
58. A compound as defined in claim 47 having the formula:

CA000350519A 1979-04-24 1980-04-24 Magenta dye developers Expired CA1142525A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US3288879A 1979-04-24 1979-04-24
US32,888 1979-04-24

Publications (1)

Publication Number Publication Date
CA1142525A true CA1142525A (en) 1983-03-08

Family

ID=21867393

Family Applications (1)

Application Number Title Priority Date Filing Date
CA000350519A Expired CA1142525A (en) 1979-04-24 1980-04-24 Magenta dye developers

Country Status (1)

Country Link
CA (1) CA1142525A (en)

Similar Documents

Publication Publication Date Title
US4345017A (en) Photographic products and processes with a pH sensitive xanthene light screening dye
EP0292618B1 (en) Photographic element incorporating compounds for use in a dye diffusion transfer process
EP0082506B1 (en) Photosensitive element, film unit, photographic process and dyes
EP0149260B1 (en) Compounds for use in a dye diffusion transfer process and photographic elements incorporating them
EP0173361B1 (en) Organic compounds for use in a dye diffusion transfer process and photographic elements incorporating them
US4264701A (en) Magenta dye developers
US4386216A (en) Magenta dye developers
US4304834A (en) Novel xanthene compounds and photographic products and processes employing the same
US4267251A (en) Novel image dye-providing materials, photographic products and processes
EP0109701B1 (en) Diffusion transfer material
EP0027462B1 (en) Photosensitive element, film unit for forming a diffusion transfer color image, photographic image, diffusion transfer color process and compounds therefor
EP0115701B1 (en) Novel xanthene compounds and their photographic use
CA1142525A (en) Magenta dye developers
US4619784A (en) Image dye-providing materials
EP0219892B1 (en) Organic compounds for use in a dye diffusion tansfer process and photographic elements incorporating them
US4598158A (en) Novel image dye-providing materials and photographic products and processes
US3801318A (en) Color diffusion transfer photographic products and processes with sulfur free silver halide solvents
EP0235858B1 (en) Organic compounds for use in a dye diffusion transfer process and photographic elements incorporating them
JPS6239734B2 (en)
EP0284130B1 (en) Organic compounds for use in a dye diffusion transfer process and photographic elements incorporating them
US4429142A (en) Xanthene compounds
EP0149158B1 (en) Novel chrome-complexed compounds and photographic system
US4166741A (en) Yellow azomethine dye developers
US4563412A (en) Black image dye-providing materials and photographic products and processes utilizing same
US4588672A (en) Photographic system with quaternary releaser

Legal Events

Date Code Title Description
MKEX Expiry