CA1142126A - Manure transfer system having a pull pump - Google Patents

Manure transfer system having a pull pump

Info

Publication number
CA1142126A
CA1142126A CA000357529A CA357529A CA1142126A CA 1142126 A CA1142126 A CA 1142126A CA 000357529 A CA000357529 A CA 000357529A CA 357529 A CA357529 A CA 357529A CA 1142126 A CA1142126 A CA 1142126A
Authority
CA
Canada
Prior art keywords
manure
cylinder
piston body
collection hopper
transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
CA000357529A
Other languages
French (fr)
Inventor
Clinton A. Nesseth
Clifford B. Nesseth
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Butler Manufacturing Co
Original Assignee
Butler Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US06/063,592 external-priority patent/US4439115A/en
Application filed by Butler Manufacturing Co filed Critical Butler Manufacturing Co
Application granted granted Critical
Publication of CA1142126A publication Critical patent/CA1142126A/en
Expired legal-status Critical Current

Links

Landscapes

  • Treatment Of Sludge (AREA)
  • Reciprocating Pumps (AREA)

Abstract

Abstract of the Disclosure A manure transfer and storage system (2, 102) includes a manure collection hopper (13) disposed at a first loca-tion for receiving manure. A pull pump is operatively mounted in the collection hopper (13) and includes a movable piston body (30, 130) which is cooperable with a cylinder (27) for pumping manure from the collection hopper (13) into cylinder (27). Cylinder (27) is connected to a manure transfer pipe (25, 26) for transferring manure to the second remote storage location. In the first embodiment, piston body (30) telescopically slides over cylinder (27) in a straight line motion. In another embodiment, the piston body (130) is pivotably mounted in collection hopper (13) for arcuate rotation about a pivot axis (134). Piston body (130) includes an arcuate manure confining surface (136) which engages the cylinder (27) only along a single line (144).

Description

---` ( 114ZlZ6 ``

T~chnical ~i~ld This i~vention relate5 ~enerally to a manure transfer and storage system and to a pump for transfer~ing semi-fluid or free-~lowing material, such as manure or the like, from one location to anothex. More particularl~, this invention relates to a novel and improved manure pumping apparatus for use in a manure handling and storaqe system.
.
Description of the Prior ~rt Transfer apparatuses for transferriny manure have been providéd heretofore, as for example, the manure transfer apparatus shown in U.S. Patent Nos. 3,687,311 and 3,876,341. Such prior art manure transfer and storage systems have generally comprisea a manure collection hopper which is located at any point where it is desired to collect manure. For example, such collection hoppers have often been installed in barns or other animal Pnclo-sures, usually in a su~-surface orientation, for receiving manure throu~h the open top end of the hopper. Generally, a pump cylinder has been attached to the lowest ~oint of the collection hopper extending outwardly therefrom either in a horizontal or a slightly aownwardly inclined angle.
A mechanical type pump is operable in the bottom of the collection hopper and in the pump cylinder for pumping manure from the collection hopper into the pump cylinder, 25 and from the pump cylinder to a manure transfer pipe. I
Generally, the pumps which are installed in the prior art 1, systems have a one-way gate valve at the front end thereof.
This gate valve opens when the pump piston is retracted-to allow a charge of manure to be dispensed down into the pump cylinder and then closes during the power stro~e of the pump piston to dispsense the manure charge down through the cylinder.
While the ahove-noted systems have been effective for pumping manure, various disadvantages are associated therewith. For one thing, the pump cylinder is located at the very bottom of the co~lection h~pper . ~hus, if anything goes wrong on the pump cylinder such that repair is needed, as for example the conventional check valve on the cylinder might have to be replaced, reaching the pump cylinder is an onerous task. It usually means that all of the manure residing in the collection hopper and inside the pump cylinder itself has to be shoveled out before the check valve at the front of the cylinder càn be reached. Not only is this a time-consuming task, but one which is often an extremely unpleasant procedure.
Another problem with the prior art systems is that the mechanical drive for the pump piston is often located necessarily on one side of the collection hopper. m us, the conventional type of push type manure transfer pump is not always able to be installed in all operations or installations because of space limitations. For example, in some barns there is insufficient clearance on that side of the collection hopper where the drive must necessarily be located. Accordingly, usage of the more conventional types of prior art manure transfer pumps are somewhat limited because of the construction of the pumps.
Thus, the prior art transfer pumping apparatuses shown in the above prior art patents operate on the principle of creating transfer pressure by a pushing motion. ~owever, in some instances, it is desirable because of space and area conditions to employ a pulling principle.
Summary of the Invention Thus, in accordance with one aspect of the invention, there is provided a manure transfer and storage system for transferring manure or the like from a first location to a second remote storage location, which comprises:
(a) a manure collection hopper positioned at the first location, wherein the collection hopper includes an open upper end through which manure may be loaded into the collection hopper and a closed ~142~26 - 3a -bottom for ~etain~ng the manure in the collectlon hopper;
(b) a manure transfer pipe having an inlet spaced from said hopper bottom, for transferring manure from the collection hopper to the remote storage location; and (c) a pull pump for pumping manure from the collection hopper into the manure transfer pipe, wherein the pull pump comprises:
(i) an elongated hollow cylinder fixedly disposed at least partially inside the collection hopper, wherein the cylinder includes an open inlet and located inside the collection hopper above the bottom thereof and an outlet end which is operatively connected to the inlet of the manure trans~er pipe, wherein the inlet end of the cylinder includes a valve which is opened by manure being forced into the cylinder and which is closed by the weight of the manure in the cylinder;
(ii) an elongated pump piston having a piston body which cooperatively slidably engages the outer surface of the clyinder for pumping manure from the colle~tion hopper into the cylinder, said body having an exterior surface, wherein the piston body is operatively movable generally between the bottom of the collection hopper and the inlet end of the cylinder, the piston body being movably mounted in the collection hopper for movement in an upward direction towards and in overlying engagement with the cylinder and in a downward direction away from the cylinder, and wherein the piston body has means for loading a charge of manure into the piston body during its downward movement and for dispensing the loaded manure charge into the cylinder during its upward movement such that the manure is lifted ~`

h7~

- 3b -upwardly from the bottom of the collection hopper into the cylinder; and (iii) power means connected to said exterior of the piston body for reciprocating the piston body in its upward and downward movement directions to pump a plurality of manure charges through the cylinder and into the manure transfer pipe, wherein after passing said valve, the manure charges pass unobstructed by said connected power means through said cylinder to said ~anure transfer pipe.
In accordance with another aspect of the invention, there is provided a manure tsansfer and storage system for transferring manure of the like from a first location to a second remote storage location, which comprises:
(a) a manure collection hopper positioned at the first location, wherein the collection hopper includes an open upper end through which manure may be loaded into the collection hopper and a closed bottom for retaining the manure in the collection hopper;
(b) a manure transfer pipe for transferring manure from the collection hopper to the remote storage location; and (c) a pull pump for pumping manure from the collection hopper into the manure transfer pipe, wherein the pull pump comprises:
(i) an elongated hollow cylinder fixedly disposed at least partially inside the collection hopper, wherein the cylinder includes an open inlet end located inside the collection hopper above the bottom thereof and an outlet end which is operatively connected to the manure transfer pipe, wherein the inlet end of the cylinder includes a valve which is opened by manure being forced into the cylinder and which is closed by the weight of the manure in the cylinder;
,~

~ I

- 3c -~ii) an elongated pump piston having a piston body which is cooperable with the cylinder for pumping manure from the collection hopper into the cylinder, wherein the piston body i5 located generally between the bottom of the collection hopper and the inlet end of the cylinder, wherein the piston body is pivota~ly mounted inside the collection hopper for rotation about a substantially horiz~ntal pivot axis, the piston body being movably mounted in the collection hopper for movement in an upwara direction towards the cylinder and a downward direction away from the cylinder, and wherein the piston body includes at least one manure confining surface which retains each manure charge between the surface and the manure collection hopper during its downward movement and for dispensing the loaded manure charge into the cylinder during its upward movement such that the manure is pulled upwardly from the bottom of the collection hopper into the cylinder, and wherein the manure confining surface is arcuate about the pivot axis and is arranged relative to the cylinder such that the manure confining surface engages the cylinder along a single line to minimize sliding friction there-with; and (iii~ power means connected to the piston body for reciprocating the piston body in its upward and downward directions to pump a plurality of manure charges through the cylinder and into the manure transfer pipe.
Accordingly, in view of the foregoing, one aspect of the present invention is to provide a novel and improved manure transfer and storage system having a pump structure which operates on a pull principle and which is adapted - `` " 114ZlZ6 ( ,~

to transex any semi-fl-~id or free-flowin~ matexi~l, such as manure.
Another aspect of the present invention is to provide a pull pump apparatus for use in the system which permits S the transfer of material by gravity into a collection hopper from which it is loaded into the pump during an extension ~}oading stroke of the piston body. The pull pump of the present invention is simple and compact in structure, economical to ~anufacture, and efficient in operation.
The present invention comprises a manure transfer and storage system having a novel and improved pump apparatus for transerring material, such as manure or the like, through a manure transfer pipe system to a storage area c ~ exterior of an animal housing building, or the like. The 15 ~ syste~ comprises a manure collectiDn ~Pit or hopper disposed - benea~h the f~or of the building for receiving manure ~rom -the floor of ~he building. The pump appara~us comprises a ~ cylin~er which~may ~e fi*ealy disposed in the collection ; ~ hopper at any anglé. The cylinder includes an open inlet end located above the bottom o the collection hopper ana an outlet end which is operatively connected to the manure transfer pipe. ~he inlet end of the cylinder includes a valve which is opened by manure being forced into the cylinder and which is closed by the weight o the manure 25 ~ in the cylinder.
An elongated pump piston having a piston body which is cooperable with the cylinder for pumping manure from the collection hopper into the cylinder is also contained in the collection hopper. The piston body is ~ 30~ locatéd generally between the bottom of the collection hopper and the inlet end of the cylinder. The piston body is movably mountea in the collection hopper for movement in an upward dixection towards the cylinder and a downw~rd dir-ection away from the cylinder. The piston body has means 35 for loading a charge of manure into the piston body during ,t the downward movement and for dispensing a manure charge - . I
.~

.

11421~

.
into the cylinder during its upward movement such that the manure is, in e~fect, pulled upwardly ~rom the bottom o the collection hopper into the cylinder. In addition, this - system comprises power means connected to the piston body for reciprocating the piston body in its upward and down-ward directions to pump a plurality of manure charges through the cylinder.and into the transfer pipe.
t least two embodiments of the piston body are dis-closed herein. In the first embodiment, the piston body is~ hollow and has a cross-sectional configuration which is :similar to but slightly laxger than the cross-sectional con~iguration of thè cylinder. In :this embodiment, tl~e piston body is slida~ly and telescopically mounted over the cylinaer such that the pist~n ~body~slides over the 15~ cylinaer ~ in a straight line motion. In the other embo~
: ment, the~piston:body is Ei~ota~ly m~u~ted inside the ~ :: collection h~pper for xotation about a substan~ially hori~
- ~ ~ Z on~al piYot axis. In this embodimen~, the piston boa includes`an arcuate manure confining surface which en~ages
2~ the cylinder only along a single line to minimize sliding , : :
~ friction therewith.
:
RIEF DESCRIPTION OF T~E D~WINGS
~: : : The present invention will be described hereafter in conjunction with the following drawings, wherein like `25 reference numerals will refer to:like:elements throughout.
Fig. 1 is a side~elevational section view of a manure transfer and stoxage system made in accordance with the - px:inciples of the:present:invention, particularly illus- !
trating~a first embodiment of an improved manure pump 30 ~ operating as a pull-type pump;
: ~ Fig. 2 is a fragmentary, enlarged, sectional view of the structure illustrated in Fig. 1, taken along the lines 2-2 thereof, and looking in the direction of the arrows;

~ : !

. ~

` -` ` 114ZlZ6 ( Fi~. 3 is an el~vational vi~w, pa~tly in section, o~ the structure illustrated in Fig. 1, taken alonq the lines 3-3 thereof, and loo~inq in the direction of the arrows;
Fig. 4 is a fragmentary, enlarged, elevational view of the structure illustrated in Fiq. 3, taken alang the lines 4-4 thereof, and looking in the direction of the : arrows;
Fig. 5 is a.fragmentary, elevational section view 10 : of a modified form of a gate valve structure used in ~ :~ the pump of Fig. l; :
: :~ig. 6 is a fragmentary, horizontal section view of .
the structure itlustrated in Fig. 5, taken along the .: ~ lines 6-6 thereof, and loo~ing in the direction of the - ` ~ lS arrows; :
~ ig. 7 is a ~iew similar to ~ig. 5, ana showing the piston gates in an open position;
: Fig. 8 is a fragmentary, elevational section view of the structure illustrated in Fig~ 5, taken along the lines 8-8 thereof, ana looking in the direction of the .
arrows; and Fig. 9 is a side elevational section view of a : manure transfer and storage system made in accordance with the principles of the present invention, particularly illustrating a second embodiment of an improved manure pump operating as a pull-type pump.

DETAILED DESCRIPTION
Referring now to the drawings, and in particular to : Figs. 1 and 3, a manure transfer and s.toraqe system according to thio invention is generally illustrated as 2.

1, 114~ 6 ( The numeral 10 generally designates a fra~mentary portion of a ~arn or other like building or animal enclosure for housing animals. The numeral 11 indicates a ce~ent wall that is formed on the cement floor 12 in the building 10.
S System 2 includes a manure hopper or collection pit, generally indicated by the numeral 13, which has cement wall 12 formed around one end thereof. The manure hopper 13 is shown as being ormed in the ~round below the le~el of the building floor 12 to ease the task of loading manure into hopper 13. However, hopper 13 need not necessarily be located below the level of floor 12. The manure hopper 13 is open on its upper end, and it may be enclosed by any suitable grid (not shown) as of the type shown for such use in co~ering the manure collection pit illustratea in ~.S.
lS Patent ~o. 3,876,341 The manure collection hopper 13 includes a pair of spaced apart side walls 16 and 17 which are vertically disposea ana which converge toward each other. ~s shown in Fig. l, the manure collection hopper 13 fur~her includes a front wall 18 and a rear wall 19. The lower end o~ the manure collection pit is enclosed by the bottom end wall 20 which defines the bottom of collection hoppex 13 The manure collection pit 13 is illustrated as being formed from cement, but it will be understood that it may be made from any suitable material. Fixedly mounted by any suit-able means in the bottom portion 21 of the manure collection `
pit 13 is a triangular housing, generally indicated by the numeral 22, which forms a lining for the hopper 13r System 2 also includes a manure transfer means, operatively mounted in the concrete floor 12, or in the ground beneath floor 12, which includes à first transfer pipe 25 which is connected at its discharge end to an ~' - ( 114Z126 ( enlar~ed trans~er pipe 26. Th~ ~ans~er pipe 25 is adapted to bB connected to a remote manure storage area located at a point exterior of the buildin~ 12. The pipes 25 and 26 are shown as being disposed on a horizontal plane although the pipes could be slightly inclined if necessary in reaching the storage location.
~ ystem 2 fur~her includes a pull pump for pumping manure from hopper 13 into transfer pipe 25. The inlet - ~ end of the transfer pipe 25 is inte~rally connected to the discharge end of an elongated cylinder, generally indicated by the numeral 2?, which forms a portion of the pull pump.
The~cylinder 27 extends downwardl~ into the manure collec-tion hopper 13 at an angle, and in a position spaced apart and parallel to the upwardly angled end wall 24 of the housing member 22. The cylinder 27 is preferably rectan-gular in transverse cross section.
The upper end or outlet end of the;cylinaer 27 is open ` at alI times to the inlet end of the transverse ~ipe 25, The lower end or inlet end of the cylinder 27 is indicated by the numeral 31, and it is adapted to be opened and closed by a flapper valve indicated by the numeral 28.
~The flapper valve 28 is hingedly mounted on one end thereof~by a suitable shaft 29 which is operatively carried on the inner or upper side wall 32 of the cylinder 2?.
The flapper valve 38 closes by gravity, and it is opened by pressure, as described more fully hereina~ter. The solid line position of the flapper valve 28 in Fig. 1 , ~ shows the valve in the open position, and the broken line I ; 2~ ~ position of this valve shows it in the closed position ~s shown in Fig. 3, the flapper valve sha~t 29 is secured to the cylinder wall 32 by an inte~ral hinqe member 32a.
The flapper valve 28 is provided with a pair of integral hinged members 28a which are rotatably mounted on the ends of the shaft 29.

:

, Z6 ~ ~

~ he p~ll pump ~urther includes a pump piston havin~
a piston body generally indicated by the numeral 30.
Piston body 30 i5 telescopingly ana slidably mounted over the cylinder 27, and it is rectangular in cross section to S mate with the rectangularly shaped cylinder 27. The piston body 30 includes an upper end wall 33 which is slidably mounted on the outer or top wall 32 of the cylindex 27.
The piston hoay 30 further includes a lower end wall 34 which is slidably mounted over the lower wall of the cylin- i der 27. As shown in Fig. ~, the piston body 30 further includes a pair of integral side walls 35 and 36 which are slidably mounted over the side walls of the cylinder 27.
~s shown in Fig. 1, the upper or outlet end of the piston body 30 is open, as indicated by the numeral 37. In ~ig.
1, the broken line position of the piston body 30 repre-sents the piston body when it is in its upward position for pulling a load of material into the discharge pipe means 25 and 26. The numeral 37a indicates the outlet end 37 of the piston body 30 when the piston body 30 is 2~ in its upperm~s~ position.
As shown in Figs. 1 ana 4, the lower or inlet end o~
the piston b~dy 30 i5 enclosed by a swingably m~unte~ gate val~e ~2 which is shown in its closed solid line position at a point inwardly and upwardly of the lower open end 38 of the piston body 30. The piston cylindex side walls 35 and 36 are chamfered at their lower rear corners, as indicated by the numeral 39 in Fig. 4. When the piston body 30 is moved d~wnwardly, or to the left, as viewed in Fig. 1, during a piston loading operation, the gate valve 42 is swung by the pressure of the material being forced inwardly into the piston body 30, to the broken line position shown in Fig. 4 and indicated by the numeral 42a.
As shown in Fi~. 3, the gate valve 42 is swingably mounted at its upper end by a suitable pivot shaft 43 which is secuxed ox held in p7ace by a hin~e member 44 .
~ , I

``` ( ii~2~26 that is integrall~ formecl on th~ l~wer end o~ th~ piston top wall 33. Th~ outer ends of the pivot sha~t 43 have pivotally mounted thereon a pair of hinge me~bers 45 which are integrally formed on the outer, upper corners of the - 5 gate valve 42. As shown in Fig. 4, a protective shear bar 46 is mounted across the upper edge oE the lower end o the piston body 30 to protect the gate valve 42 and xestrain its ~uter pivotal movement to the cl~sed solid line position shown in Fig. 4.
As shown in Fig. 3, the piston body 30 is adapted to : - be pulled from a lower filled position to an upper dis-charge position by a pair of elongated connecting rods which each comprise a lower portion 50 a~d an upper portion ~ ~ 51. Each of the connectinq rod lower portions 5~ has its : 15 lower ena-rotatably mounted a journal mem~er 49 w~ich i is fixed to the adjacent piston side wall by any suitable means, as by welaing. The upper end portions 51 of the connecting rods have fixed iournal members 52 which are each rotatably mountea on a shaft 53. The inner end of each of the shafts 53 is operatively carried on the outer end of a crank arm 54. The inner end of each of the crank arms S4 is fixed to a iournal mem~er 55 which is operatively connected:to an output drive shaf~ of a gear reaucer means, genQrally indicated by the numeral 57. ~he gear reaucing 2~- . means 57 is fixedly mounted on a mounting plate 58 which is fixed by any suitable means, as by welding, to a pIate that is carried on a support block 59. A pair of vertically i extended support plates 62 and 63 have their lower ends ~:fixed, as by welding, to the mounting plate 58, and the : 30 gear reducer shafts 56 are operatively extended through 11 ; said support platés~ An electrical drive motor, generally 1.
indicated by the numerai 64, is fixedly mounted, by any suitable means on a mounting plate 65 that is positioned, as by welding, on the upper end Or the vertical plates 62 `-` ( 114Z126 .
and 63. The electrical drive motor 64 is provided with an output shaft 66 on which is fixedly mounted a drive pulley 67. The drive pulley 67 drives a suitable drive belt 68.
As shown in Fig. 1, the drive belt 68 drives a driven pulley 69 which is fixed to a drive shaft 72. The drive shàft 72 is operatively supported on a support ~rm 70 which is attached by suitable machine screws 71 to the . vertical support plate 63. The drive shaft 72 has fixedly mounted thereon a beveled gear 74 which is meshed with and :10 which drives a beveled gear 75 that is fixed on the input -shaft 76 of~the gear reducer 57.
In use, the manure or other material is scraped or pushed into the collection pit or hopper 13 and it then falls by gravity down into the hopper lower end~member 22 thereof to be retained in the bottom of hopper 13. When the electric motor 64 is energized, it operates the gear reducer drive means 57 so as to drive the elongated con-necting rods which in turn move the piston body 30 upwardly and downwardly between the solid line position and the broken line position shown in Fig. 1. Assuming that the piston body 30 is at the upper end of its stroke, it will be seen that the material in the upper end thereof will have been pulled upwardly into the cylinder 27. The material : previously in the cylinder 27 will have been forced to the right, as shown in Fig. 1, into the manure transfer pipe.
means comprising the pipes 25 and 26. The material in the transfer pipe means at the discharge end thereof would then be discharged into a suitable manure storage means.
: The connecting rods then drive the piston body 30 downwardly to the solid line position shown in Fig. 1.
During the downward stroke of the piston body 30, the piston body 30 is pushea into the material in the hopper member 22 so as to open the gate 42 and move it to the broken line position 42a shown in Fig. 4. When the piston body 30 is again moved upwardly L~ the connecting rods, the .

-` ( 114ZlZ6 gate 42 closes and the material in the piston body 30 is pulled upwardly and forced into the cylinder 27 past the check valve 28. As the piston body 30 starts the next - downward stroke, the material in the c~linder 27 moves back to the lower end thereof to close the check valve 28. ~he last described cycles are repeated so as to pull the mater-ial in the collection hopper 13 upwardly into the cylinder - 27, and thence into the manure transfer means comprisin~
~ the pipes 25 and 26.
Figs. 5-8 illustrate a second form of the first ~embodiment of the present invention which is adapted to be mounted vertically. Thhe parts of the embodiment o~ Figs.
5-8 which are the same as the first embodiment of ~igs.
1-4 have been marked with the same reference numerals, followed by the small letter "b".
The second embodiment of Figs. 5-8 is provided with a modified piston gate valve structure which is mechanically closed when the piston body 30b reaches the end of its downward stroke. As shown in Figs. 5, 6 and 7, the piston gate structure in the second embodiment includes a pair of pivotally mounted gate members 79 each of which has its outer end pivotally mounted on a suitable pivot shaft 80 As shown in Fig. 5, the inner ends of the gates 79 abut 1l each other in the closed position, and in a position wherein they are angled upwardly and inwardly toward each other.
As shown in Figs. 6-8, each of the pivot shafts 80 is secured in a hinge member 82 which is integrally formed ~ ~on the piston side walls 35b and 36b. Each of the piston I ~ gate members 79 has a pair of integral hinge mem~bers 81, ~formed on the outer ends thereof, in spaced apart positions and they are rotatably mounted on the ends of the adjacent pivot shaft 80. A stop member 85, with angled side edges, is fixedly mounted on the inner surface of each of the upper and lower piston walls 33b and 34b, and they function as stop members for the gate members 79 when they are in a closed position. As shown in Figs. 6 and 7, each of the , 11~2iZ6 pivot shafts 80 has an opera~ing arm ~3 affixed thereto, whereby when the piston body 30b is lowered into the collec-tion hopper member 22b, the operating arms 83 are each engaged by a bumper block 84 mounted in each of the lower corners of the hopper member 22b. It will be seen that as the piston body 30b continues its downward movement from the position shown in Fig. 7, the bumper members 84 force the operating arms 83 to move the gate members 79 from the open position shown in Fig. 7 to the positively closed position shown in Fig. 5. In use, the second embodiment of Figs. 5-8 functions in the same manner fox pulling material out of a collection hopper upwardly into the manure transfer means as the first embodiment.
The arrangement of the pull pump which has been described herein for use in manure transfer system 2 has various advantages over the push type of pumps used in prior art systems. For one thing, the cylinder 27 extends upwardly relative to collection hopper 13, rather than being secured to the bottom of the hopper and extending horizontally therefrom. Thus, the piston cylinder flapper valve 28 is located at the top of collection hopper 13, or much nearer the top of 13 than in the prior art systems, , to expedite the task of inspecting or replacin~ valve 2 if it should become jammed. In addition, because the outlet end of cylinder 27 is located substantially above the bottom of hopper 13, the transfer pipe means 25 and 26 may also be located much closer to ground level than previously. This shallow pipe installation is advantageous since manual shut off valves are often placed into the transfer pipes extending downwardly from ground level to the pipes. With the transfer pipes being located closer to the ground, it is easier to install and service these types of valves. In addition, the mere fact that the transer pipe is closer to the ground increases the saety ` `` ( 114Z126 ( o installing the sys~em since it lesse~ns the risk o~ a cave-in when installing the tran~fer pipes.
Ano~her advantage occassioned by the pull type pump is that the drive connections are simplified as compared to those of prior art systems. For one thing, the ~onnecting rods 51 are generally much shorter in the pull type of system than in the push type since they no longer have to extend as far down into collection hopper 13. In addition, it has been found by the Applicants that the pull force which is required to pull manure into the cylin-dex 27 is less than the push force needea for the same amount of material. Thus, the connecting rods may be made of a lighter gauge steel, thereby~yielding a less expen-sive system 2. Further re, the drive motor and the rest lS lof the power means for propelling the pull pump is now locate~bet~een the collection hopper and the remote storage location, rather than being located on the other side of~the collection hopper as in the prior art system.
This allows the system to be installed in barns or other installations where spaced limitations had previously prevented the push type system from being installed. ~ore particularly, whenever the barn presents insufficient clearance between the left side of hopper 13 (as viewed in Fig. 1) ana an obstructing wall in the barn, the use of;a pull type system 2 is still possible.
Finally, Applicants have found that the pull type pump exhibits what may be termed a very aggressive action.
Since~;the piston bodies 30 are retracted up out of the bottom o~ collection hopper 13 during the pressure stroke, - .
; manure, even the héaviest forms of manure, tend to fall down into the very bottom of collection hopper where they ~await the extension stroke of piston body 30. Then, during the extension stroke, piston body 30 literally jumps out and grabs anything which is in the bottom of hopper 13. This type of loading action is thought by Applicants to be superior to anything which has yet been pro~uced by a push type of pump. I

. .

Referring now to Fig. 9, another e~hodiment o a manure transfer and storaye system according to this invention has been generally illustrated as 102. Many of the components of system 102 are identical to those described with regard to system 2. For example, the collection hopper 13, the manure transfer means including the manure transfer pipes 25 and 26, the cylinder 27, and the power means ~i`.e., the connecting rods and motor 64) for reciprocating the piston body are generally identical. ~hus, the same re~erence numerals have been used in illustrating these components as were used in Figs. 1-8. The primary difference between the embodiment in Fig. 9 and the embodiments of Figs. 1-8 is in a differ-ent type of piston body which is generally shown as 130.
In Figs. 1-8, piston body 30 disclosed a structure which was reciprocated around cylinder 27 in a straight line, back and forth motion. Piston body 130 as shown in Fig. 9 comprises two transversely spaced side plates 132 having a generally triangular or pie shaped form.
OnIy one side plate 132 is shown in Fig. 9; the other side plate 132 is substantially identically positioned from the plate shown but is simply transversely spacea therefrom. Each of the side plates 132 is rotatably journaled about a substantially horizontal pivot axis ;
134 inside collection hopper 13. Preferably, each side plate 132 is located substantially adjacent to one of the siae walls 16 of hopper 13.
Side plates 132 are integxally joined together along their arcuate bottom edges by a transversely extend-ing manure confining surface 136. Manure confining surface 136 is arcuately arranged about the horiæontal pivot axis 134. In fact, manure confininy surface 136 lies in a circle whose radius is centered on pivot axis 134. Manure confining surface 136 has an inlet end 138 on which a gate valvè 142 is pivotably mounted. Gate valve 14~ is substan-tially identical to gate valve 42 shown in Fig. 1. The " ` 114212~ ( other opposed end 140 of manure confining surf~ce 136 is open to define an outlet end for piston body 130 which is adjacent the inlet ena of cylinder 27.
The connecting rods 150 are connected in any conven-ient manner, as by pivot pins or the like, to the sideplates 132 adjacent the outlet end 140 of manure confining surface 136. Operation of the drive motor 64 causes the piston body 130 to be xeciprocated in upwar~ and downward - - directions gènerally between the solid line position and the dotted line position shown in Fig. 9. In the solid line position, the gate valve 142 is located past the bottom of collection hopper 13 and the outlet end 140 of the manure confining surface and is located immediately adjacent the inlet end of cylinder 27. In the dotted line . ¦
position, the gate valve 142 has been moved through and past the bottom of collection hopper 13 with the outlet end ~40 rotating upwardly past the inlet end of cylinder 27, -- .. As piston body 130 rotates, however, the only point of engagement between the manure confining surface 136 and cylinder 27 is along a single line identified as 144.
The engagement line 144 is substantially coincident with the inlet end of the cylinder.
Piston body 130 in the ~ig. 9 embodiment operates similaxly to piston body 30. During the downward or extension stro~e of the piston body 130, the aate valve 142 will be swung open by the pressu.-e of manure lying in the bottom of the collection hopper 13 to pass inwardly underneath the manure confining surface 136~ Manure will be confined between the surface 136 and the bottom and side walls of collection hopper 13. Then, during the upward stroke of the piston body 130, the gate valve 142 will be closed by the pressure of the manure confined be-neath the manure confining surface 136. Thus, the gate valve 142 is effective to push the loaded char~e of manure ``` ( 114Zi~6 upwardly through valve 28 and into the cylinder 27. A
plurality of distinct charges are separately loaded by piston body 130 into the cylinder 27 with each new charge pushin~ the charges already there into the transfer pipes 25 and 26 to the remote storage location.
The pri~ary advantage of the embodiment shown in Fig. 9 is the fact that the manure confining surface 136 engages cylinder 27 only along a single line. Thus, the sliaing friction between the piston body 130 and cylinder 27 is greatly reduced as compared to the friction present in a telescopic type of piston body (as in piston body 30). This decrease in sliding friction means that a motor :~ : 64 of lesser horsepower could be used to move the same : amount of ~anure. Alternatively, a greater amount of manure could be more speedily loaded given a motor 64 of the same horsepower. Thus, piston body 130 will be more economical to operate. `
. . .... .. . .~hile piston body 1~0 includes at least one arcuate : manure confining surface 136, this surface could have :downwaraly depending side walls in the manner of the side walls of piston body 30. However, piston body 130 should .
not ~ever have a bottom wall similar to the bottom.wall of the piston body 30 because such a wall would not properly clear cylinder 27 during rotation of the piston body 130.
~hus, the particular form of piston body 130 as shown herein is not meant to be limiting.
Various modification of this invention will be . apparent to those skilled in the art. For one thing, collection hopper 13 has been shown herein as being formed ; 30 separately from the remainder of the manure transfer and storage system 2. However, hopper 13 could be integrally formed such that the hopper 13 and the pull pump, com-prising the cylinder 27, piston body 30 and the power means for reciprocating the piston body, could be formed .

'" ~14ZlZ6 ( as a sin~le unit which is manufactured and sold separately and installed as nece~sary. In addition, any power means which is suitable for reciprocating the piston body could : be used. Preferably, the inlet end of cylinder 27 is positioned above the bottom of collection hopper 13 by a difference which is e~ual to the piston body 30 or 130.
~ llowever, this spacing could be varied if desired. Thus, :~ this invention is to be limited only by the appended claims.
.

, ': :
: ': ' :: ` ' ; `
, :: ~ : ' ' ~ ~ I

: ~ " ' :
: ~:: : .:
~: :: , : ::
: ' '' '

Claims (17)

I CLAIM:
1. A manure transfer and storage system for trans-ferring manure or the like from a first location to a second remote storage location, which comprises:
(a) a manure collection hopper positioned at the first location, wherein the collection hopper includes an open upper end through which manure may be loaded into the collection hopper and a closed bottom for retaining the manure in the collection hopper;
(b) a manure transfer pipe having an inlet spaced from said hopper bottom, for transferring manure from the collection hopper to the remote storage location;
and (c) a pull pump for pumping manure from the collection hopper into the manure transfer piep, wherein the pull pump comprises:
(i) an elongated hollow cylinder fixedly disposed at least partially inside the collection hopper, wherein the cylinder includes an open inlet and located inside the collection hopper above the bottom thereof and an outlet end which is opera-tively connected to the inlet of the manure trans-fer pipe, wherein the inlet end of the cylinder includes a valve which is opened by manure being forced into the cylinder and which is closed by the weight of the manure in the cylinder;
(ii) an elongated pump piston having a piston body which cooperatively slidably engages the outer surface of the clyinder for pumping manure from the collection hopper into the cylinder, said body having an exterior surface, wherein the piston body is operatively movable generally between the bottom of the collection hopper and the inlet end of the cylinder, the piston body being movably mounted in the collection hopper for movement in an upward direction towards and in overlying engagement with the cylinder and in a downward direction away from the cylinder, and wherein the piston body has means for loading a charge of manure into the piston body during its downward movement and for dispensing the loaded manure charge into the cylinder during its upward movement such that the manure is lifted upwardly from the bottom of the collection hopper into the cylinder; and (iii) power means connected to said exterior of the piston body for reciprocating the piston body in its upward and downward movement directions to pump a plurality of manure charges through the cylinder and into the manure transfer pipe, wherein after passing said valve, the manure charges pass unobstructed by said connected power means through said cylinder to said manure transfer pipe.
2. A manure transfer and storage system as recited in claim 1, wherein the cylinder extends upwardly inside the collection hopper such that the outlet end is disposed above the inlet end thereof, whereby the outlet end of the manure transfer pipe may be laid closer to ground level than would be the case if the cylinder were horizontal.
3. A manure transfer and storage system as recited in claim 1, wherein the length of movement of the piston body in either the upward or downward movement defines the stroke length of the piston body, and wherein the inlet end of the cylinder is located above the bottom of the collection hopper by a distance which is substantially equal to the stroke length of the piston body.
4. A manure transfer and storage system as recited in claim 1, wherein the piston body is hollow and has a cross-sectional configuration which is similar to but slightly larger than the cross-sectional configuration of the cylinder, and wherein the piston body is slidably and telescopically mounted over the cylinder such that the piston body slides over the cylinder in a straight-line motion as it is recip-rocated by the power means.
5. A manure transfer and storage system for transfer-ring manure or the like from a first location to a second remote storage location, which comprises:
(a) a manure collection hopper positioned at the first location, wherein the collection hopper includes an open upper end through which manure may be loaded into the collection hopper and a closed bottom for retaining the manure in the collection hopper;
(b) a manure transfer pipe for transferring manure from the collection hopper to the remote storage location;
and (c) a pull pump for pumping manure from the collection hopper into the manure transfer pipe, wherein the pull pump comprises:
(i) an elongated hollow cylinder fixedly disposed at least partially inside the collection hopper, wherein the cylinder includes an open inlet end located inside the collection hopper above the bottom thereof and an outlet end which is opera-tively connected to the manure transfer pipe, wherein the inlet end of the cylinder includes a valve which is opened by manure being forced into the cylinder and which is closed by the weight of the manure in the cylinder, (ii) an elongated pump piston having a piston body which is cooperable with the cylinder for pumping manure from the collection hopper into the cylinder, wherein the piston body is located generally - 21a -between the bottom of the collection hopper and the inlet end of the cylinder, wherein the piston body is pivotably mounted inside the collection hopper for rotation about a substantially horizontal pivot axis, the piston body being movably mounted in the collection hopper for movement in an upward direc-tion towards the cylinder and a downward direction away from the cylinder, and wherein the piston body includes at least one manure confining surface which retains each manure charge between the surface and the manure collection hopper during its downward movement and for dispensing the loaded manure charge into the cylinder during its upward movement such that the manure is pulled upwardly from the bottom of the collection hopper into the cylinder, and wherein the manure confining surface is arcuate about the pivot axis and is arranged relative to the cylinder such that the manure confining surface engages the cylinder along a single line to minimize sliding friction therewith;
and (iii) power means connected to the piston body for reciprocating the piston body in its upward and downward directions to pump a plurality of manure charges through the cylinder and into the manure transfer pipe.
6. A manure transfer and storage system as recited in claim 5, wherein the manure confining surface engages the cylinder adjacent the inlet end thereof.

-21b-
7. A manure transfer and storage system as recited in claim 5, wherein the piston body further includes two, transversely spaced side plates mounted to each side of the manure confining surface and extending upwardly therefrom, wherein the side plates are rotatably journaled about the pivot axis such that each side plate is adjacent a side wall of the manure collection hopper.
8. A manure transfer and storage system as recited in claim 5, wherein the piston body has inlet and outlet ends, and wherein the means for loading a charge of manure into the piston body includes a gate valve located at the inlet end of the piston body which gate valve opens during downward movement of the piston body and closes during upward movement of the piston body, and wherein the means for dispensing the loaded manure charge into the cylinder includes an open outlet end of the piston body which is cooperable with the inlet end of the cylinder to direct the manure charge into the cylinder.
9. A manure transfer and storage system as defined in claim 8, wherein the gate valve comprises a one-piece gate member having its upper end hingedly supported on one wall of the piston body.
10. A manure transfer and storage system as defined in claim 8, wherein the gate valve comprises a pair of gate valve members having their outer ends hingedly con-nected to a pair of opposite side walls of the piston body and means for positively closing the pair of gate valve members when the piston body is moved in the upward direc-tion.
11. A manure transfer and storage system as defined in claim 10, wherein the means for positively closing the pair of gate valve members comprises:
(a) an operating arm mounted on each of the gate valve members; and (b) a pair of bumper members mounted on the material collection hopper and engageable by the operating arms for closing the pair of gate valve members when the piston body is moved in the upward direction.
12. A manure transfer and storage system as recited in claim 8, wherein the power means is located on ground level, and wherein the power means includes a connecting rod means connected to the exterior of the piston body substantially adjacent the open outlet end thereof, whereby the connecting rod means is more easily accessible from ground level.
13. A pull pump for use in a manure transfer and storage system for transferring meanure from a first location to a second remote storage location, in which the system includes a manure collection hopper having transversely spaced side walls connected together by a bottom wall, wherein the hopper has an open upper end for loading manure into the hopper and wherein the bottom wall defines a bottom of the hopper for retaining the manure therein, which comprises:
(a) an elongated hollow cylinder fixedly disposed at least partially inside the collection hopper, wherein the cylinder includes an open inlet end located inside the collection hopper above the bottom thereof, and wherein the inlet end of the cylinder includes a valve which is opened by manure being forced into the cylinder and which is closed by the weight of the manure in the cylinder;
(b) an elongated pump piston having a piston body which is cooperable with the cylinder for pumping manure from the bottom of the collection hopper into the cylinder, wherein the piston body is located generally between the bottom of the collection hopper and the inlet end of the cylinder, the piston body being pivotably mounted in the collection hopper for rotation about a substantially horizontal pivot axis for movement in an upward direction towards the cylinder and a downward direction away from the cylin-der, the piston body comprising a substantially arcuate manure confining surface having inlet and outlet ends, wherein the inlet end of the manure confining surface has a gate valve which opens during downward movement of the piston body to load a charge of manure between the manure confining surface and the walls of the collection hopper and which closes during upward movement of the piston body to dispense the loaded manure charge through the inlet end of the cylinder, wherein the outlet end of the confining surface is open and engages the exterior of the cylinder along a single line to minimize sliding friction therewith during movement of the piston body, and (c) power means for reciprocating the piston body in the upward and downward directions to pump a plurality of manure charges through the cylinder.
14. A method for transferring manure from a first location to a second remote storage location, which com-prises:

(a) collecting the manure in the bottom of a manure collection hopper located at the first location;
(b) disposing a manure transfer pipe between the first and second locations with the inlet end of the manure transfer pipe being located above the bottom of the collection hopper; and (c) pulling the manure in the collection hopper upwardly from the bottom thereof into the elevated inlet end of the manure transfer pipe.
15. A manure transfer and storage system as recited in claim 1, wherein the piston body has inlet and outlet ends, and wherein the means for loading a charge of manure into the piston body includes a gate valve located at the inlet end of the piston body which gate valve opens during downward move-ment of the piston body, and closes during upward movement of the piston body, and wherein the means for dispensing the loaded manure charge into the cylinder includes an open outlet end of the piston body which is cooperable with the inlet end of the cylinder to direct the manure charge into the cylinder.
16. A manure transfer and storage system as defined in claim 15, wherein the gate valve comprises a one-piece gate member having its upper end hingedly supported on one wall of the piston body.
17. A manure transfer and storage system as recited in claim 15, wherein the power means is located on ground level, and wherein the power means includes a connecting rod means connected to the exterior of the piston body substantially adjacent the open outlet end thereof, whereby the connecting rod means is more easily accessible from ground level.
CA000357529A 1979-08-03 1980-08-01 Manure transfer system having a pull pump Expired CA1142126A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US63,592 1979-08-03
US06/063,592 US4439115A (en) 1978-07-27 1979-08-03 Manure transfer system having a pull pump

Publications (1)

Publication Number Publication Date
CA1142126A true CA1142126A (en) 1983-03-01

Family

ID=22050224

Family Applications (1)

Application Number Title Priority Date Filing Date
CA000357529A Expired CA1142126A (en) 1979-08-03 1980-08-01 Manure transfer system having a pull pump

Country Status (1)

Country Link
CA (1) CA1142126A (en)

Similar Documents

Publication Publication Date Title
US20240425274A1 (en) Pack through eject panel
CN107142817B (en) A kind of modified pitch production line
US4439115A (en) Manure transfer system having a pull pump
US3995734A (en) Manure transfer apparatus
CA1142126A (en) Manure transfer system having a pull pump
EP2214929B1 (en) Bulk material handling vehicle
US2496192A (en) Automatic vehicle loader
US4177942A (en) Silo discharging means
US2767867A (en) Refuse vehicle loading device
CN2175185Y (en) Machine for automatically and continuously packing cement
US3876341A (en) Twin cylinder pump for manure handling system
JP3248541B2 (en) Storage hopper gate device
CN109484797A (en) More drop point drag conveyors
US2675138A (en) Refuse truck loader
CN211527952U (en) Quick sampling device of concrete mixing unit
US4309141A (en) Refuse-extruder-and-compactor apparatus
CA1073396A (en) Apparatus for handling manure
US4445823A (en) Animal waste pumping system
CN205087608U (en) Resolute feeding device that keeps in of palm
US4293282A (en) Manure handling system having recirculating pump
US4920876A (en) Refuse compactor
CN88101376A (en) Be used to control the device that is installed in the hydraulic jack on the slewing hopper
CA1049967A (en) Apparatus for loading and compressing solid waste in a box-like structure
CN219555939U (en) Clear material feed bin
US5330332A (en) Manure transfer system

Legal Events

Date Code Title Description
MKEX Expiry