CA1129950A - Cast-on method and apparatus for casting parts onto the lugs of lead-acid battery plates stacks - Google Patents

Cast-on method and apparatus for casting parts onto the lugs of lead-acid battery plates stacks

Info

Publication number
CA1129950A
CA1129950A CA327,722A CA327722A CA1129950A CA 1129950 A CA1129950 A CA 1129950A CA 327722 A CA327722 A CA 327722A CA 1129950 A CA1129950 A CA 1129950A
Authority
CA
Canada
Prior art keywords
mold
carriage
base plate
casting
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
CA327,722A
Other languages
French (fr)
Inventor
William J. Eberle
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Battery Corp
Original Assignee
General Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US05/910,944 external-priority patent/US4180120A/en
Application filed by General Battery Corp filed Critical General Battery Corp
Application granted granted Critical
Publication of CA1129950A publication Critical patent/CA1129950A/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

Abstract of the Disclosure A novel "cast-on" method and apparatus are dis-closed wherein in the preferred embodiment only one major moving part is provided which is indexed through various positions to cast a group or element from a battery plate stack engaged thereby. In the preferred embodiment, a mold carriage block having a plurality of molds voids formed therethrough slidingly reciprocates along a base plate on which are defined fluxing (loading), casting and part-release positions. In the casting position, lead gravitationally siphons into the mold voids defined in the mold carriage through molten lead supply orifices defined in the base plate along which the carriage slides. Once the casting operation is completed, sliding the carriage out of the casting position effectively seals the molten lead supply orifices. The apparatus and method are particularly suited for use by a single operator who manual-ly loads stacks into the apparatus and subsequently unloads completed groups or elements from the apparatus.

Description

- ~29~150 CAST-ON METHOD AND APPARATUS FOR
CASTING PARTS ONTO T~IE LUGS OF LEAD-ACID
_ BATTERY PLATES STACKS

Backqround of the Invention It has long been a desire to cast the straps, lugs, and/or posts of lead-acid storage battery groups or elements onto battery stacks. Unfortunately, for various reasons the methods and associated apparatus heretofore available to the art have been complex, quite expensive, and difficult to maintain under production conditions.
Most prior art cast-on machines have been fully automated, and include elaborate mechanisms for vibrating battery stacks to align the plates and separators within those stacks, gripping those stacks, raising those stacks for indexing to subsequent stations such as lug brushing, fluxing, casting, and unloading stations. While such methods have achieved some success, their extreme expense, difficulty of upkeep, and overall complexity have somewhat limited their application in the industry~
For some examples of prior art cast-on mach]nes and methods, please refer to U.S. Patent Nos. 3,229,339;
3,233,5~9; 3,200,450; 3,253,306; 3,294,258 and 3,415,220.
Summar~ of the Invention The present invention provides a novel invention for casting the straps r lugs and/or posts of a battery group or element onto a battery stack.
In its apparatus aspect the invention consists of a cast-on apparatus for casting parts onto lugs of battery stacks, comprising: (a) a base plate having at least one molten lead supply orifice defined therein at a casting ~2~
portion defined therealong: (b) a mold carriage means slidably engaging said base plate and having at least one work station formed therealong with at least one molding void defined through said carriage means at said work station, for selective movement of said work station into a position over said casting portion of said base plate, sa.id position placing said molding void in fluid communication with said orifice, said mold carraige means at said station comprising means for receiving said battery plate stacks for orienting at least a portion of said lugs within at least a portion of said molding void;
(c) metal supply means for selectively supplying molten metal through said orifice to said void for casting said parts.
The invention also provides a method of casting lead parts onto the protruding positive and negative lug rows of a lead-acid battery stack comprising the steps of: (a) providing a base plate having at least one molten lead supply orifice disposed in a top surface thereof; (b) providing a mold carriage block having an undersurface which slidingly engages the top surface of said base plate; (c) fitting at least one mold into a well defined through said mold carriage plate to define a mold cavity through said mold carriage plate; (d) positioning said battery stack so at least a portion of one of the rows of said stack protrudes into at least a portion of said at least one mold cavity; and (e) sliding said mold carriage plate at least between a position wherein said mold cavity is aligned over said at least one orifice to receive molten lead introduced therefrom, and at least one other position wherein portions of said mold carriage block .seals said orifice with respect to the atmosphere.

-~, In the preferred method, the battery stack. is manually grasped, inverted, and the lugs of the stack brought into contact with a flux bath or ~lux saturated sponge in the vicinity of the loading position of t'ne apparatus. The fluxed stacks are then inserted into holders mounted at a work station defined on a reclprocating or rotating mold carriage block such that each of the rows of lugs on the stack extend into appropriately.

- 3a -i~

formed molding cavities defined by mold inserts fitted into wells formed through the mold carriage block. Once loaded, the carriage is caused to move so that the mold cavities will align themselves over lead supply orifices defined in a base plate against which the mold carriage slides. Molten lead then gravitationally siphons into the molding cavities to effect the casting process, after which the mold carriage is again moved to separate the castings from the lead within the orifices so that the plates, which now have straps and lugs cast thereon, may then be released from the apparatus and collected by the machine operator. Preferably, two or more work stations are defined on the mold carriage so that while plates are being loaded at one position on the carriage, other plates at an adjacent position may undergo the unloading casting processes. Additional stations may be added on the mold carriage to further simultaneously effect both casting and unloading, and if desiredj the base plate and mold carriage may be constructed in mating annular configurations to eliminate any need for reciprocal movement of the carriage with respect to the base plate.
In the preferred embodiment apparatus of the present invention a novel molten lead supply means is provided which includes means fGr establishin~ and maintaining a level of lead which serves as the reference level for siphoning lead into molding cavities connected thereto by suppl~v conduits formed in the base plate.
In an alternate embodiment, similar means are provided for supplying mold release agents to the molding cavities ~2~

prior to casting, as will be described more fully herein-after.
Accordingly, a primary object of -the present in-vention is the provision of a simple, low cost "cast-on"
apparatus.
Another object of the present invention is an improved method of casting straps, lugs and/or posts of battery elements onto lead-acid battery plate stacks.
A further object of the present invention is the provision of low cost battery elements or groups made in accordance with the herein described methods and apparatus.
These and other objects of the present invention will become apparent from the following more detailed des-cription.

Brief Description of the Drawings Fig. 1 is an isometric vieW of a preferred embodiment apparatus of the present invention, showing the molding carriage and base plate forshortened, the retaining clips and bridges removed from the molding carriage at the work station located over the casting position and a retain-ing clip removed from the work station located over the loading position, all for purposes of illustration;
Fig. 2 is a cross-section of an alternate embodi-ment apparatus of the present invention for applying mold release coating to the mold cavities prior to casting which illustrates these features of this alternate embodiment which would be visible from a cross~section of that embodi-ment at the position as indicated by the lines and arrows
2-2 in Fig. l;
Fig. 3 is a cross-section of a portion of the pre-ferred embodiment illustrated in Fig. 1, taken as indicated by the lines and arrows 3-3 in Fiy. 1, the lead supply level 5 in the ladle being indicated by a broken horizontal line.
Fig. 4 is a diagramatic top view of a preferred embodiment annular cast-on apparatus of the present inven-tion from which the mold carriage has been removed for illustrative purposes.
Fig. 5 is a diagramatic top view of a mold carriage for use with the embodiment of Fig. 4, the work station details being shown only at work station No. 1.

Detailed Description of the Preferred Embodiment Although specific forms of the invention have 15 been selected for illustration in the drawings, and the following description is drawn in specific terms for the purpose of describing these forms of the invention, this description is not intended to limit the scope of the invention which is defined in the appended claims.

Referring now to the figures, and more particular-ly to Fig. 1, the preferred embodiment apparatus is iso-metrically illustrated and may be seen to comprise a substantially elongate base 12 which may be constructed, for example, from meehanite. The base 12 is supported by a plurality of legs 10 and is adapted to receive and slidingly engage a molding carriage designated generally 18 which tracks therealong. The relative position of the mold carriage 18 with respect to the base 12 is established "

5~

by operation of a reversible hydraulic motor 30 operable by motor switch 31 to cause the mold carriage, through a rack and pinion mechanism, to translate with respect to the base as illustrated by double ended arrow "A" in Fig. 1.
Portions of the rack 33 formed in the mold carriage 18 are visible in the drawings. The meehanite base plate 12 has at least three different portions defined therealong, a first part release or unloading portion designated general~
ly 12a, a casting portion designated generally 12b, and a loading portion designated generally 12c. In the preferred embodiment, the mold carriage designated generally 18 has at least two work stations designated generally 18a and 18b defined thereon. Together the base 12 and mold carriage 18 cooperate so that each of the work stations on the mold carriage may slide into positions over at least one loading, one casting and one parts-release position defined along the base. Additionally, the base and mold carriage cooper-ate so that at least a portion of the mold carriage will at all times be disposed over every casting position de-fined along the base. It is within the scope of the presentinvention, accordingly, as illustrated by the foreshorten-ing in Fig. 1 of both the mold carriage and the base of the preferred embodiment apparatus, to have many loading, cast-ing and parts release stations defined along a single base, and to accordingly, have many work stations defined along a mold carriage which slidingly engages same. While the mold carriage and base shown in Fig. 1 are substantially straight, being adapted for reciprocal movement along a linear a~is A, it is within the scope of the present in-vention to configure the preferred embodiment device so 2~9!5~

that both the base 12 and mold carriage 18 aresubstantially annular members, as diagramatically illustrated in Figs. 4 and 5. In this instance, the mold carriage may completely cover the top surfaces of the base at all times, and instead of reciprocating, stacks which are loaded at one work station of the mold carriage may rotate from over the loading position to over the casting position and then to over the parts-release position where furnished groups may then be removed. The work station may then be returned to over the loading position for loading of the subsequent sets of stacks to be processed. In this manner, the top surfaces of the annular base plate are slidingly engaged and covered by undersurfaces of the mold carriage at substantially all times, thereby ensuring that lead supply orifices which open through the top surface of the base at the casting position will be sealed except when those orifices are aligned for introducing molten lead into the mold cavities defined through the mold carriage.
As shown particularly in Figs. 4 and 5, in this embodiment of the present invention the base and mold carriage are mating annuli. As shown in particular in Fig, 5, the mold carriage may be conveniently defined into a plurality of work stations which are segmented arcs of the mold carriage annulus 181 which correspond to the arcs of the casting, loading and parts-release positions segmented from base annulus 179. In the embodiment shown in Figs. 4 and 5, the mold carriage 181 is conveniently divided into three work stations, each of said work stations being generally oriented over either the casting, parts-release, or loading positions on the base oriented ~r therebelow. Use of an annular base and annular mold carriage, accordingly, makes it possible to index the mold carriage through a predetermined arc of rotation equal to the arcs of symmetrical work stations and processing posi-tions in order to orient the work stations over the appro-priate portion of the base to accomplish the loading, cast-ing or parts-release operations.
Referring again in particular to Fig. 1, the details of preferred embodiment work stations 18a and 18b defined on the mold carriage are illustrated. A plurality of wells or voids are defined through the mold carriage, which wells or voids are configured to mateably receive interchangeable molds 50 which in turn have molding cavities 51 defined therein, the interior surfaces of which define the exterior side surfaces of the parts to be cast. In the preferred embodiment, the mold carriage block 18 and the molds 50 are aluminum, the interior surfaces of the molds being hard surface anodized to impart desirable casting characteristics to the parts cast therein.
Work stations 18a and 18b are each fitted to process three battery stacks at once that is, they are fitted with six molds to cast six parts simultaneously, two for each battery stack to be processed. In order to accommodate the casting of parts, such as posts, which are to protrude at di~erent heights abo~e the battery stacks to be processedr the base 12 and mold carriage 18 are each complementally configured to define interface surfaces at various horizontal elevations, depending upon the "depth" of each part to be cast. Referring in particular to work station 18b, a strap which is to have such a post protruding therefrom is cast through mold 50a. This mold, 50a which is shown in cross-section in Fig. 3, is seen to extend through a substantially greater thickness of mold carriage 18 prior to terminating at an interface with a complementally formed portion of base 12. In this manner, depending upon the configuration of the sealed, sliding inter~ace defined between the carriage and base, parts of varying depths may be readily cast. Since the remaining parts to be cast are to be of a lesser height relative to the top surface of the battery stack, the remaining molds 50 are disposed through a relatively thinner portion of mold carriage to terminate at a portion of the base-carriage interface which is relatively higher than at the post mold 5Oa terminusO In order to accurately align and receive the battery stacks to be processed, bridges 24 e~tend between molds which are used to cast the positive and negative plate straps of a single stack, which bridges 24 protrude generally above the top surface of the mold carriage 18 so that the edges of the plate stack disposed between the lugs will rest against the top sur~ace of the bridge when that stack is inverted ovex the bridge with the positive and negative rows of plate lugs extending into the mold cavities defined by the positive and negative molds~ respectively. These bridges are shown attached to the mold carriage at work station 18a, but these bridges and the retaining clips 22, which will be described hereinafter, have been removed from work station 18b for purposes of better illustrating the inter-relationship of the molds 50 with the mold carriage 18.
In order to receive and retain battery stacks which are inverted and introduced into contact with the top surfaces ; ~ .

~z~

of the bridges 24, retaining clips 22 which are opposingly sprung to grip stacks inserted therebetween are also provided to receive and retain each stack in position throughout the casting process.
The operation of the device may, accordingly, be explained as follows: for the device illustrated in Fig. 1, three plate stacks to be processed will be sequentially dipped into flux contained in flux bath 20 in order to prepare the lugs of those stacks for casting.
The inverted battery stacks are then introduced between retaining clips 22 so that the edges of the plates and separators of those stacks between their rows of protruding lugs will engage the top surfaces of bridges 24, the bridges and molds 50 having been preselected so that those lugs will protrude an appropriate distance into the mold cavities defined therein, which mold cavities have been selected so that the parts cast th~rein will be appropriately configured to produce the desired type of group to be cast during this operation. Once loaded, as for example, at work station 18a, the mold carriage may be shifted ~to the left in Fig. 1) so that these six mold~cavities will communicate with lead supply orifices, one for each part to be cast, appropriately oriented in the base 12 at the molding position 12b so that lead will be introduced through those orifices into the molding cavities to cast the desired parts. These orifices are the terminal portions o~ lead supply conduits 121, which conduits are defined through t~!e body of base 12. These conduits 121, which are branched within the base to supply each orifice, extend and communicate with a molten lead input 123 which is defined in the base at a point preferably substantially below the lowest point of any part which is to be cast.
This input is connected by molten lead supply conduit 125 to a ladle 16 which is constantly charged with a circulating supply of molten lead which is continuously introduced through ladle supply conduit 127 into the ladle at a point substantially below the top surface 129 of the molten lead, which top surface is established by continuously decanting molten lead from the ladle via decantation conduit 131 which extends between the ladle 16 and reservoir 14. Since dross (lead oxides) spontaneously forms when molten lead is exposed to air, but tends to float on the top surface of the lead, this ladle configuration minimizes the chance that lead oxides may be present in that portion of the molten lead which is introduced into the mold cavities. Instead, the dross which might form on the top sur~ace 129 of the lead contained in ladle 16 will be continuously decanted by means of decantation conduit 131 and returned to the main molten lead supply reservoir, 14. Under normal operating conditions, molten lead supply conduit 121 will, o~ course, be continuously charged with molten lead which is maintained at its casting temperature by providin~
appropriate cartridge heaters 157 at strategic places within the meehanite base 12. When the molten lead supply orifices are not aligned with mold cavities in which parts are to be cast, these molten lead supply conduits are ., sealed with respect to the atmosphere by the undersurface of the mold carriage, thereby preventing the formation of "dross". When the molding cavities are allgned over those orifices, and when the level of molten lead in the ladle is at the level 129 (which is automatically established by circulating lead through the ladle 16), lead will naturally siphon into the mold cavities defined within the molds 50 until the level of molten lead within those cavities equals the level of molten lead 129 contained within ladle 16. Since lead is constantly being circulated through the ladle 16 via input conduit 127 and decantation conduit 131, the level 129 of molten lead within the ladle 16 will not drop significantly during this casting process, but rather as the siphoning process takes place, a certain amount of the lead within ladle 16 will flow through conduits 121 into the mold cavitiesO
After an appropriate length of time, the siphoning operation will be complete, whereupon the mold carriage may be again shifted so that the particular work s-tation where casting has taken place need not long be oriented over the orifices of the molten lead supply conduits, and these orifices will be sealed by the undersurfaces of the mold carriage. Further, the shearing action created by movement of the mold carriage with respect to the base will ensure that the lead contained within the orifices or sprues of the molten lead supply conduit will separate from the cast parts, thereby eliminating any subsequent difficulty which might otherwise be encountered by reason of premature solidification of lead within the sprue.
After casting, the work station in which the groups or elements are located is then moved over a parts-release or unloading position 12a defined on the base. In the preferred embodiment, release of the cast parts from the mold cavities is facilitated through the use of plural-ity of cylinders mounted on the undersurface of the base 12, the cylinder rods of which cylinders being journalled within bores 32 and 34 defined in the base 12, so that upon activation of the cylinders these rods will extend above the top surface of the base plate into the mold cavities aligned thereover to cause the separation of the parts cast within those mold cavities from the interior surfaces thereof. In the drawings, ejection cylinder 201 is illustrated with its cylinder rod 203 shown disposed within bore 34 for causing the ejection of the post and strap part which is cast by mold 50a at work station 18b. Since ejection of all parts from the molds at a single work station, or at least for a single group or element, is simultaneous, after release the stack will rise slightly away from the bridge 24 for maintenance in that position by retaining clips 22. These stacks may then be readily grasped by the operator of the device and transferred for use in subsequent assembly operations.
Referring now in particular to Fig. 2, in an alternate embodiment apparatus of the present invention it may be desired to automatically introduce a mold re-lease coating into each o the mold cavities prior to the casting operation. Alternatively, however at -the present time less preferred, other liquid compositions, such as flux, may be introduced into the mold cavities prior to casting. In the embodiment illustrated in Fig. 2, the 5~

flux tray 20 of the embodiment in Fig. 1 has been reposi-tioned elsewhere in order to make room for a mold release coating ladle 800. As with the molten lead supply ladle, the level 801 oE mold release coating may be maintained through the constant circulation of the mold release coating through input conduit 803 and out decantation conduit ~05. Unlike the molten lead supply ladle 16, however, the mold release coating ladle 800 is adapted for vertical movement as shown by arrow B in Fig? 2.
Ladle 800 is accordingly, mounted for reciprocal movement along the vertical axis B shown in Fig. 2 so that once the mold release coating supply orifices of mold release coating conduits 808 are aligned under mold cavities 811, the mold release coating ladle 800 may be raised and then lowered so that the level of mold release coating intro-duced into these cavities will rise and then recede so that only that amount of mold release coating which naturally adheres to the interior sur~aces of the molds 50 will be retained within the mold cavities 11 during subsequent transfer of those cavities into alignment with the molten lead supply orifices.
Referring now in particular to Figs. 4 and 5, which illustrate various portions of the above-mentioned annular alternate preferr~d embodiment of the present invention the substanially annular base 179 is defined into two concentric annular surfaces, 179a and 179b, the interior 179b of which concentric surfaces is disposed substantially lower than the outer surface 179a of the base. In this embodiment, the loading or fluxing position is defined on the base substantially adjacent to flux ~ ~, trays 20 which are mounted against an exterior surface of the base. In this embodiment, each work station is con-figured to receive and process many more plate stacks than in the embodiment shown in Fig. 1 Accordingly, a molten lead reservoir 14 is diagramatically illustrated for continuously circulating lead through each of a plurality of molten lead ladles 16a, 16b, and 16c, each of which ladles is constructed substantially as shown in Figs. 1 and 3. These ladles in turn supply molten lead through inputs and conduits within the base 179 to molten lead supply orifices 717 defined in the base. Together, these molten lead supply conduits, molten lead supply orifices, and the portion of the base in the vicinity of same de-fine a casting position on the base.
The remaining third of the annular base comprises a parts-release position similar to the parts-release position 12a illustrated in Fig. 1. As seen in Fig. 4, a plurality of hores 32 are provided within which are journalled rods of pneumatic cylinders (or a similar actuating assembly disposed under the base), which rods are selectively extendable through the bores to knock out the parts from the mold cavities of a work station aligned thereover.
In Fig. 5, a mold carriage for use with the as-sembly illustrated in Fig. 4 is shown, the mold carriage 181 being defined into a plurality of work stations, one for each position on the base, which work stations have molds, bridges and re~aining clips fitted thereon similar to those illustrated for work stations 18a and 18b in Fig. 1, the details o~ these components being illustrated ~16-, ' 5~

only for work station No, 1. As with the mold carriage 18 illustrated in Fig. 1, the annular mold carriage 181 shown in Fig. 5 is preferably a ring of substantially uniform thickness with the exception of a downwardly pro-jecting, central annular portion of substantially greater thickness, the lower most surface of which mates with annular surface 179b of the base to cooperate therewith to create an interface to facilitate the casting of parts of substantially greater ~Idepths~. This embodiment operates in a manner similar to that described in connec-tion with the embodiment of Figs. 1 and 3, except that each work station may be indexed by rotating the annular mold carriage through a predetermined arc of rotation, as for example, 120 per indexing movement, so that each work station will be oriented sequentially over the loading position, casting position and parts-release or unloading position of the base~
As shown in the drawings, the mold cavities and molten lead supply orifices defined in the base which are intended to supply the same are shown axially aligned with respect to the axis or arc of movement of the mold carriage over the base. Accordingly, for the embodiment shown, depending upon the speed of movement of the mold carriage and the inertial characteristics of the siphon-ing action of lead into mold cavities temporarily disposed over molten lead supply orifices, it may be advantageous to slightly offset each mold cavity with respect to other mold cavities disposed at the same work station so that upon movement of that mold cavity into its casting posi-tion, it will not pass over any other molten lead supply ,, , 5~

orifice, thereby eliminating any possibility that small amounts of lead could be introduced into the cavity during the indexing procedure.
From the above description it will be seen that an extremely simple machine is provided having a single major moving part which may cast a wide variety of sizes of battery stacks and with a wide variety of strap and lug configurations. Additionally, it will be seen that the present invention provides a novel method of casting molten lead in such a manner that the lead which is actually introduced into the molding voids is gravitation-ally siphoned up into those voids from a constantly circu-lating source of molten lead, within which source or ladle the formation of dross is minimized. Unlike prior art devices, the device of the present invention is unusually simple and inexpensiVe, making it particularly suited for use in producing custom or speciality groups or elements.
It will be understood that various changes in the details, materiaIs and arrangement of parts which have been herein described and illustrated in order to explain the nature of this invention may be made by those skilled in the art within the principle and scope of the invention as expressed in the following claims.

, ''

Claims (37)

The embodiments of the invention in which an exclusive property or privilege is claimed are defined as follows:
1. A cast-on apparatus for casting parts onto lugs of battery stacks, comprising:
(a) a base plate having at least one molten lead supply orifice defined therein at a casting portion defined therealong;
(b) a mold carriage means slidably engaging said base plate and having at least one work station formed therealong with at least one molding void defined through said carriage means at said work station, for selective movement of said work station into a position over said casting portion of said base plate, said position placing said molding void in fluid communication with said orifice, said mold carraige means at said station comprising means for receiving said battery plate stacks for orienting at least a portion of said lugs within at least a portion of said molding void;
(c) metal supply means for selectively supplying molten metal through said orifice to said void for casting said parts.
2. The invention of claim 1, wherein said metal supply means comprises at least one molten metal supply conduit defined through said base plate and terminating in said orifice.
3. The invention of claim 2, wherein said metal supply means further comprises heating means engaging said base plate for heating said base plate at least in the vicinity of said molten metal supply conduit.
4. The invention of claim 1, wherein said base plate further has at least one loading position defined therealong and wherein said carriage is slidably mounted on said base plate for movement of said work station between said position over said casting position and a position over said loading position wherein portions of said mold carriage means seal said orifices with respect to the atmosphere.
5. The invention of claim 4, wherein said apparatus further comprises mold release coating supply means comprising at least one mold release coating supply conduit defined in said base at said loading position and, terminating in at least one mold release coating orifice located in said base plate for communicating with said mold void at least when said station is in said position over said loading position.
6. The invention of claim 5, wherein said mold release coating supply means further comprises mold release coating ladle means for supplying mold treating fluids to said mold release coating conduit.
7. The invention of claim 1, wherein said base plate has a parts-release position defined therealong, and wherein said station is movable between at least said position over said molding position and a position over said parts-release position.
8. The invention of claim 6, wherein said mold release coating ladle means comprises means for establishing and maintaining a preselected level of mold treating fluid within said ladle means.
9. The invention of claim 4, wherein said carriage means further comprises means for continuously sealing said orifice in said casting portion of said base plate with respect to the atmosphere except when said at least one work station defined in said carriage means is in said position over said casting position.
10. The invention of claim 8, wherein said mold release coating ladle means comprises means for varying the relative level of said mold treating fluid with respect to said mold void when said station is in said position over said loading position.
11. The invention of claim 9, wherein said molten metal supply means further comprises a molten metal ladle means disposed adjacent to said base plate for supplying molten metal to said molten metal supply conduit.
12. The invention of claim 11, wherein said molten metal ladle means comprises means for establishing and means for maintaining a preselected metal level in said ladle means.
13. The invention of claim 12, wherein said ladle means comprises molten lead input means for continuously communicating with said conduits.
14. The invention of claim 13, wherein said ladle means comprises means for maintaining said level at about the level of the highest surface of parts to be cast in said molding voids, whereby molten metal may gravitationally siphon into said molds to cast said parts when said station is aligned over said casting position.
15. The invention of claim 7, wherein said carriage means further comprises means for continuously sealing said orifice in said casting portion of said base plate except when said at least one station is in said position over said casting portion.
16. The invention of claim 15, wherein said molten metal supply means further comprises a molten metal ladle means disposed adjacent to said base plate for supplying molten metal to said molten metal supply conduit.
17. The invention of claim 16, wherein said metal ladle means comprises means for establishing and means for maintaining a preselected metal level in said reservoir.
18. The invention of claim 15, wherein said ladle means comprises molten lead input means for continuously communicating with said conduit.
19. The invention of claim 18, wherein said ladle means further comprises means for maintaining said level at about the level of the highest surface of parts to be cast in said molding voids, whereby molten metal may gravitationally siphon into said molds to cast said parts when said station is aligned over said casting position.
20. The invention of claim 1, wherein a plurality of said stations are defined along said carriage means.
21. The invention of claim 7, wherein said apparatus further comprises parts-release means associated with said base at said parts-release position for selectively separating a part cast within said molding void from said molding void.
22. The invention of claim 21, wherein said parts-release means comprises at least one parts-release plunger journalled within at least one bore defined in said base plate, said plunger being disposed adjacent to a molding void for extension into said molding void when said station is in said position over said parts-release position.
23. The invention of claim 22, wherein said parts-release means further comprises plunger actuator means for selectively extending said plunger into its adjacent molding void, whereby a part within said molding void will be dislodged therefrom.
24. The invention of claim 1, wherein said base plate and said carriage means are mating annular members.
25. The invention of claim 24, wherein said base plate and said carriage means are slidingly rotatable with respect to each other.
26. The invention of claim 1, wherein said mold carriage means comprises at least one well defined therethrough at said work station for receiving and retaining any one of a variety of preselected interchangeable molds, said any one of said molds defining a selectively configured one of said mold void, said mold void being complementally configured to the part to be cast therein.
27. The invention of claim 1, wherein said means for receiving said battery stacks comprises spring clips for engaging battery stacks introduced therebetween.
28. The invention of claim 1, wherein said means for orienting said stacks comprises at least one bridge protruding away from said carriage means for engaging portions of the edge of the battery plate stack on which said parts are to be cast.
29. The invention of claim 1, wherein said apparatus comprises means for sliding said carriage means with respect to said base plate into any of a plurality of preselected positions therealong.
30. The invention of claim 12, wherein said means for establishing said level further comprises means for continuously introducing molten metal into said ladle at a point below said level, and wherein said means for maintaining said level further comprises decantation means for continuously decanting metal at said level from said metal reservoir to maintain said level.
31. The invention of claim 8, wherein said means for establishing said level of mold treating fluid further comprises means for continuously introducing said fluid into said ladle and wherein said means for maintaining said level further comprises overflow means for decantinq fluid from said ladle to maintain said preselected level.
32. The invention of claim 1, wherein said base plate and said mold carriage means define an interface surface, said interface surface having portions disposed at a plurality of relative elevations corresponding to the depth of parts to be cast in mold voids oriented for casting over said portions.
33. A method of casting lead parts onto the protruding positive and negative lug rows of a lead-acid battery stack comprising the steps of:
(a) providing a base plate having at least one molten lead supply orifice disposed in a top surface thereof;
(b) providing a mold carriage block having an undersurface which slidingly engages the top surface of said base plate;
(c) fitting at least one mold into a well defined through said mold carriage plate to define a mold cavity through said mold carriage plate;
(d) positioning said battery stack so at least a portion of one of the rows of said stack protrudes into at least a portion of said at least one mold cavity; and (e) sliding said mold carriage plate at least between a position wherein said mold cavity is aligned over said at least one orifice to receive molten lead introduced therefrom, and at least one other position wherein portions of said mold carriage block seals said orifice with respect to the atmosphere.
34. The invention of claim 33, wherein said step (e) further comprises the sealing of said orifice except when said mold cavity is aligned over said at least one orifice.
35. The invention of claim 34, wherein molten metal is continuously supplied to said orifice from a reservoir having a level which is established and maintained at the level of the top surface of the highest part to be cast.
36. The invention of claim 35, wherein said base plate is provided having portions of the top surface thereof disposed at differing elevations, at least two of said portions each having lead supply orifices disposed therein, and wherein said mold carriage block is provided having a plurality of wells defined therethrough spaced in said mold carriage block for selective alignment over said orifices to receive molten lead introduced therefrom.
37. The invention of claim 36, wherein said orifices and said wells are spaced apart by approximately the distance between said positive and negative lug rows of said lead-acid battery stack, and wherein the step of positioning said battery stack further comprises the step of positioning each of the rows of said stack to protrude into at least a portion of each of said mold cavities defined by said wells.
CA327,722A 1978-05-30 1979-05-16 Cast-on method and apparatus for casting parts onto the lugs of lead-acid battery plates stacks Expired CA1129950A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US05/910,944 US4180120A (en) 1973-09-10 1978-05-30 Cast-on method and apparatus for casting parts onto the lugs of lead-acid battery plates stacks
US910,944 1978-05-30

Publications (1)

Publication Number Publication Date
CA1129950A true CA1129950A (en) 1982-08-17

Family

ID=25429541

Family Applications (1)

Application Number Title Priority Date Filing Date
CA327,722A Expired CA1129950A (en) 1978-05-30 1979-05-16 Cast-on method and apparatus for casting parts onto the lugs of lead-acid battery plates stacks

Country Status (2)

Country Link
JP (1) JPS5510392A (en)
CA (1) CA1129950A (en)

Also Published As

Publication number Publication date
JPS5510392A (en) 1980-01-24

Similar Documents

Publication Publication Date Title
US4266597A (en) Cast-on method and apparatus for casting parts onto the lugs of lead-acid battery plates stacks
CN209843878U (en) Automatic groove-entering multi-station transfer equipment for storage batteries and continuous cast-weld production line
GB1005313A (en)
US4180120A (en) Cast-on method and apparatus for casting parts onto the lugs of lead-acid battery plates stacks
CA1129950A (en) Cast-on method and apparatus for casting parts onto the lugs of lead-acid battery plates stacks
US5505744A (en) Method and apparatus for casting straps and terminals on lugs of storage battery plates
DE10210259A1 (en) Casting device with a mold positioning device
US4241780A (en) Apparatus for forming battery straps and intercell connections
EP3294477A1 (en) Method for casting metal, adapter unit and device for casting metal comprising such an adapter unit
CA1078903A (en) Apparatus for the electroslag remelting of metal
CA1116827A (en) Rollover closer
DE2428263B2 (en) Casting device and method for its operation
ES2012802B3 (en) METHOD AND APPARATUS TO MELT.
CA1039015A (en) Means for securing and removing molds from compacting apparatus
DE60114795T2 (en) DEVICE AND METHOD FOR HEAT TREATMENT IN A CASTING METHOD
US4673022A (en) Arrangement for the changing of implements in foundry machines
US4546812A (en) Method and apparatus for improving the densities of cast parts
US3616845A (en) Casting station for battery fabricating machine
JPH0429463B2 (en)
US4172488A (en) Flaskless molding line for chemically bonded sand molds
CN112606283A (en) Sealing washer curing equipment for high-speed railway
US4230241A (en) Ladle for delivering a plurality of aliquots of molten metal
CN214867232U (en) Full-automatic steel ladle transfer platform of continuous casting machine
CN218857533U (en) Automatic feeding and discharging system of vertical injection molding machine
WO1991012104A1 (en) Vertical pour casting process

Legal Events

Date Code Title Description
MKEX Expiry