CA1125380A - Microwave heating apparatus with a thermally insulated tunnel - Google Patents

Microwave heating apparatus with a thermally insulated tunnel

Info

Publication number
CA1125380A
CA1125380A CA335,069A CA335069A CA1125380A CA 1125380 A CA1125380 A CA 1125380A CA 335069 A CA335069 A CA 335069A CA 1125380 A CA1125380 A CA 1125380A
Authority
CA
Canada
Prior art keywords
enclosure
tunnel
microwave energy
hot air
microwave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
CA335,069A
Other languages
French (fr)
Inventor
Richard H. Edgar
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Raytheon Co
Original Assignee
Raytheon Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Raytheon Co filed Critical Raytheon Co
Application granted granted Critical
Publication of CA1125380A publication Critical patent/CA1125380A/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/78Arrangements for continuous movement of material

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Constitution Of High-Frequency Heating (AREA)

Abstract

ABSTRACT OF THE DISCLOSURE
A microwave heating apparatus wherein thermal insulation material positioned inside the enclosure defines the processing cavity. The temper-ature in the cavity may be raised by, for example, hot air directed into it so that product may be processed by the combination of microwave energy and hot air. For particular applications, the hot air substantially compensates for product surface radiation, thereby providing a more uniform product tem-perature profile.

Description

Cross-Reference to Related Applications Canadian Application Serial No. 994,597 by Wesley W. Teich et al. and assigned to the same assignee hereof filed July 4, 1967.
Background of the Invention For many years, microwave energy has been used for domestic cook-ing and processing oE materials in industry. The advantages of heating with microwave energy have been well documented, One sucll advantage has been that less insulation is generally required around the heating cavity because the rise in temperature in a microwave cavity is substantially caused only by air cooling the magnetron and radiation from the heating bocly. For ex-ample, typical temperatures in a domestic microwave cooking oven range from 100 to 150 F. Even in industrial microwave applications, interior cavity temperatures, which are a function of the application, are frequently below 150 F. With conventional domestic ovens utilizing gas or electric power, cooking temperatures commonly range from 200 to 500 F with higher temper-atures for broiling. - ;
For some industrial microwave processing applications, it has been found to be desirable to provide a hot air blanket around the surfaces of the processing material. For example, in a conveyorized microwave sys-tem for vulcanizing rubber, a surface temperature in the range from approx-imately 170 to 500 F is important to compensate for the surface heat lost by radiation. The hot air blanket helps provide for uniform curing through -the rubber profile.

- 1 - ~k ,f ~ ~

Accordingly, the apparatus should provide both microwave heating and hot air in the processing cavity. Including both of these heating means in a single cavity without violating any of the basic disciplines associated with each technology has resulted in excessive apparatus cost.
Present methods commonly utilize an inner conductive enclosure to contain the microwave energy surrounded by layers o~ a standard glass insulation and a protective outer casing.

3~

Summary of the Invention The invention discloses a conductive enclosure energized with microwave energy and having thermally insulated material supported adjacent to an inside wall thermally insulating the interior therein defined from said wall. The term microwave is defined to be electromagnetic wave energy having a free space wavelength in the range from one millimeter to one meter. The electrically conductive enclosure functions to contain the microwave energy in a region where a body is to be processed. Preferably, the insulating material is substantially transparent to microwave energy and exhibits low loss propagation properties for microwave energy.
More specifically, the insulating material may comprise refractory firebrick or glass foam.
The invention herein defined has particul~ar advantage in microwave processing systems which include an auxiliary means for raising the temperature such as directing hot air into the cavity. It may also be preferable that the
2~0 thermally 1nsulating material define a tunnel cavity within the conductive enclosure through which a movable means such as a conveyor belt carries product to be processed by the combination of mlcrowave heating and hot air.

~l~Z~

In accordance with the present invention, there is provided in combination: a conductive enclosure energized with microwave energy, said enclosure having entrance and exit openings; thermally insulating material defining a tunnel from said entrance opening to said exit opening, said material being substantially transparent to microwave energy; said material being spaced from the walls of said enclosure wherein said tunnel within said enclosure has a volume substantially less than said enclosure; means movable through said tunnel for transporting bodies; means for directing heated air under pressure into said tunnel at a first region of said tunnel;
and means for exhausting said heated air from a second region of said tunnel.

- 3a -.. ... ..
3~

Brief Description of the Drawings The foregoing and other objects and advantages will be understood more fully in the following detailed description thereof with reference to the accompanying drawings wherein:
Figure 1 is a partially sectioned side elevation showing the oven, hollow structures at both ends of it, and means to move the product through the processing region;
Figure 2 is a sectioned isometric view showing a portion of the input hollow structure, coupling means for coupling hot air into said hollow structure, and the oven;
Figure 3 is an end elevation view of the enclosure and hollow structure taken along line 3-3 of Figure 2; and Figure 4 is a front sectioned view of a batch oven.

3~313 Description of the Preferred Embodiment Referring to Figure 1 there is shown a microwave heating apparatus 10 comprising an oven section 12 where the processing is performed, hollow structures 14 at both ends of the oven to prevent the leakage of microwave energ~, and a means 16 for moving product through the oven.
The oven section has an enclosure 18 fabricated of a conductive material such as aluminum to contain the microwave energy in the processing region. Although microwave energy may be introduced into the enclosure by any means, it is preferable to use a plurality of microwave energy feed structures 20 each comprising a flat member 22 having slots 23 therein and a dish 2~. In the preferred embodiment, eight feed structùres are mounted on the upper wall 26 and floor 28 of the enclosure. Each feed structure is crimped to the enclosure surface to prevent the leakage of microwave energy from the enclosure.
Although microwave energy may be coupled into each feed structure by any means, it is preferable to bolt a magnetron 30 on the exterior of the enclosure adjacent to each feed structure and insert the radiating probe 32 of each magnetron through a hole (not shown) in the enclosure wall directly into each respective feed structure.
The dish in combination with the flat member provides a waveguide type structure to transmit the microwave energy from the center axis of the feed structure out to the slots from which the energy is radiated into the enclosure.
It is preferable that a feed structure transmits energy as a directive antenna rather than merely provide a coupling 3~(3 device to set up standing waves within the enclosure.
More specifically, it is pre~erable that a substantial part of the transmitted energy is radiated to the region of the enclosure through which the product 34 moves without reflecting from the walls of the enclosure.
This directivity in combination with a selective rotational orientation scheme for the feed structures results in heating uniformity within the product without the expense and maintenance of a mode stirring device. Furthermore, a selective feed structure rotational scheme in combination with supplying adjacent magnetrons with different AC phases of a three~phase source substantially prevents locking of adjacent magnetrons.
The magnetrons are a conventional type known in the art and preferably oscillate at 2450 megacycles. An air intake port 36, exhaust port 38, and ducts (not shown) are provided for circulating air past the magnetrons and respective power supplies for cooling.
Further, referring to Figures 1, 2 and 3, air is directed from a blower 40 through a heater 42 where electric coils (not shown) selectively ralse the temperature of the ambient air to the range from 170 F to 500 F.~ Experience has shown that for the application of vulcanlzing extrusions, it is preferable that the blower operate in the range from 40 to 50 cubic feet per minute. A coupling structure 44 directs the flow of hot air from the heater to a conductive plate 46 in the hollow structure at the input end of the enclosure. The plate is provided with a plurality of holes 48 to permit the passage of the hot air into the hollow structure.
Other features of the plate are described hereinafter , ., . .. : ., ~2~3Z! 3~

with regard to the hollow structures and their use in the suppression of leakage of microwave energy from the enclosure. An identical conductive plate 48 is pro-vided in the hollow structure at the opposite end of the enclosure where the product exits the enclosure. An exhaust structure 50 i5 provided at the exterior side of this second mentioned plate to provide an enclosed air path to an exhaust blower (not shown). The exhaust blower functions to create an air pressure in the enclosure which is less than atmospheric so that a substantial percentage of the hot air blown in at the input to the enclosure is drawn into the enclosure rather than escaping down the hollow structure where the product is input. Preferably, means are provided at the output of the exhaust blower to remove the hot air ~ith effluence from the operation area.
While the hot air is within the enclosure, it is sub-stantially coniined in a tunnel cavity S1 between the lnput access opening 52 and the output access opening 54. The tunnel, through the conveyor system transports product, is defined by a top, bottom, and two sides of thermal insulation material 56. As can be seen in Figures 1, 2 and 3, the microwave energy is introduced into the con~
ductive enclosure external to the cavity defined by the thermal insulation so that it is preferable that the thermal insulation material be substantially transparent to microwave energy. That isl it is preferable that the thermal insulation material exhibit low loss propagation properties for microwave energy. The preferred embodiment uses a low density refractory firebrick 2300 F material o substantially comprised of silica to accomplish the desirable low loss property. An example of another preferable insulation material is foam glass with low loss cons-tituents. The pre~erable thickness of the insulation material is a function of the operating temperature in the cavity and the insulation property of the material. In the app~ication of vulcanizing rubber extrusions, the product reaches its vulcanizing temperature in the proximity of the exhaust plate so that a substantial part of the effluence that are given off are exhausted from the processing region without substantial contact with the insulation walls. ~owever, it may be preferable to glaze the inner walls of the insulation so as to make easier the process of periodically cleaning the inner walls.
The thermal insulation may be supported within the enclosure by any one of a number of methods. For example, a platform 58 of a sturdy, low loss material, such as a ceramic, may be supported by brackets (not shown) on the walls of the enclosure and the tunnel of thermal insulation material constructed on top of the platform. Alternatively if the insulation material is rigid enough, it may be supported directly by brackets affixed to the sides of the enclosures. Firebricks may be interconnected by a plurality of means such as, for example, high temperature resistive, low loss cement. The firebricks may also be shaped together or bonded with ties.
For many microwave heating applications such as, for example, vulcanizing rubber extrusions, it is preferable that the extrusions are bathed in a blanket of hot air to '' . ' ~

compensate for surface radiation of the thermal energy induced by microwave heating. The hot air aides in providing a uniform temperature profile through the extrusion so that proper vulcanizing is accomplished. The apparatus hereto-fore described provides this desirable combination of microwave heating and hot air. The thermal insulation positioned inside the conductive enclosure provides for energy efficiency by reducing the volume to be heated so that a smaller heater may be used and also, by substan-tially reducing the amount of heat loss from the apparatus.
Furthermore, the construction of the apparatus and the coupling of microwave energy into the enclosure are less complex and hence less expensive than the conventional method of insulating the outside of the conductive enclo-sure.
Referring to Figures 2 and 3, the input hollow structure is shown in detail. In addition to providing a hot air entrance to the enclosure, the hollow structure provides leakage suppression of microwave energy from the apparatus.
To increase power efficiency, it is preferable to use a reactive type seal that will reflect rather than absorb microwave energy. In the preferred embodiment, the-reactive seal is comprised of a plurality of one-quarter wavelength long cylindrical posts 60 that ex~tend inward from the inner walls and plate 46 of the hollow structure and are arranged in rows to form a "waffle-iron" type pattern. Similar to guide stubs in microwave waveguides, which have been well documented for years, the posts present an equivalent to a series opened circuit for microwave energy propagating down the hollow structure at a particular frequency. In i313~

the preferred embodiment, the gap between the ends of the top and bottom posts is approximately two inches.
For this embodiment, it has been found that these described reactive seals reduce the leakage of microwave energy to a level that substantially all leakage may be eliminated by using auxiliary absorbing seals 62 that don't require heat removing means such as water circulation.
In operation, the product is placed on a conveyor belt 64 at location fi6. The belt is fabricated of low O loss fiber glass and is teflon lined to reduce the coeffi-cient of friction of the belt and the surfaces over which it slides. A teflon lining may be placed over the absorbing material in the hollow structures and the thermal insulation material in the conductive enclQsure to further reduce friction. A DC motor 68 at the exit end of the apparatus provides a drive for the conveyor belt. The upper ends of the bottom posts are approximately one-eighth inch below the tensioned path of the conveyor belt to prevent wearing.
As can be seen in Figures 1, 2 and 3, the belt transporting the product passes over the hot air entering the input hollow structure. ~his preheating of the belt sùbstantially eliminates it as a heat sink for heat induced in the product by microwave energy during processing. Experience has shown that when the belt is not preheated, the vulcanized rubber may have a tacky region in close proximity to the surface area in contact with the belt After the product is transported through the input structure, the tunnel cavity defined by the insulation material where it is processed by microwave energy and hot air, and the output hollow structure, it is removed at location * ~ra~Je /~r~ --1 O~

8(~

70. The parameters of the processing are controlled by the control panel 71.
Referring to Figure 4 an alternative embodiment of the invention is shown that can be applied to domestic or industrial batch ovens. Similar to the features described above with reference ~o the preferred embodi-ment, a blower forces air across electrical heating coils 72 into a cavity 74 defined by thermal insulation material. The cavity is encased within a conductive enclosure having an exhaust port 78 for removing hot air and effluence from the cavity. A means (not shown) may be provided for cycling the exhausted air back around to the input blower for energy efficiency; preferably such means would also substantially remove the effluence from the hot air. External to the cavity defined by thermal insulation but internal to the conductive enclosure are feed structures from which microwave energy is radiated into the enclosure. It is preferable that magnetrons are coupled into the feed structures as described heretofore.
In operation, the product is preferably processed by the combination of microwave heating and hot air by placing it on a support 76 in the cavlty through an access means (not shown) such as a door. As previously described, ; it is preferable that the thermal insulation material is low loss.
The reading of this disclosure by those skilled in the art will lead to various modifications and alterations with-out departing from the spirit and scope of the invention as defined in the appended claims. It is intended, therefore, that the embodiments shown and described herein be considered o as exemplary only and that the scope of the invention be limited only by the appended claims.

~, , , - . :, .

Claims (4)

THE EMBODIMENTS OF THE INVENTION IN WHICH AN EXCLUSIVE
PROPERTY OR PRIVILEGE IS CLAIMED ARE DEFINED AS FOLLOWS:
1. In combination:
a conductive enclosure energized with microwave energy, said enclosure having entrance and exit openings;
thermally insulating material defining a tunnel from said entrance opening to said exit opening, said material being substantially transparent to microwave energy;
said material being spaced from the walls of said enclosure wherein said tunnel within said enclosure has a volume substantially less. than said enclosure;
means movable through said tunnel for transporting bodies;
means for directing heated air under pressure into said tunnel at a first region of said tunnel; and means for exhausting said heated air from a second region of said tunnel.
2. The combination in accordance with Claim 1 wherein said insulating material comprises firebrick.
3. The combination in accordance with Claim 1 wherein said first region is outside said enclosure adjacent to said entrance opening.
4. The combination in accordance with Claim 1 wherein said second region is outside said enclosure adjacent to said exit opening.
CA335,069A 1978-10-06 1979-09-05 Microwave heating apparatus with a thermally insulated tunnel Expired CA1125380A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US94929478A 1978-10-06 1978-10-06
US949,294 1978-10-06

Publications (1)

Publication Number Publication Date
CA1125380A true CA1125380A (en) 1982-06-08

Family

ID=25488864

Family Applications (1)

Application Number Title Priority Date Filing Date
CA335,069A Expired CA1125380A (en) 1978-10-06 1979-09-05 Microwave heating apparatus with a thermally insulated tunnel

Country Status (2)

Country Link
CA (1) CA1125380A (en)
DE (1) DE2940340A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ZA816136B (en) * 1980-10-10 1982-08-25 Goodyear Tire & Rubber Method and apparatus for microwave processing of vulcanized elastomer
DE3203576A1 (en) * 1982-02-03 1983-08-11 Karl Dr. 7800 Freiburg Fritz Special microwave incident radiation II
US5401940A (en) * 1990-01-10 1995-03-28 Patentsmith Ii, Inc. Oscillating air dispensers for microwave oven
DE102017108087A1 (en) * 2017-04-13 2018-10-18 Dieffenbacher GmbH Maschinen- und Anlagenbau Continuous furnace for heating material by means of microwaves

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1947738C3 (en) * 1969-09-20 1979-03-15 Emag Eislinger Maschinenfabrik Gmbh, 7332 Eislingen Device for heating items to be treated by means of microwaves in a continuous process
US4045638A (en) * 1976-03-09 1977-08-30 Bing Chiang Continuous flow heat treating apparatus using microwaves

Also Published As

Publication number Publication date
DE2940340A1 (en) 1980-04-24

Similar Documents

Publication Publication Date Title
US4405850A (en) Combination microwave heating apparatus
US9504098B2 (en) Furnace system having hybrid microwave and radiant heating
CA1101497A (en) Microwave tunnel oven for the continuous processing of food products
US4570045A (en) Conveyorized microwave heating chamber with dielectric wall structure
US6617558B2 (en) Furnace for microwave sintering of nuclear fuel
US3878350A (en) Microwave cooking apparatus
US4335290A (en) Microwave oven blower radiator
US3845270A (en) Microwave heating and vapor condensing apparatus
US3810248A (en) Microwave heating apparatus
US3715551A (en) Twisted waveguide applicator
US7217909B2 (en) Microwave baking furnace
JPS61502849A (en) Conveyor microwave heating system
JP4214040B2 (en) Operation method of microwave heating furnace and microwave heating furnace
CA1125380A (en) Microwave heating apparatus with a thermally insulated tunnel
GB2262333A (en) Microwave heating of ceramics
CA1113547A (en) Primary choke system for microwave oven
US3027442A (en) High-frequency furnaces
US5365042A (en) Installation and method for heat treating parts made of a composite material having a ceramic matrix by using microwave energy
CA1127720A (en) Microwave heating apparatus with a z-shape waveguide
JP2002130960A (en) Baking furance, burned product, and method for manufacturing the same
JP2007322085A (en) Heating cooking apparatus
KR101768313B1 (en) Dryer using the microwave
JPS6155236B2 (en)
WO2023074551A1 (en) Microwave heating device
WO2015153035A2 (en) Thermal reactor

Legal Events

Date Code Title Description
MKEX Expiry