CA1121983A - Process and apparatus for recovering hydrocarbons from air-hydrocarbon vapor mixtures - Google Patents

Process and apparatus for recovering hydrocarbons from air-hydrocarbon vapor mixtures

Info

Publication number
CA1121983A
CA1121983A CA000355070A CA355070A CA1121983A CA 1121983 A CA1121983 A CA 1121983A CA 000355070 A CA000355070 A CA 000355070A CA 355070 A CA355070 A CA 355070A CA 1121983 A CA1121983 A CA 1121983A
Authority
CA
Canada
Prior art keywords
hydrocarbon
air
bed
hydrocarbons
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
CA000355070A
Other languages
French (fr)
Inventor
Robert E. Schwartz
Harold L. Dinsmore
Donald J. Peters
Gary W. Long
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zinklahoma Inc
Original Assignee
John Zink Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by John Zink Co filed Critical John Zink Co
Priority to CA000355070A priority Critical patent/CA1121983A/en
Application granted granted Critical
Publication of CA1121983A publication Critical patent/CA1121983A/en
Expired legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)

Abstract

Abstract of the Disclosure An improved process and apparatus for recovering hydrocar-bons from an air-hydrocarbon vapor mixture such as the mixture of air and vaporized light hydrocarbon compounds expelled as a result of loading gasoline or the like into storage tanks and tank trucks. The air-hydrocarbon vapor mixture is caused to flow through a bed of solid adsorbent whereby the hydrocarbons are re-moved from the mixture and a residue gas stream comprised of sub-stantially hydrocarbon-free air is produced. The substantially hydrocarbon-free air is vented to the atmosphere and a second bed of solid adsorbent having hydrocarbons adsorbed thereon is sub-jected to conditions which cause desorption of the hydrocarbons and thereby regeneration of the bed. The flow pattern of the in-let air-hydrocarbon vapor mixture and the bed of solid adsorbent being regenerated are periodically changed so that when the bed through which the inlet air-hydrocarbon mixture is flowing be-comes loaded with adsorbed hydrocarbons, the inlet air-hydrocar-bon mixture is caused to flow through the bed which has just been regenerated. The regeneration of the beds is accomplished by evacuating the beds with vacuum pumping whereby a major portion of the hydrocarbons are desorbed therefrom, subsequently intro-ducing a small quantity of heated hydrocarbon-free air into the beds whereby additional hydrocarbons are stripped therefrom and then subjecting the bed to further evacuation by ejector jet pumping while continuing to evacuate the bed by vacuum pumping whereby yet additional hydrocarbons are desorbed therefrom. The air-hydrocarbon vapor mixture produced in the regeneration of the beds is contacted with a liquid absorbent whereby a major portion of the hydrocarbons are absorbed therefrom and recovered. Appa-ratus for carrying out the process of the invention is also pro-vided.

Description

IMPROVED PROCESS AND APPARATUS FOR RECOVERING
HYDROCARBONS FROM AIR-HYDROCARBON VAPOR MIXTURES

Background of the Invention 1. Field of the Invention ... . _ _ The present invention relates to a process and apparatus for recovering hydrocarbons from air-hydrocarbon vapor mixtures, and more particularly, but not by way of limitation, to an im-proved process and apparatus for recovering vaporized gasoline light ends and the like from a mixture thereof with air expelled from tank trucks and the like.
2. Description of the Prior Art In handling multicomponent hydrocarbon liquids such as gaso-line, kerosene and the like, air-hydrocarbon vapor mixtures are readily produced which cannot be vented directly to the atmo-sphere due to the resulting pollution of the environment and fire and/or explosion hazard. Consequently, a variety of processes and apparatus have been developed and used for removing hydro-carbon vapors from such air-hydrocarbon vapor mixtures whereby the remaining air can be safely vented to the atmosphere. The removed hydrocarbons are generally liquefied and recombined with the hydrocarbon liquid from which they were vaporized thereby making their recovery economically advantageous.
A process for the recovery of light mixed hydrocarbon vapors from an air-hydrocarbon mixture expelled as a result of storage breathing or loading of a vented hydrocarbon vessel is described in United States Patent No. 4,066,423. In accordance with such process, the air-hydrocarbon vapor mixture from which hydrocar-bons are to be removed and recovered is passed through a bed of solid adsorbent having an affinity for hydrocaxbons. As the mix-ture passes through the bed, a major portion of the hydrocarbons contained in the mixture are adsorbed on the bed and a residue
3~ gas stream is produced which is comprised of substantially hydrocarbon-Eree air. Whlle a first bed of solid adsorbent is adsorbing hydrocarbons from the mixture, a second bed of solid adsorbent having hydrocarbons adsorbed thereon is regenerated by evacuation. The completeness of the regeneration of the solid adsorption beds of the process is dependent solely on the degree of vacuum produced in the beds by the vacuum pump utilized. se-cause vacuum pumps are incapable of achieving total vacuum, i.e., lowering the absolute pressure exerted on the beds to zero, a quantity of hydrocarbons are left adsorbed on the beds after re-generation which reduces the capacity of the beds to adsorb addi-tional hydrocarbons and reduces the service life of the adsor-bent.
The hydrocarbon-rich air-hydrocarbon mixture produced as a result of the regeneration of the bed is contacted with a liquid absorbent whereby hydrocarbons are removed therefrom and the residue gas stream from the absorption step is recycled to the bed through which the inlet air-hydrocarbon mixture is flowing.
In accordance with the teachings of United States Patent No.
4,066,423, the liquid absorbent utilized is liquid hydrocarbons condensed from the air-hydrocarbon vapor mixture produced in the evacuation regeneration step. More specifically, the hydrocarbon-rich air-hydrocarbon vapor mixture is cooled whereby portions of the hydrocarbons are condensed and such condensed hydrocarbons are circulated into contact with the remaining air-hydrocarbon vapor mi~ture whereby hydrocarbon vapors are absorbed by the li-quids.
Numerous other processes and apparatus for recovering hydro-carbons from air-hydrocarbon vapor mixtures or otherwise treating said mixtures are disclosed in United S~ates Patents Nos.
3,897,193; 3,768,232; 3,867,111; 3,455,089; 3,543,484; and ~1~1983 3,776,283. In all of the prior processes which utilize solid adsorbent for removing hydrocarbons from air-hydrocarbon vapor mixtures, regeneration of the adsorbent is incomplete whereby hydrocarbons are left on the adsorbent reducing the capacity, efficiency and service life thereof.
By the present invention, an improved process is provided which utilizes solid adsorbent for removing hydrocarbons and which achieves a more complete regeneration of the adsorbent than can be accomplished by prior processes thereby making the process more efficient, more economical to carry out and increasing the service life of the adsorbent used. In addition, by the process of the present invention, a stream of the liquid from which the hydrocarbon vapors originated is used to absorb the removed hy-drocarbons in a simple and economical system thereby obviating the need for condensing the removed hydrocarbons using elaborate refrigeration or other similar apparatus which is expensive to install and operate.
Summary of the Invention An improved process for recovering hydrocarbons from an in-let air-hydrocarbon vapor mixture comprising flowing the inlet mixture through a first bed of solid adsorbent whereby hydrocar-bons are adsorbed on the bed and a residue gas stream comprised of substantially hydrocarbon-free air which is vented to the at-mosphere is produced. A second bed of solid adsorbent having hydrocarbons adsorbed thereon is evacuated and thereby regener-ated by vacuum pumping whereby a major portion of the hydrocar-bons are desorbed from the bed and a hydrocarbon-rich air-hydrogen mixture is produced~ The second bed is more thoroughly regenerated by injection, under high vacuum conditions, of a small quantity of hydrocarbon-free air followed by further evacu-9~3 ation by ejector jet pumping whereby additional hydrocarbons are desorbed from the bed. The hydrocarbon-rich air-hydrocarbon mixture produced as a result of the evacuation of the second bed is contacted with a liquid absorbent whereby a major portion of the hydrocarbons are removed therefrom and a residue gas stream comprised of air and a minor portion of hydrocarbons is producedO
The residue gas stream is combined with the inlet air-hydrocarbon mixture whereby it flows through the first adsorbent bed and hydrocarbons removed therefrom. The flow pattern of the inlet air-hydrocarbon mixture and the bed of solid adsorbent being evacuated are periodically changed whereby when the bed through which the inlet air-hydrocarbon mixture is flowing becomes loaded with adsorbed hydrocarbons, the inlet air-hydrocarbon mixture is caused to flow through the bed which has just been evacuated.
- 15 Apparatus for carrying out the improved process of this inven-tion is also provided.
It is, therefore, a general object of the present invention to provide an improved process and apparatus for recovering hy-drocarbons from air-hydrocarbon vapor mixtures.
A further object of the present invention is the provision of a process and apparatus whereby hydrocarbons contained in an air hydrocarbon mixture are adsorbed on a bed of solid adsorbent and the bed is regenerated more completely than prior processes.
Yet a further object of the present invention is the provi-sion of apparatus for recove:ring hydrocarbons from an air-hydrocarbon vapor mixture which is relatively inexpensive to in-stall and operate as compared to prior apparatus.
Other and further objects, features and advantages of the present invention will be readily apparent to those skilled in the art upon a reading of the description of preferred embodiments 19~3 which follows when taken in conjunction with the accompanying drawing~
Brief Description of the Drawlng In the drawing forming a part of this disclosure, apparatus for carrying out the process of this inven,ion is illustrated diagrammatically.
Description of Preferred Embodiments Referring to the drawing, apparatus of the present invention is illustrated and generally designated by the numeral 10. The apparatus 10 is comprised of a pair of adsorbers 12 and 14, each of which contains a bed of solid adsorbent through which gases can flow. Each of the adsorbers 12 and 14 are closed vessels and include connections positioned on opposite sides of the beds of adsorbent contained therein. That is, the adsorber 12 includes inlet and outlet connections 16 and 18 and the adsorber 14 in-cludes inlet and outlet connections 20 and 22. While various solid adsorbents having an affinity for hydrocarbons can be uti-lized in the adsorbers 12 and 14, activated carbon is preferred in that it is particularly suitable for adsorbing light hydro-carbon vapors of the type found in air-hydrocarbon vapor mixtures and for vacuum regeneration.
An air-hydrocarbon vapor mixture inlet header 24 is provided connected to a conduit 26 which conducts an air-hydrocarbon vapor mixture from a source thereof to the apparatus 10. A pair of conduits 28 and 30 are connected to the header 24 and to the con-nections 16 and 20 of the adsorb~rs 12 and 14, respectively. Con-ventional switching valves 32 and 34 are disposed in the conduits 28 and 30, respectively, and a header 36 is connected to the con-duits 28 and 30 at points thereon between the switching valves 32 and 34 and the connections 16 and 20 of the adsorbers 12 and 14.

A pair of switching valves 38 and 40 are disposed in the header 36 and a conduit 42 is connected to the header 36 at a point be-tween the switching valves 38 and 40. A residue gas header 44 is provided, and a pair of conduits 46 and 48 are connected to the header 44 and to the connections 18 and 22 of the adsorbers 12 and 14. Switching valves 50 and 52 are disposed in the con-duits 46 and 48, respectively, and a conduit 54 is connected to the header 44 between the valves 50 and 52 for venting residue gas to the atmosphere. A stripping air header 56 is provided connected to the conduits 46 and 48 at points thereon between the switching valves 50 and 52 and the connections 18 and 22 of the adsorbers 12 and 14. A pair of check valves 58 and 60 are disposed in the header 56 and a conduit 62 is connected to the header 56 at a point between the valves 58 and 60. ~n air heater 64 which can take various forms and a switching valv~ 66 are disposed in the conduit 62. The end of the conduit upstream from the switching valve 66 and heater 64 is left open to the atmosphere and a conventional air filter (not shown) is generally attached thereto for preventing solid impurities from entering the adsorbers. The open end of the conduit 54 can also include a flame arrestor (not shown).
The other end of the conduit 42 connected to the header 36 is connected to the suction connection of an ejector jet pump 68.
The ejector jet pump 68 is of conventional design and includes a jet forming nozzle disposed within a suction chamber and a venturi-shaped diffuser (not shown). A suction connection is provided on the suc-tion chamber, a discharge connection is pro-vided on the end of the diffuser and an operating stream inlet connection is provided on the nozzle. In operation, an operating gas stream is caused to pass through the jet forming nozzle and into the diffuser which creates a suction in the suction chamber.
The conduit 42 is connected to the suction chamber connected to the suction chamber connection and the discharge connection o~
the ejector 68 is connected to a conduit 70. The conduit 70 is S in turn connected to the suction connection of a vacuum pump 72.
While various types and designs of vacuum pumps can be uti-lized in accordance with the present invention, a conventional liquid seal vacuum pump, also known as a liquid ring vacuum pump, is preferred in that such a pump is capable of producing a high vacuum, is relatively inexpensive and is much safer in this type of service. The pump utilizes a seal liquid which is circulated through the pump. The seal liquid can be confined in a closed circuit and cooled which keeps the pump cool and cools the gas or gases flowing through the pump. The presence o~ the seal liquid in the pump precludes any possibility of explosions since the gas cannot approach its auto-ignition temperature nor can sparking occur due to mechanical failures within the pump.
The liquid seal vacuum pump 72 includes a suction connection 74 to which the conduit 70 is attached, a discharge connection 76 and a seal liquid inlet connection 78 for returning seal liquid thereto. A conduit 80 is connected to the discharge connection 76 of the pump 72 and to an inlet connection 82 of a separator 84.
In a preferred embodiment, an absorber 86 is integrally connected to the top of the separator 84, but as will be understood, the absorber 86 and separator 84 can be separate vessels.
The separator 84 is a three phase separator capable of sepa-rating the seal liquid utilized for the pump 72, condensed hydro-carbons and an air-hydrocarbon vapor mixture from each other.
Also, in the embodiment illustrated in the drawing, the separator 84 includes a chamber for accumulating separated condensed 9~33 hydrocarbon liquids and hydrocarbon-rich liquid absorbent en-tering the separator 84 from the absorber 86 whereby such li-quids are removed from the separator 84 in a combined state.
More specifically, the separator 84 includes a weir 88 which divides the separator into a forward compartment 90 and a rear-ward compartment 92~ ~'he seal liquid and condensed hydrocarbon liquids entering the separator 84 by way of the inlet connection 82 are separated from the air-hydrocarbon vapor mixture in the forward compartment 90. The seal liquid is heavier than the con-densed hhdrocarbon liquids and is immiscible therewith, and con-sequently, the seal liquid accumulates in the bottom of the for~
ward compartment 90 from where it is removed by way of a seal liquid outlet connection 94 attached to the separator 89. Con-densed hydrocarbon liquids accumulating in the compartment 90 spill over the top of the weir 88 into the compartment 92.
Hydrocarbon-rich liquid absorbent from the absorber 86 enters the compartment 92 by way of the open bottom of the absorber 86 con-nected to the top of the separator 8~ and also accumulates in the compartment 92. The rich liquid absorbent-condensed hydrocarbon liquid mixture is removed from the separator 84 by way of an out-let connection 96. The separated air-hydrocarbon vapor mixture passes from the separator 84 into the absorber 86 by way of the connection therebetween.
A conduit 98 is connected to the seal liquid outlet connec-tion 94 of the separator 84 and to the seal liquid inlet connec-tion 78 of the pump 72. A cooler 100 is disposed in the conduit 98 ~or cooling the seal liquid as it flows therethrough. In certain situations a seal fluid circulation pump can be disposed in the conduit 98 between the separator 84 and the cooler 100.
3Q While the cooler 100 can be of various types and designs, a heat exchanger which cools the seal liquid by passing it in heat ex-change relationship with a stream of lean liquid of the same characteristics as that used as the absorption medium in the absorber 86 is preferred and generally is the most economical.
A conduit 102 is connected to the connection 96 of the separator 84 and to a rich liquid absorbent-condensed hydrocar-bon liquids pump 104. The discharge connection of the pump 104 is connected to a conduit 106 which leads the rich liquid absorbent-condensed hydrocarbon liquids mixture to a storage facility (not shown). It is preferred that designated facility for storage of the righ liquid absorbent be distinct from that for the lean liquid absorbent to insure lowest possible vapor pressure of the lean liquid absorbent thereby insuring optimum system performance efficiencyO
The absorber 86 includes means disposed therein for bringing about intimate contact between a liquid absorbent flowing do~m-wardly therein and a vapor mixture flowing upwardly therein.
Such means can be comprised of vapor-liquid contact trays or any of a variety of conventional packing material. Preferably, the absorber 86 includes a section of packing material 108 disposed in the top portion thereof for bringing about such intimate con-tact. A residue gas outlet connection 110 and a lean liquid ab-sorbent inlet connection 112 are provided above thepacked section 108. As described above, in the embodiment shown in the drawing, the open bottom of the absorber 86 is sealingly connected to the top of the separator 84 over an opening in the separator 84 where-by rich liquid absorbent produced in the absorber 86 flows down-wardly out of the absorber and into the separator 84. In a like manner, the mixture of air and hydrocarbons separated in the separator 84 flows upwardly to the open bottom of the absorber _g_ ~1~1983 into contact with the liquid absorbent flowing downwardly therein whereby hydrocarbons are absorbed and removed from the vapor mixture and a residue gas stream comprised of air and a minor portion of hydrocarbons is produced.
A conduit 114 is connected to the lean liquid absorbent in-let 112 of the absorber 86 and to the discharge connection of a pump 116. A conduit 118 is connected to the suction connection of the pump 116 which leads a stream of lean liquid absorbent from a source thereof such as a storage tank to the pump 116.
As indicated above, a conduit 126 can be provided to connect con-duit 114 with cooler 100 whereby a slip stream of lean liquid absorbent can flow to an inlet connection 132 of the separator 84 by way of a conduit 128.
In certain cases, the lean liquid absorbent may be too warm to use directly as an absorbent and seal fluid coolant. In such cases, an exchanger (not shown) can be disposed in conduit 114 for cooling the lean liquid absorbent with an approprlate cool-ing medium such as cooling water, refrigerant, etc.
The residue gas stream produced in the absorber 86 exits the absorber by way of the connection 110 thereof and flows into a conduit 120 connected thereto and connected to the inlet air-hydrocarbon vapor header 24. A conduit 122 is connected to the conduit 120 and to the jet forming nozzle inlet connection of the ejector 68. A switching valve 124 is disposed in the conduit 122.
As will be understood by those skilled in the art, the switching valves 32, 34, 38, 40, 50, 52, 66 and 124 can be oper-ated manually, but are preferably automatically operated valves which are controlled by a conventional cycle controller. The length of each cycle, i.e., the period of time between when the ~19133 switching valves are operated can be controlled by atimer or other instrument sensing one or more variables in the operation of the apparatus 10, such as the degree of vacuum achieved in the adsorbent bed being regenerated, the composition of the gas stream being vented to the atmosphere, etc.
Operation of the Apparatus 10 In operation of the apparatus 10, the switching valves 32, 34, 38, 40, 50 and 52 are operated in a manner whereby the inlet air-hydrocarbon vapor mixture is caused to flow through one of the adsorbers 12 or 14 while the other of the adsorbers is being regenerated. For example, during a first cycle, the switching valve 32 is open and the switching valve 34 closed whereby the inlet air-hydrocarbon vapor mixture flows into the adsorber 12 by way of the conduit 28, switching valve 32 ana connection 16 of the adsorber 12. Because the switching valve 34 disposed in the conduit 30 is closed, the inlet air-hydrocarbon vapor mix-ture is prevented from entering the adsorber 14. The switching valve 50 disposed in the conduit 46 is open and the switching valve 52 disposed in the conduit 48 is closed whereby the residue gas stream produced in the adsorber 12 exits the adsorber 12 by way of the connection 18 thereof, the conduit 46 and the switch-ing valve 50 and enters the header 44. From the header 44, the residue gas stream flows through the conduit 54 from where it is vented to the atmosphere. The switching valve 38 disposed in the header 36 is closed and the switching valve 40 disposed therein is open whereby the adsorbent bed within the adsorber 14 is com-municated with the suction connection 74 of the vacuum pump 72 by way of the connection 20 of the adsorber 14, the header 36, the open switching valve 40, the conduit 42, the ejector 68 and the conduit 70. The switching valves 66 and 124 disposed in the con-~1~1983 duits 62 and 122, respectively, are initially closed.
During the first part of the cycle when the switching valves are in the mode described above, the inlet air-hydrocar-bon vapor mixture flows through the bed of adsorbent within the adsorber 12 whereby hydrocarbons are adsorbed on the bed and removed from the mixture. The residue gas produced which is comprised of substantially hydrocarbon-free air is vented to the atmosphere by way of the air vent 54. Simultaneously, the bed of adsorbent disposed within the adsorber 14 is evacuated by the liquid seal vacuum pump whereby hydrocarbons are desorbed there-from. A hydrocarbon-rich air-hydrocarbon vapor mixture is with-drawn from the adsorbent bed within the adsorber 14 which flows through the vacuum pump 72. Cooled seal liquid, preferably water or a mixture of water and a substance which functions as an anti-freeze agent in the winter and as an agent to lower seal fluid vapor pressure in the summer, e.g., ethylene glycol, flows into the vacuum pump 72 by way of the connection 78 thereof and is discharged by way of the discharge connection 76 with the air-hydrocarbon vapor mixture. The intimate contact of the air-hydrocarbon vapor mixture with the cool seal liquid while flow-ing through the vacuum pump 72 cools the vapor mixture and causes heavy hydrocarbons contained therein to be condensed. Thus, a stream of hydrocarbon-rich air-hydrocarbon vapor mixture contain-ing both seal liquid and condensed hydrocarbon liquids exits the pump 72 and flows through the conduit 80 into the separator 84.
While passing through the separator 84, the air-hydrocarbon vapor mixture, seal liquid and condensed hydrocarbon liquids are sepa-rated from each other. As previously described, the separated seal liquid flows from the separator 84 by way of the connection 94 thereof, t~e conduit 98 and the cooler 100 back into the vacuum pump 72. Thus/ the seal liquid is continually circulated between the pump 72, the separator 84 and the cooler 100 while the pump 72 is operating.
The separated condensed hydrocarbon liquids spill over the weir 88 and flow into the compartment 92 of the separator 84 where they combine with rich liquid absorbent flowing into the compartment 92 from the absorber 86 and removed therefrom by way of the connection 96 thereof, the conduit 102 and the pump 104.
From the pump 104, the ricn liquid absorbent-condensed hydrocar-bon liquids mixture is conducted by way of the conduit 106 to storage facilities or a point of further processing (not shown).
A stream of lean liquid absorbent is pumped from a source thereof by the pump 116 and flows by way of the conduit 130, conduit 114 and connection 112 into the absorber 86. The lean liquid absorbent flows downwardly within the absorber 86 through the packed section 108 thereof and intimately contacts the sepa-rated air-hydrocarbon mixture flowing upwardly therethrough from the separator 84. As the air-hydrocarbon vapor mixture is con-tacted by the liquid absorbent, hydrocarbons are absorbed by the liquid absorbent and removed from the vapor mixture whereby a residue gas stream comprised of air and a minor portion of hydro-carbons is produced. The residue gas stream exits the absorber 86 by way of the connection 110 thereof and flows by way of the conduit 120 into the header 24 where it combines with the inlet air-hydrocarbon vapor mixture and flows through the adsorber 12.
As will be understood, the hydrocarbons contained in the residue gas stream are adsorbed on the bed of adsorbent within the adsor-ber 12 along with hydrocarbons from the inlet air-hydrocarbon vapor mixture.
During a latter part of the cycle, after a major portion of ~1~19~3 hydrocarbons adsorbed on the bed of adsorbent within the adsor-ber 14 have been desorbed therefrom by the operation of the vacuum pump 72, i.e., the initial evacuation of the adsorber 14, the switching valve 66 in the conduit 62 is opened whereby a relatively small quantity of hydrocarbon-free air from the atmo-sphere enters the conduit 62, flows thrugh the heater 64 so that it is heated and then flows by way of the header 56, the check valve 60 and the connection 22 of the adsorber 14 into the ad-sorber 14. The heated hydrocarbon-free air flows through the bed of adsorbent contained in the adsorber 14 and is withdrawn therefrom by the vacuum pump 72 as previously described. The introduction of a quantity of heated hydrocarbon-free air into the adsorbent bed contained within the adsorber 14 functions to strip additional hydrocarbons from the bed which were not de-sorbed therefrom by vacuum pumping, i.e., by the lowering of thepressure exerted on the bed to the degree of vacuum achieved by the vacuum pump 72.
Simultaneously with or after the required quantity of heated air has been introduced into the adsorber 14 to strip additional hydrocarbons therefrom, the switching valve disposed in the con-duit 62 is closed and the switching valve 124 disposed in the conduit 122 is opened. The opening of the switching valve 124 causes a portion of the residue gas stream produced in the absor-ber 86 to flow by way of the conduit 122 through the jet forming nozzle of the ejector 68 and into the vacuum pump 72. The jet of vapors flowing through the ejector 68 causes a suction to be produced which is in addition to the suction produced by the vacuum pump 72 exerted on the bed of adsorbent within the adsor-ber 14 which evacuates the adsorber further and causes additional hydrocarbons to be desorbed therefrom.

Thus, as will be apparent, the combination of initially eva-cuating the adsorber 14 by vacuum puming, stripping the adsor-bent bed with heated hydrocarbon-free air and then further eva-cuating the adsorbent bed brings about the regeneration of the bed to a greater degree than is possible by vacuum pumping alone.
This more complete regeneration of the bed increases the capa-city of the bed to adsorb additional hydrocarbons, increases the overall efficiency of the apparatus 10 and increases the service life of the adsorbent.
After the adsorbent bed within the adsorber 14 has been fully regenerated and the adsorbent bed within the adsorber 12 loaded with hydrocarbons from the air-hydrocarbon vapor mixture flowing therethrough, the switching valve 124 in the conduit 122 is closed, the switching valve 66 is caused to remain closed and the other switching valves of the apparatus 10 are reversed.
That is, the switching valves 32 and 50 are closed, the switch-ing valves 34 and 52 are opened, the switching valve 38 is opened and the switching valve 40 is closed. This causes the flow pattern of the inlet air-hydrocarbon vapor mixture to be changed whereby the mixture flows through the regenerated adsor-bent bed within the adsorber 14 and the residue gas therefrom to be vented to the atmosphere. The adsorbent bed within the ad-sorber 12 is simultaneously communicated with the vacuum pump 72 whereby it is evacuated and the switching valves 66 and 124 are opened during a latter part of the cycle as described above to strip the adsorbent bed within the adsorber 12 and further evacu-ate the adsorbent bed whereby additional hydrocarbons are de-sorbed therefrom.
As will be understood by those skilled in the art, the flow pattern of the inlet air-hydrocarbon vapor mixture ana the bed being regenerated are continuously changed or cycled whereby when the adsorbent bed through which the inlet vapor mixture is flowing becomes loaded with adsorbed hydrocarbons, the inlet mixture is caused to flow into the bed which has just been re-generated. The hydrocarbon-rich air-hydrocarbon mixture pro-duced from the bed being regenerated is continuously contacted with liquid absorbent in the absorber 86 whereby the hydrocar-bons are recovered.
The apparatus 10 is particularly suitable for recovering vaporized gasoline light ends mixed with air produced as a re-sult of loading gasoline into tank trucks and other vessels. In this application, the air-gasoline vapor mixture is processed in the apparatus 10 as described above and the liquid absorbent utilized is gasoline. That is, stored gasoline is pumped from a storage facility into the absorber 86 and the rich gasoline and condensed hydrocaxbon liquids produced by the apparatus 10 are returned to the gasoline storage facility. secause the stored gasoline is continuously being loaded out of the storage facili ties and replaced by newly produced gasoline, the stream of gasoline pumped to the absorber is lean enough to efficiently absorb gasoline light ends.
In order to more clearly illustrate the operation of the apparatus 10, the following example is given.
Example A typical gasoline truck loading terminal has the following loading pattern:
Maximum Instantaneous Rate - 2200 gallons/minute Maximum Throughput in 15 Minutes - 16500 gallons Maximum Throughput in 1 Hour - 48000 gallons Maximum Throughput in 4 Hours - 168000 gallons 11~1983 Ma~imum Throughput Daily - 960000 gallons The gasoline loaded is deemed to have the following properties:
Summer: 10 psia RVP, 75 maximum Winter: 14 psia RVP, 10F minimum It is recognized that the hydrocarbon concentration of the air-hydrocarbon vapor generated by loading gasoline into the truck transports will vary according to gasoline volatility and the degree of air saturation attained.
~ased on the above gasoline properties and other experience factors known to those skilled in the art, a design hydrocarbon concentration of 35 Vol.~ is selected.
The apparatus 10 is designed for an approximately 15 minute cycle time, and consequently, it is necessary to design each ad-sorption vessel 12 and 14 to handle a net air-hydrocarbon vapor influent from the truck loading rack of 353 cubic feet per minute and 2647 cubic feet each cycle based on a 1.2 vapor growth fac-tor. Approximately 9000 lbs. of the appropriate activated car-bon is chosen and distributed equally in two 7 feet in diameter by approximately ~ feet high adsorption vessels 12 and 14. These two adsorption vessels are operated near ambient temperatures and only slightly above atmospheric pressure during the adsorp-tion cycle.
A liquid ring vacuum pump 72 with a 30 horsepower electric motor is provided for regeneration of the beds of carbon after each adsorption cycle. Very effective regeneration of carbon beds 12 and 14 is accomplished each cycle by the introduction, under high vacuum conditions, of approximately 30 standard cubic feet of air heated to 200 to 300F~ The regeneration apparatus provided allows attainment of 49 millimeters of mercury absolute pressure each cycle with the vacuum pump 72 alone a~d with the vacuum assist ejector 68 an absolute pressure of 12 millimeters of mercury or less can easily be attained.
To accomplish the objective of recovery, concentrated hydro-carbon vapors containing only 5 to 20 Vol.% air are discharged from the vacuum pump 72 to a 2 feet diameter by approximately 12 feet high packed absorption column 86 integrally connected to a 3.S feet diameter by approximately 8 feet long separator 84, where the major portion of the hydrocarbon vapors are absorbed and thereby recovered into a downward flowing stream of gasoline.
The minor portion of hydrocarbon vapors not immediately ab-sorbed into the gasoline absorbent exits the top of the absorber 86. These hydrocarbons flow to whichever adsorber 12 or 14 is in the adsorption mode where they are adsorbed onto the acti-vated carbon. Subsequently, during regeneration of the carbon, they are removed returning to the absorber 86. Eventually al-most all of the hydrocarbon vapors are recovered.
Centri~ugal pumps 104 and 116 each with 5 horsepower elec-tric motor drivers are provided to circulate 125 gallons per minute of gasoline from storage facilities for purposes of pro-viding the absorption medium in the absorber 86 and to providethe necessary seal fluid cooling medium in the seal fluid cooler 100 .
Apparatus 10 designed as described above can be expected to remove and recover the hydrocarbon vapors generated from the transport loading rack such that less than 10 milligrams of hydro-carbons will be vented to the atmosphere per liter of gasoline loaded.
Thus, the present invention is well adapted to carry out the objects and attain the ends and advantages mentioned as well as those inherent therein~ ~hile presently preferred embodiments of the invention have been described for purposes of this disclo-sure, numerous changes in the arrangement of process steps and apparatus elements will suggest themselves to those skilled in the art, which changes are encompassed within the spirit of this invention as defined by the appended claims.

Claims (24)

THE EMBODIMENTS OF THE INVENTION IN WHICH AN EXCLUSIVE
PROPERTY OR PRIVILEGE IS CLAIMED ARE DEFINED AS FOLLOWS:
1. An improved process for recovering hydrocarbons from an inlet air-hydrocarbon vapor mixture comprising the steps of:
(a) flowing said inlet mixture through a first bed of solid adsorbent having an affinity for hydrocarbons whereby hydrocarbons are adsorbed on said bed and a residue gas stream comprised of substantially hydrocarbon-free air is produced;
(b) venting said substantially hydrocarbon-free air to the atmosphere;
(c) evacuating a second bed of solid adsorbent having hydrocarbons adsorbed thereon by vacuum pumping whereby a major portion of said hydrocarbons are desorbed from said bed and a hydrocarbon-rich air-hydrocarbon mix-ture is produced;
(d) introducing a quantity of hydrocarbon-free air into said second bed while evacuating said bed whereby additional hydrocarbons are stripped from said bed and additional air-hydrocarbon mixture produced;
(e) further evacuating said second bed by ejector jet pumping while continuing to evacuate said bed by vacuum pumping whereby yet additional hydrocarbons are desorbed from said bed;
(f) contacting the air-hydrocarbon mixture pro-duced in steps (c), (d) and (e) in an absorber with a liquid absorbent having an affinity for hydrocarbons whereby a major portion of the hydrocarbons are removed therefrom and a resi-due gas stream comprised of air and a minor portion of hydrocarbons is produced;
(g) combining said residue gas stream produced in step (f) with said inlet air-hydrocarbon mixture of step (a) whereby hydrocarbons contained therein are adsorbed on said first bed of solid adsorbent; and (h) periodically changing the flow pattern of said inlet air-hydrocarbon mixture and changing the bed of solid adsorbent being evacuated whereby when the bed through which the inlet air-hydrocarbon mixture is flowing becomes loaded with adsorbed hydrocarbons, the inlet air-hydrocarbon mixture is caused to flow through the bed which has just been evacuated and stripped.
2. The process of Claim 1 which is further characterized to include the step of cooling the air-hydrocarbon mixture produced in steps (c), (d) and (e) prior to contacting said mixture with said liquid absorbent.
3. The process of Claim 1, wherein said residue gas stream produced in step (f) is utilized to effect the ejector jet pumping of step (e).
4. The process of claim 3 which is further characterized to include the step of cooling the air-hydrocarbon mixture pro-duced in steps (c), (d) and (e) prior to contacting said mixture with said liquid absorbent.
5. The process of claim 1 wherein the hydrocarbons con-tained in said inlet air-hydrocarbon mixture are vaporized gasoline light ends and the liquid absorbent utilized in step is gasoline.
6. The process of claim 5 wherein said gasoline is con-tinuously recycled between said absorber and a source of stored gasoline.
7. The process of claim 6 wherein said first and second beds of solid adsorbent are beds of activated carbon.
8. The process of claim 2 wherein said hydrocarbon-free air is heated prior to introducing it into said bed.
9. An improved process for recovering hydrocarbons from an inlet air-hydrocarbon mixture comprising the steps of:
(a) flowing said inlet mixture through a first bed of activated carbon whereby said hydrocarbons in said mixture are adsorbed on said bed and a residue gas stream com-prised of substantially hydrocarbon-free air is produced, (b) venting said substantially hydrocarbon-free air to the atmosphere;

(c) evacuating a second bed of activated carbon having hydrocarbons adsorbed thereon by subjecting said bed to pumping with a liquid seal vacuum pump whereby a major portion of said hydrocarbons are desorbed from said bed and a hydrocarbon-rich air-hydrocarbon vapor mixture containing liquid from said liquid seal vacuum pump and con-densed hydrocarbon liquids is produced;
(d) introducing a quantity of hydrocarbon-free air into said second bed while continuing to evacuate said bed by pumping with said liquid seal vacuum pump whereby additional hydrocarbons are stripped from said bed and additional air-hydrocarbon vapor mix-ture containing liquid from said liquid seal vacuum pump and condensed hydrocarbon liquids is produced;
(e) further evacuating said second bed by ejector jet pumping while continuing to evacuate said bed by pumping with said liquid seal vacuum pump whereby yet addi-tional hydrocarbons are desorbed from said bed and additional air-hydrocarbon vapor mixture is produced;
(f) separating the liquid from the liquid seal vacuum pump and the condensed hydro-carbon liquids from each other and from the air-hydrocarbon vapor mixture produced in steps (c), (d) and (e);

(g) cooling the separated liquid seal vacuum pump liquid;
(h) recycling the cooled liquid seal vacuum pump liquid to said liquid seal vacuum pump;
(i) contacting the air-hydrocarbon mixture sepa-rated in step (f) in an absorber with a lean liquid absorbent having an affinity for hydro-carbons whereby a major portion of the hydro-carbons are removed therefrom, a hydrocarbon-rich liquid absorbent is produced and a residue gas stream comprised of air and a minor portion of hydrocarbons is produced;
(j) combining the hydrocarbon liquids separated in step (f) with the hydrocarbon-rich liquid absorbent;
(k) combining said residue gas stream produced in step (i) with said inlet air-hydrocarbon mixture of step (a) whereby hydrocarbons con-tained therein are adsorbed on said first bed of solid adsorbent; and (1) periodically changing the flow pattern of said inlet air-hydrocarbon mixture and changing the bed of activated carbon being evacuated and stripped whereby when the bed through which the inlet air-hydrocarbon mix-ture is flowing becomes loaded with adsorbed hydrocarbons, the inlet air-hydrocarbon mix-ture is caused to flow through the bed which has just been evacuated and stripped.
10. The process of claim 9 wherein said residue gas stream produced in step (i) is utilized to effect the ejector jet pumping of step (e).
11. The process of claim 10 wherein the step of cooling the liquid recycled to said liquid seal vacuum pump comprises passing said liquid in heat exchange relationship with a stream of the liquid absorbent.
12. The process of claim 11 wherein the hydrocarbons con-tained in said inlet air-hydrocarbon mixture are vaporized gaso-line light ends and the liquid absorbent utilized in step (i) is gasoline.
13. The process of claim 12 wherein the liquid seal vacuum pump liquid is water.
14. The process of claim 12 wherein the liquid seal vacuum pump liquid is a mixture of water and glycol.
15. The process of claim 12 wherein the hydrocarbon-free air utilized in step (d) is heated prior to introducing it into said bed.
16. The process of claim 12 wherein the source of lean gaso-line utilized in step (i) is a gasoline storage facility and said mixture of hydrocarbon-rich gasoline and separated hydrocarbon liquids of step (j) are conducted back to said storage facility.
17. Apparatus for recovering hydrocarbons from an air-hydrocarbon vapor mixture comprising:
(a) a pair of adsorbers containing beds of solid adsorbent having an affinity for hydrocarbons and having first and second connections on opposite sides of said beds;
(b) first conduit means connected to the first connections of said adsorbers for conducting said air-hydrocarbon vapor mixture to said adsorbers and for evacuating said adsorbers;
(c) valve means disposed in said first conduit means for selectively causing said air-hydrocarbon vapor mixture to flow through one or the other of said adsorbers;
(d) second conduit means connected to the second connections of said adsorbers for conducting residue gas exiting said adsorbers to the atmosphere;
(e) second valve means disposed in said second conduit means for selectively causing the second connections of one or the other of said adsorbers to be open to the atmosphere;
(f) a vacuum pump having a suction connection and a discharge connection;
(g) third conduit means connected between the suction connection of said vacuum pump and the first conduit means connected to said adsorbers;
(h) third valve means disposed in said third conduit means for selectively communicating one or the other of said adsorbers with the suction connection of said vacuum pump;
(i) an ejector jet pump having a suction connec-tion, a discharge connection and a gas jet inlet connection, said ejector jet pump being disposed in said third conduit means with the suction and discharge connections thereof being connected to said third conduit means;
(j) an absorber for contacting an air-hydrocarbon vapor mixture with a liquid absorbent having an air-hydrocarbon vapor mixture inlet con-nection, a residue gas outlet connection, a lean liquid absorbent inlet connection and a rich liquid absorbent outlet connection;
(k) fourth conduit means connected between the air-hydrocarbon vapor mixture inlet of said absorber and the discharge connection of said vacuum pump;
(l) fifth conduit means connected between the residue gas outlet connection of said absor-ber and said first conduit means;
(m) sixth conduit means connected between said fifth conduit means and the gas jet inlet connection of said ejector jet pump; and (n) fourth valve means disposed in said sixth conduit means for selectively communicating said fifth conduit means with the gas jet inlet connection of said ejector jet pump.
18. The apparatus of claim 17 which is further characterized to include:
seventh conduit means connected to said second conduit means for conducting air from the atmosphere to said adsorbers by way of said second connections thereof; and fifth valve means disposed in said seventh con-duit means for selectively communicating one or the other of said adsorbers with air from the atmosphere.
19. The apparatus of claim 18 which is further characterized to include means for heating air disposed in said seventh conduit means.
20. The apparatus of claim 19 which is further characterized to include means for cooling an air-hydrocarbon vapor mixture dis-posed in said fourth conduit means.
21. The apparatus of claim 17 wherein said vacuum pump is a liquid seal vacuum pump having a suction connection, a dis-charge connection and a seal liquid inlet connection and said apparatus is further characterized to include:
a separator for separating an air-hydrocarbon vapor mixture, condensed hydrocarbon liquids and seal liquid from each other and combining rich liquid absorbent with condensed hydrocarbon liquids having an air-hydrocarbon vapor-condensed hydrocarbon liquids-seal liquid inlet connection, a rich liquid absorbent inlet connection, a seal liquid outlet connection, a rich liquid absorbent-condensed hydrocarbon liquid outlet connection and an air-hydrocarbon vapor mixture outlet connec-tion, the inlet connection of said sepa-rator being connected to said fourth con-duit means and the air-hydrocarbon vapor mixture outlet connectionthereof being con-nected to the air-hydrocarbon vapor mixture inlet connection of said absorber;
eighth conduit means connected between the seal liquid outlet connection of said separator and the seal liquid inlet connection of said liquid seal vacuum pump;
means for cooling seal liquid disposed in said eighth conduit means; and ninth conduit means connected between the rich liquid absorbent inlet connection of said separator and the rich liquid absorbent outlet connection of said absorber.
22. The apparatus of claim 21 which is further characterized to include:
tenth conduit means connected to the lean liquid absorbent inlet connection of said absorber and to a source of lean liquid absorbent; and a lean liquid absorbent pump disposed in said tenth conduit means.
23. The apparatus of claim 22 wherein said means for cooling seal liquid is a seal liquid-lean liquid absorbent heat exchanger connected to said eighth and tenth conduit means.
24. The apparatus of claim 23 which is further characterized to include:
eleventh conduit means connected to the rich liquid absorbent-condensed hydrocarbon liquids outlet connection of said separa-tor and to a liquid absorbent storage vessel; and a rich liquid absorbent-condensed hydrocarbon liquids pump disposed insaid eleventh conduit means.
CA000355070A 1980-06-27 1980-06-27 Process and apparatus for recovering hydrocarbons from air-hydrocarbon vapor mixtures Expired CA1121983A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA000355070A CA1121983A (en) 1980-06-27 1980-06-27 Process and apparatus for recovering hydrocarbons from air-hydrocarbon vapor mixtures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CA000355070A CA1121983A (en) 1980-06-27 1980-06-27 Process and apparatus for recovering hydrocarbons from air-hydrocarbon vapor mixtures

Publications (1)

Publication Number Publication Date
CA1121983A true CA1121983A (en) 1982-04-20

Family

ID=4117300

Family Applications (1)

Application Number Title Priority Date Filing Date
CA000355070A Expired CA1121983A (en) 1980-06-27 1980-06-27 Process and apparatus for recovering hydrocarbons from air-hydrocarbon vapor mixtures

Country Status (1)

Country Link
CA (1) CA1121983A (en)

Similar Documents

Publication Publication Date Title
US4331456A (en) Process for recovering hydrocarbons with air-hydrocarbon vapor mixtures
US4261716A (en) Apparatus for recovering hydrocarbons from air-hydrocarbon vapor mixtures
CA1132061A (en) Process and apparatus for recovering hydrocarbons from air-hydrogen vapor mixtures
US4343629A (en) Process and apparatus for recovering hydrocarbons from air-hydrocarbon vapor mixtures
US5154735A (en) Process for recovering hydrocarbons from air-hydrocarbon vapor mixtures
US5345771A (en) Process for recovering condensable compounds from inert gas-condensable compound vapor mixtures
EP0072083B1 (en) Process and apparatus for recovering hydrocarbons from inert gas-hydrocarbon vapor mixtures
US4670028A (en) Absorption-absorption-absorption vapor recovery process
CA1079494A (en) Adsorption-absorption vapor recovery system
US5426945A (en) Process and apparatus for recovering vapor
US4462811A (en) Process and apparatus for removing hydrocarbons from air-hydrocarbon vapor mixtures
CN1010554B (en) Process and device for separation and recovery of volatile solvents
US4715868A (en) Vapor recovery system
US5480475A (en) Vapor recovery system
US5951741A (en) Hydrocarbon vapor recovery processes and apparatus
US6486375B1 (en) Process for recovering hydrocarbons from inert gas-hydrocarbon vapor mixtures
CA2021702C (en) Improved process for recovering hydrocarbons from air-hydrocarbon vapor mixtures
US5584911A (en) Vapor recovery system with cyclonic separator
CA1121983A (en) Process and apparatus for recovering hydrocarbons from air-hydrocarbon vapor mixtures
JP3223253B2 (en) CFC regeneration method and apparatus
WO2004069382A1 (en) Improved vapor recovery system with cyclonic separator
WO1993012199A1 (en) A method for cleaning a mixture of hydrocarbon vapours, in particular petrol vapours, and air with recovery of the hydrocarbons, and a system for use in the method

Legal Events

Date Code Title Description
MKEX Expiry