CA1119009A - Automatic icemaker including means for minimizing the supercooling effect - Google Patents

Automatic icemaker including means for minimizing the supercooling effect

Info

Publication number
CA1119009A
CA1119009A CA000348193A CA348193A CA1119009A CA 1119009 A CA1119009 A CA 1119009A CA 000348193 A CA000348193 A CA 000348193A CA 348193 A CA348193 A CA 348193A CA 1119009 A CA1119009 A CA 1119009A
Authority
CA
Canada
Prior art keywords
ice
water
mold
cavity
icemaker
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
CA000348193A
Other languages
French (fr)
Inventor
Marvel A. Elliott
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Priority to CA000348193A priority Critical patent/CA1119009A/en
Application granted granted Critical
Publication of CA1119009A publication Critical patent/CA1119009A/en
Expired legal-status Critical Current

Links

Landscapes

  • Production, Working, Storing, Or Distribution Of Ice (AREA)

Abstract

ABSTRACT OF THE DISCLOSURE
A batch type automatic icemaker adapted for instal-lation in the freezing compartment of a refrigerator is provided with a thermal member having first and second ends. The first end of the thermal member is in communication with at least one of the ice-forming cavities and positioned below the water level. The second end projects into the cold air within the freezer. The second end is of a sub-stantially larger mass than the first end. Since the first end is of a small mass relative to the second end and is thermally isolated from the mold, the cold freezer air cools it at a much faster rate than the water in the mold or the mold itself. The cooler surface of the first end chills the water in contact with it with a minimum of supercooling.

Description

~l~9~V9 The present invention relates generally IO batch type aulomatic icemakers adapted for installation in the freezer compartment of household refrigerators and, more particularly, to such an icemaker including a means to minimize supercooling of wa~er in Ihe mold ice-forming cavities.
A refrigeralor automatic icemaker of the type shown and described in U.S. Patent Nos. 3,163,017 - Baker et al and 3,163,018 - Shaw, issued December 29, 1964 includes a mold having at leasl one ice-forming cavily. To begin the operation 10 cycle, a means is included for filling the ice-forming cavi~y with a metered quaniity of tap water. As the mold and water cools, an ice piece is formed. In order io initiate harvesting of Ihe ice piece, a control means is included. The control means typically includes a temperature-responsive switch elemenl (Ihermostat) in thermal contact with the mold. The thermostat is set to respond to a temperature well below 32F.
It is assumed thai when the mold temperature is below the set temperature, all ihe water has frozen into ice. A means in the form of an ice-ejecting pad normally positioned in the lower 20 portion of Ihe cavily is included to remove ice pieces from ihe cavity by raising them up out of the cavity clear of the mold io be swept inlo a storage bin by a sweep arm.
Although not generally apprecialed, 32F more accuralely represents the melting temperature of ice, rather than the initial freezing temperature of water, at least in ihe absence of a nucleaiing or "seeding" agent. In most cases, when a quantity of water is cooled for the purpose of freezing it, a temperature well below 32F is required to iniliate freezing. A temperature as low as 25F is not at all 30 unusual. This phenomenon of liquid water existing below 32F is known as supercooling and is the rule, raiher than Ihe exception. In order for ice crystals to form in water cooled to - 1 - ~

1~9009 32F or below, initial nucleation musl occur. Initial nucleation is usually a random event, occurring at no pariicular temperature, and may be Iriggered, for example, by small foreign particles, mold irregularities, or mechanical movement.
In the case of a foreign particle as a nucleating agent, the closer the crystal structure of the foreign particle to the crystal structure of ice, the more effective it is and ihe less supercooling required before freezing occurs. In any event, the lower the temperature, the easier it is IO initiate ice crystal formation. If the temperature is lowered sufficient-ly, eventually an initial ice nucleate forms spontaneously.
It should be noied that, once an initial "seed" ice crystal is formed, the entire quantity of water, if at 32F or below, can freeze with no further difficulty.
In an automatic icemaker of the above-described Iype, the thermostat which initiates eje~tion of the ice pieces from the mold cavities is Iypically set at 16F wilh a tolerance of - 3F. As mentioned above, when the mold cools down to the set temperature, it is assumed that water in the mold cavilies is complelely frozen into ice. However, due to the supercooling effecl, the mold and the liquid water in the ice-forming cavities can remain liquid even down to the temperature at which i~ is assumed that ice has been formed, and premature initiation of the ice-harvesting cycle occurs.
This is particularly likely when a particular thermostat sample happens to respond to a temperature at the high end of the tolerance range, that is, 19F.
When this premature initiation occurs, the ejecting pads in the bottom of Ihe ice-forming cavities rise up through liquid water, of course not removing any ice piece and having no real effect. When the next metered quantity of water enters the icemaker, since the cavities are already full, waler ~119009 simply overflows in~o ihe ice~storage bin below, resulting in an undesirable congealed mass of ice.
This problem of liquid waier entering the ice-siorage bin is particularly insidious because it occurs so infrequently, perhaps only once in every three of four hundred complete operating cycles in parlicular icemaker samples which are prone IO it. As a result, Ihe true cause is not appareni, especially since the sequence of events is rarely actually observed in an automatic icemaker. In an effort lo "repair" Ihe icemaker, parts such as switches and solenoid valves may be replaced, only to have another quantity of water mysteriously discharged into the ice-storage bin months later.
One way to make it statistically unlikely for super-cooling lo cause any problem is simply to employ a thermostat set IO a very low temperaiure, for example 10F or lower, since ii is unlikely that supercooling would continue to such a low lemperature. The disadvantage of this approach lies in a decreased rate of ice production. It simply takes the mold and water or ice contained therein longer to reach such a low temperature, with no attendant advantage if ice has in fact formed.
Another approach mighl be the use of a particular chemical nucleating or "seeding" agent such as silver iodide or lead iodide. Such substances are known to iniiiate crystal-lization, causing liquid water to freeze into ice reliably at a relalively high temperature (still under 32F). While it mighl be possible to include such a nucleating substance wilhin an icemaker mold, there are certain drawbacks to such an approach. For example, the substance chosen must have very low solubility in water so as not to be dissipated and, of course, nust be non-toxic. Furlhermore, no such material is 0~

as effective as ice itself in nucleating water close to 32F.
This follows from the fact that these substances can only approach the structure of ice, but cannot be identical.
U.S. Patent No. 4,059,970 - Loeb, dated November 29, 1977, assigned to Ihe General Electric Company,the assignee of the present invention, disclosed means for retaining an ice piece that is in communication with at least one of che icemaker mold cavities that provides a seed ice crystal to initiate freezing of the water in the ice forming cavities. U.S. Patent No. 4,062,201 - Schumacher et al, dated December 13, 1977, assigned to the General Eleciric Company, the assignee of the present invention, discloses a waier-carrying member having its first end in fluid communica-tion with at leasi one of Ihe icemaker mold cavities and posi-lioned to be wetted by the water therein, the second end projects into ~he cold air within the freezer.
Accordingly, it is an object of the invenlion to minimize supercooling of the mold water in a refrigerator automatic icemaker. It is another object of the invention to provide apparatus for use in a batch type auiomatic icemaker to reliably provide a "seed" crystal of ice to promote freezing of the mold water at a iemperature just under 32F.
It is still another object of the invention to minimize supercooling of icemaker mold water in an automatic icemaker and at the same time improving the rate of ice production.
These and other objects are accomplished by the invention in which a batch type automatic icemaker, for example of the above-described type, is provided with a thermal member having a first end that is arranged in communicaiion with at least one of the ice forming cavities at a posilion below the level of the water therein, and a ~i~95~9 second end having a thermal mass substantially greater than the firsl end that is arranged in the cold air within the freezing compartment. The relaiive smaller mass of the first end is ~cooled by the larger mass at a faster rate than the water and the cavity to a temperature sufficiently low to reliably provide a seed ice crystal on the first end to initiate freezing of water in Ihe cavily with a minimum of supercooling.
While the novel features of ~he invention are set forth with particularity in the appended claims, the invention, both as to organization and content, will be better understood and appreciated, along with other objects and features thereof, from the following detailed description taken in conjunction with the drawings, in which:
Figure 1 is a side elevational view of a refrigera-tor aulomatic icemaker with a portion thereof cut away in partial section;
Figure 2 is a seclional view along Line 22 of Figure l;
Figure 3 is a graph plotting mold temperature against time ihroughout one operating cycle in a typical prior art icemaker not including the present invention;
Figure 4 is a graph showing an actual distribution of the temperatures at which freezing began over a number of operating cycles in an actual prior art icemaker not including ihe present invention;
Figure 5 is a graph similar to that of Figure 2 but illustrating a Iypical temperature versus time plot of an icemaker including the present invention; and Figure 6 is a graph similar to that of Figure 3 showing a distribulion of temperatures at which freezing is iniliated in an icemaker including the present invention.

lll9QOg Referring now to the drawings wherein identical reference numerals designate identical or corresponding elements in the various views, in Figure 1 there is generally shown an automalic icemaker 10 including an aluminum mold 12 having generally cylindrical ice-forming cavities 14 through 18 arranged in a straight line and separated from one another by walls 24 which include vertical passages providing means for ihe flow of water from one cavity to another during the mold-filling operation. Aluminum heat exchange fins 25 (Figure 2) are formed on the rear of the mold 12 for an improved rate of cooling. A plurality of ejection pads or pislons 26, which to a substantial extent form the bottoms of the cavities 14 through 18, are interconnecied by a bar 28 slidably received in the passages in the walls 24.
A mechanism including power and conlrol means for operating ihe icemaker is generally contained within a housing 30 secured to one end of the mold 12. As part of the control means, a temperature responsive switch element or thermostat 32 is disposed in thermal contact with the mold 12 to initiate harvesting of the ice pieces when they are formed. Conductors 34 and 36 connecl the thermostat 32 to circuitry (not shown) for energizing a drive motor (not shown) included within the housing 30. The motor is operatively connected through drive means including a lever 38 and a rod 40 designed to raise the pads 26 and ice pieces carried thereby up out of the ice-forming cavities 14 Ihrough 18. In order to warm the mold 12 slightly to free the ice pieces for easy removal from the ice-forming cavities, a heating element 42 thermally contacts the lower poriion of ihe mold 12 and is electrically connected so as to be energized along with the motor. An elongate rake or sweep arm 44, also connected to the mechanism within the housing 30, is provided to sweep the ice pieces which have ~1~9~09 been raised by the pads 26 to the lop of the mold 12 off into an ice-storage bin (not shown).
At the other end of the mold 12, a funnel 46 is positioned to receive metered quantities of tap water for filling the ice-forming cavities 14 through 18. An electrically operaied solenoid valve (not shown) connected io the icemaker control means controls the water entering the funnel 46.
In the general operation of the icemaker 10 as thus far described, an operating cycle begins with a metered quantity of water entering through the funnel 46 to fill the ice-forming cavities 14 through 18. A representative tempera-ture for tap water entering the icemaker is 50F. The entire mold 12 warms quickly up to nearly the water temperature.
As the mold 12 and the water within the cavities lose heat to the cold air within the freezer, the freezer air iemperature being typically 0F, the mold and water temperature gradually decreases. At some temperature below 32F, the water in the ice-forming cavities begins to freeze and eventually becomes compleiely frozen. When the mold temperature reaches approximate-ly 16F, the thermostat 32 initiates harvesiing of the icepieces. The harvesting operation includes energizing of the heating element 42 to free the ice pieces from the cavities, ejection of the ice pieces by movement of the pads 26 from their lower positions in the bottom of the cavities to a raised position slightly above the upper surface of the mold 12, pivotal movement of the sweep arm 44 across the top of the mold for engaging the ejected ice pieces and sweeping them from ihe moldr and return of the sweep arm 44 and the pads 26 to their normal positions. This is followed by the intro-duclion of another metered quantity of water through ihefunnel 46 inio the ice-forming cavities to begin the next operating cycle.

1~9009 A more detailed description of this general type of icemaker and its operation may be had by reference to the above-mentioned U.S. Patent Nos. 3,163,017 and 3,163,018.
Referring now to Figure 3, there is illustrated a plot of mold temperature versus time throughout one operaiing cycle, beginning with the filling of the ice-forming cavities 14 through 18 and ending with harvesting, in a typical prior art automatic icemaker. While the exact length of one such cycle depends upon factors such as temperature of incoming water, temperature within the freezing compartment, and the amount of air circulation directly over the icemaker, a typical length of time is forty minutes. Mold temperatures are represented on the vertical axis of the graph, with a hori-zontal line 48 extending from the 32 point to indicate the theoretical freezing point of water and a dash horizontal line 50 extending from 19 to indicate the upper end of the lolerance range of a typically-employed, temperature-responsive switch element such as the thermostat 32 (Figure 1). As a practical matter in mass production, suchthermostats are acceptable when they respond to any temperature within a predetermined range of temperature, for example 16 - 3F.
Considering Figure 3 in detail as it relates to the operating cycle of the icemaker, the solid line 52 is the actual plot of temperature versus time. At the point 54 when lap water initially enters the mold cavities, the water temperature in the mold cavities is approximately 50F, more or less, depending upon the actual temperature of the incoming water and the mass and initial temperaiure of the mold 12.
The mold and the water gradually cool, as shown by the line segment 56. At the point 58, the mold and water temperature reach and pass through 32F, but no freezing occurs. A

region of supercooling is entered, represented by line 111900'~

segmenl 60. During this lime, water in the molcl cavities remains liquid. When the waler temperalure reaches 20, indicated by point 62, an initial ice crystal is formed and rapid formation of ice in the cavities results. Due to communication between ihe cavities, an initial ice crystal forming anywhere within any one of the cavities is effective to cause ice cryslallization throughout. The formation of the initial ice crysial is a very random event, and the temperalure at which it occurs cannot be predicled with certainty in any given cycle. The same icemaker, in successive cycles, may initiale formation of ice crystals at a temperature anywhere within a range beginning at 32F and extending downward hrough 20F.
Once ice cryslal formation is initiated, due to the heat of fusion released by the water as it freezes inlo ice, Ihe water and mold temperature rises rapidly to 32F. This rapid rise in temperalure (from poini 62 to poinl 64) is a sensitive indicator of actual ice formalion, and is confirmed by visual observation. The ice pieces form by freezing from the outside in, and until each piece is frozen all the way through to the center, the temperature remains near 32F. As soon as the water is all completely frozen, beginning at the point 66, there is no more heat of fusion to overcome and the temperature again rapidly falls until it reaches 19F (point 68), whereupon the thermostat 32 initiates the harvesling cycle.
In Figure 3, it will be apparent that the point 62 is only 1 degree higher than the 19 line 50. If the super-cooling region 60 had continued just a bit fariher, the thermo-stat 32 would have prematurely initiated the harvesting cycle.Since the pads 26 would be moving upward through liquid water, and not against ice pieces, the water would remain in ihe _ g _ 1119~09 mold. When the next metered quantity of water entered through the funnel 46, the water, having no place to go, would flow into the ice-storage bit (not shown) disposed below the icemaker 10, eventually freezing into a solid lump along with any ice pieces previously stored therein. Sometimes the mechanical movement of the pads 26 up through the supercooled water in the ice-forming cavities is sufficient to trigger ice crystal formation. Even though ice rapidly forms, at this point it is too late. At best, there is only time for a "slush" to form before the pads 26 complete their upward travel.
In Figure 4 there is shown a typical distribution of temperatures at which freezing began over successive operating cycles in the same icemaker. This chart was compiled by continuously measuring and recording the mold temperature to produce plots such as Figure 2, and specifically recording the temperature represented by point 62. As shown in Figure 4, the distribution is quite spread out, indicating that formation of the initial ice crystal to trigger complete freezing is most likely to occur somewhere between 29 and 25F, but can be much lower in isolated instances.
Referring to Figure 2 there is shown a portion of the icemaker including one embodiment of the present invention. The icemaker includes means contemplated by the present invention for reliabIy freezing of water in the ice-forming cavities with a minimum of supercooling in the succeeding icemaker operating cycle.
The particular means included in the ice-maker comprises a member 70 having a first and second ends or portions 72 and 74 respectively. The first end 72 is in fluid communication with the ice-forming cavity 14 for contacting the water therein. The first end 72 is positioned in the cavity wall so that the surface ofits distal end as shown in Figure 2 is isolated from the mold 12 A

1~19009 by a member 73. The second end 74 projects into the cold air within the freezing compartment. Preferably, the second end 74 is located so as to be exposed directly to fan-forced cold air emerging from the refrigeration evaporator which is a part of the refrigerator within which the icemaker is installed.
The particular member 70 illustrated is constructed of a material having high conductivity such as metal. The first end 72 and more particularly as shown in Figure 2 the surface thereof, which is in contact with water in the cavity, is of a substantially smaller mass than the second end 74 which is exposed to air temperatures in the freezing compartment. Through natural conduction, the temperature of the relatively small end 72 is maintained or lowered by the large end 74 to a below freezing temperature sufficiently low enough to reliably provide a seed ice crystal on the end 72 to initiate freezing of water in the cavity with a minimum of supercooling.
In the operation of the icemaking 10, when the mold cavities, including cavity 14, are filled with water, the small end 72 comes in contact with a small quantity of water therein. Due to the low thermal mass of the small end 72 and its thermal isolation from the mold 12, it will be rapidly cooled to very near the temperature within the freezing compartment of the refrigerator. Since this is typically 0F, even if some supercooling does occur, it is quite unlikely that the supercooling region will extend all the way down to this low temperature. Consequently, a "seed"
ice crystal is reliably formed and, as the entire mold 12 cools, this initial crystal will grow and promote crystal-lization and freezing of the water in the mold cavities at a temperature only slightly below 32F, with a minimum of supercooling of the water in the mold cavities.

)09 Referring now to Figure 5, there is illustrated a plot comparable to Figure 3 bu~ illustrating the benefit derived from the use of the present invention. In Figure 5 a point 106 at which ice forming is initiated is consistently about 28 or 29F, well above the 19F set poinl of the thermostai 32. This provides a considerable margin of safety insofar as minimizing the chance of supercooling. Further-more, if desired,the set point of the thermostat 32 can be raised above 19F for increased ice produclion rates.
Increased ice production can result because time is not wasted chilling ice pieces further once they have already become frozen. However, there is an upper limit above which the temperature set point cannot be raised without the risk of ejecting only partially frozen ice pieces. Since the ice pieces freeze from the outside in, and the ice itself is somewhat of a thermal insulator, the outer portions of ice pieces as they are forming may be lower in temperature than the still unfrozen water in Ihe center. Keeping the set point sufficiently low, for example below 25F, insures that suffficient time is allowed for thorough freezing of the ice pieces.
Referring now to Figure 6, there is graphically illustrated a distribution similar to that of Figure 4, showing Ihe lemperatures at which ice formation began during ea~h of an actual series of consecutive icemaker operating cycles. As shown, when the present invention is employed, freezing consistently occurs at or above 28F.
It should be apparent to those skilled in the art that the embodiment described heretofore is considered to be presently preferred form of this invention. In accordance with the Patent Statutes, changes may be made in the disclosed apparatus and the manner in which it is used without actually deparling from the true spirit and scope of this invention.

Claims (3)

The embodiments of the invention in which an exclu-sive property or privilege is claimed are defined as follows:
1. In a batch type automatic icemaker adapted for installation in the freezing compartment of a refrigerator and including a mold having an ice-forming cavity having side walls, means for filling said cavity with water, control means, and means responsive to the control means for removing ice pieces from the cavity, the improvement comprising:
a thermal member having first and second ends, said first end in combination with the cavity at a position below the level of water therein with the surface thereof being substantially flush with one of the side walls of said cavity and being substantially smaller than said one side wall of said cavity, and said second end having a thermal mass substantially larger than said first end projecting into the cold air within the freezing compartment, means thermally isolating said first end from said mole;
whereby due to its relatively small mass and its thermal isolation relative to said cavity said first end is cooled by conduction through said large second end at a faster rate than the water and the cavity to a temperature sufficiently low to reliably provide a seed ice crystal on said first end to initiate freezing of water in the cavity with a minimum of supercooling.
2. An icemaker according to claim 1 wherein said first end of said thermal member is secured to said mold.
3. An icemaker according to claim 2 wherein said thermal member is metallic.
CA000348193A 1980-03-21 1980-03-21 Automatic icemaker including means for minimizing the supercooling effect Expired CA1119009A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA000348193A CA1119009A (en) 1980-03-21 1980-03-21 Automatic icemaker including means for minimizing the supercooling effect

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CA000348193A CA1119009A (en) 1980-03-21 1980-03-21 Automatic icemaker including means for minimizing the supercooling effect

Publications (1)

Publication Number Publication Date
CA1119009A true CA1119009A (en) 1982-03-02

Family

ID=4116531

Family Applications (1)

Application Number Title Priority Date Filing Date
CA000348193A Expired CA1119009A (en) 1980-03-21 1980-03-21 Automatic icemaker including means for minimizing the supercooling effect

Country Status (1)

Country Link
CA (1) CA1119009A (en)

Similar Documents

Publication Publication Date Title
US4261182A (en) Automatic icemaker including means for minimizing the supercooling effect
US4059970A (en) Automatic icemaker including means for minimizing the supercooling effect
US4062201A (en) Automatic icemaker including means for minimizing the supercooling effect
RU2434187C2 (en) Refrigerating device with ice generator and ice preparation method
US20080092567A1 (en) Ice maker with ice bin level control
CN102405383A (en) Ice maker control system and method
US5207761A (en) Refrigerator/water purifier with common evaporator
US2970453A (en) Automatic ice maker
US4884413A (en) Ice machine
US4265089A (en) Ice making apparatus and method
US4370865A (en) Ice-making and fresh water dispensing apparatus
CA1119009A (en) Automatic icemaker including means for minimizing the supercooling effect
US3306072A (en) Hydraulic ice maker
US2717499A (en) Ice maker
US6490873B2 (en) Ice maker and method of making ice
KR20180117790A (en) Ice maker and refrigerator including the same
US4741169A (en) Ice maker safety control
US3803862A (en) Refrigerator including automatic ice maker
US2955442A (en) Automatic ice maker
US3034312A (en) Automatic ice maker control means
US3005322A (en) Automatic ice maker
US2773354A (en) Refrigerator defrost termination control system
US2319349A (en) Refrigeration apparatus
EP0223743A1 (en) Cold storage plate for freezers
US3149473A (en) Automatic ice making devices

Legal Events

Date Code Title Description
MKEX Expiry