CA1107897A - Foamable resin resole composition - Google Patents

Foamable resin resole composition

Info

Publication number
CA1107897A
CA1107897A CA314,550A CA314550A CA1107897A CA 1107897 A CA1107897 A CA 1107897A CA 314550 A CA314550 A CA 314550A CA 1107897 A CA1107897 A CA 1107897A
Authority
CA
Canada
Prior art keywords
composition
resole resin
resole
group
foam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
CA314,550A
Other languages
French (fr)
Inventor
Ronald H. Dahms
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Solutia Inc
Original Assignee
Monsanto Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Monsanto Co filed Critical Monsanto Co
Application granted granted Critical
Publication of CA1107897A publication Critical patent/CA1107897A/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0066Use of inorganic compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2361/00Characterised by the use of condensation polymers of aldehydes or ketones; Derivatives of such polymers
    • C08J2361/04Condensation polymers of aldehydes or ketones with phenols only
    • C08J2361/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Case No. 06-12-0522 APPLICATION FOR
LETTERS PATENT
FOR
FOAMABLE RESOLE RESIN COMPOSITION

ABSTRACT OF THE DISCLOSURE
This invention relates to an improved foamable resole resin composition comprising a resole resin, a blowing agent and a surfactant wherein said improve-ment comprises incorporation dispersed metal powders in said composition providing a foamable resole compo-sition curable to a non-corrosive foam. Methods for preparing, foaming and curing said non-corrosive foams are disclosed.

Inventor: Ronald H.Dahms

Description

~1~?7~3~7 AN IMPROVED FOAMABLE RESOLE RESIN COMPOSITION
BACKGROUND OF THE INVENTION
Foamable phenolic resole resin compositions are known comprising a resole resin, a blowing agent and a surfactant.
U. S. P. 3,389,094 discloses such systems. Such compositions have been optimized by the selection of the blowing agents and surfactants to improve foamability and the structure of the foams.
Such compositions are based on incompletely condensed phenolic resole resins of phenol and formaldehyde. When such compositions are mixed with an acid catalyst and a blowing agent, an exothermic reaction with further condensation causes libera-tion of gas by the blowing agent. The curing resin has an in-creased viscosity which prevents the escape of said gases and the composition expands to a foam with a substantially closed cell structure. Finally, the resin cures completely to a rigid foam of great utility for insulation uses. The cured phenol/al-dehyde resole resins have fire and smoke retardant properties which can be increased further with certain additives giving added utility.
Acids are used to foam and cure such foams, hence, leave the cured foam with ~4 pH below about 3 which is corrosive to metal building materials when the foams are used as building in-sulation. It is the objective of the present invention to pro-vide foamable resole resin compositions that are curable to non-corrosive foams.
- 2 -~7~

The invention relates to an improved foamable resole resin composition curable to a non-corrosive foam, comprising a resole resin, a blowing agent and a surfactant, wherein the improvement comprises, having present in said composition dis-persed metal powders selected from the group consisting of zinc, iron, magnesium, calcium and barium and mixtures thereof.
The invention also relates to an improved process for preparing a foamable resole resin composition, curable to a noncorrosive foam, comprising blending a resole resin, a blowing agent and a surfactant wherein the improvement com-prises dispersing in said composition a metal powder selected from the group consisting of zinc, iron, magnesium, calcium and barium and mixtures thereof.
The invention also relates to an improved process for foaming foamable resole resin composition, the improvement comprising: adding an acid catalyst to the above composition and allowing said composition to foam forming a cellular material.
Any conventional water soluble resole resin can be used. During the normal manufacture of single stage resole-type liquid phenolic resins a basic catalyst is utilized. To stabilize the finished resin, the base is usually neutralized at the end of the manufacturing process. The neutralization results in the formation of either a soluble or insoluble salt depending on the base catalyst and neutralizing acid employed. Since the presence of excess salt can be deleter-ious to certain end use properties, it is often removed from the resin by techniques such as insoluble salt filtration or ion exchange. From both a cost and pol-~7~

lution criteria, it is desirable to avoid removing the salt from the resin. The aqueous resole resin solutions preferably are those that have been neutralized so as to provide particular in-ert salts that do not need to be removed but enhance the proper-ties of the aqueous resole resin solutions.
The resole resins are formed using bases containing poly-valent cations such as calcium and barium. The cation is con-verted to a highly insoluble oxalate salt at the end of the manu-facturing process. The cation so inerted does not interfere with key application properties of the resole resin.
The calcium or barium oxalate is formed in situ in the resin as very fine insoluble particles which results in very stable dispersions with no tendency to settle or coagulate. The highly insoluble nature of these salts make them, in principle, a highly inert dispersed filler with little tendency to adversely affect key properties, e.g. moisture resistance. Because the dispersions are colloidal, in nature, the resins can be pumped, sprayed and generally handled like salt free resins.
The combination of the fine particle calcium or barium oxalate dispersion with a phenolic resole resin produces an un-expected enhancement in the viscosity of the foaming composi-tion. The use of the dispersed salt gives an alternative to viscosity control which is normally controlled by varying the molecular weight and solids content of the resin itself.
Aqueous resole resin solutions containing dispersed oxa-late salts are basically resole resins prepared using calcium or barium hydroxide and neutralized with oxalic acid or ammonium oxalate.
The base catalyzed reaction of from 1.3 to 2.8 mols of 7~

formaldehyde with one mol of phenol is carried out in the pres-ence of calcium or barium hydroxide. Additional bases such as sodium hydroxide or organic amines may be added as cocatalysts and pH regulators for the resin system. Typically, between 0.02 and 0.30 mol equivalents of total base per mol of original phenol are utilized. The reaction is carried out at a temperature range of from 40 to 80C.
The resole reaction is preferably carried out with aqueous formalin solution of between 30-70% formaldehyde with completed reaction solids adjusted to 60-99% by vacuum stripping to remove water or by addition of water.
Aqueous resoles containing dispersed salts can be used in the presence of variety of formaldehyde scavengers and resole co-reactants. Suitable formaidehyde scavengers and resole co-reactants include nitrogen containing organic compounds solublein the resole, or molecular weight less than 300, containing at least one NH group per molecule reactive with formaldehyde. Ex-amples include ammonia, primary and secondary amines, urea, sub-stituted ureas, primary amides, dicyandiamide, guanidines and aminotriazines such as melamine, guanamine and benzoguanamine.
Depending on the advancement of the resole it may be preferably to add the scavengers and resole coreactants just prior to end use to avoid storage stability problems such as rapid loss of resole water tolerance or the precipitation of resin components.
Alternatively, the formaldehyde scavenging reaction is carried out at the end of the resole reaction, prior to neutralization with oxalate, preferably at a temperature in the range of 20 to 60C., to minimize oligomerization of the resole. The amount of coreactant added can vary within very wide limits up to 1.0 mol 78~7 per mol of phenol in the original reaction mixture. It is pre-ferred to use between 0.5 and 1.5 mol equivalents of scavenger per mol of free formaldehyde present at the end of the resole reaction.
The preferred catalyst for resole stage is barium or cal-cium hydroxide. Supplementary bases which can be used with the main catalyst include alkali metal hydroxides such as lithium hydroxide, sodium hydroxide and potassium hydroxide, alkali metal carbonates such as sodium carbonate and potassium carbonate, aqueous ammonia and amines of molecular weight less than 300.
The process can be carried out wherein said catalyst comprises said alkaline earth hydroxides used in combination with a com-pound selected from the group consisting of lithium hydroxide, sodium hydroxide, potassium hydroxide, sodium carbonate, potas-sium carbonate, organic amines, aqueous ammonia and mixtures thereof wherein about 0.02 to 0.30 mol equivalents of combined catalyst are used per mol of phenol charged, said alkaline earth catalysts constituting about 50 to 95% of the mol equivalents provided by said combined catalyst.
At the end of the reaction the barium and calcium hydrox-ide are neutralized with sufficient oxalate to yield a highly insoluble dispersed salt and adjust the pH within the range of
3.0 to 8.5. The supplementary bases are partially neutralized as necessary and function to control the resin pH between 3 and 8.5. Preferably, the pH is adjusted between 6.0 and 8Ø
The formation of the insoluble oxalate can conveniently be done by adding solid oxalic acid (usually oxalic acid dihy-drate) ammonium oxalate or water solutions of these to the re-sole system. Factors such as agitation and temperature are im-S~

portant in obtaining a fine particle dispersion. Neutralization is carried out in the range of 25 to 75C., preferably 30-60C., wherein precipitation of the inert salts occur. Generally, the higher the temperature the finer the precipitated particle.
Agitation should be consistent with the mixing required for a given vessel and known engineering practices for stirred tanks.
Generally, the higher the agitation the smaller the particle size and can be adjusted to an intensity consistent with the particle size required by simple experimentation for a specific stirred tank.
The oxalate salt formed in water dispersion are charac-terized by excellent stability with regard to sedimentation and shear. Particle size is extremely small being below 2~4 and normally averaging from about 0.01 to 1.0,4 , preferably 0.02 to 0.8~ .
The inert salts unexpectedly do not flocculate or pre-cipitate and are stable in water solutions of the resole resins of this invention if the resole resin content is from about 40 to 98% by weight. If the solutions are diluted to lower than about 40% solids then flocculation and precipitation of the salts can occur. Hence, although the resole resins as resins are highly dilutable, and have a water tolerance greater than 500% the aqueous resole solutions containing the inert salts are not since the inert salts will flocculate in solutions contain-ing less than about 40% by weight of resole resins solids. Theresole resin solutions having dispersed inert salts can be made dilutable by the addition of an anionic dispersing agent to in-hibit the flocculation of the salts.
The preparation of the resole resin solutions preferably 8~7 used in the present composition have been disclosed in U. S.
Patent No. 4,011,186.
The resole resins then are solutions having varying amounts of water with a resin solids content of 60 to 99%. How-ever, in foamable compositions, the preferred resole resin solu-tions have water contents of less than 10%. A water-content of more than 10% in the resin is detrimental in that it absorbs too much exothermic heat in the acid catalyzed blowing step and thus less expansion takes place whereby undesirably high apparent density products of non-uniform texture and large voids are ob-tained. When cellular structures of very low apparent density (0.2 to 2.0 pounds per cubic foot) are to be made, a water-con-tent less than 5% in the "A" stage reaction product is preferred.
The resoles may have a viscosity of from about lO0 to 200,000 centipoise preferably 200 to 4000 cps. If the viscosity is too low, there is a tendency for the foaming agents to vola-tilize in the form of large bubbles. Foams thus produced are characterized by an open cellular structure and large voids which are not desired in foams used for insulating purposes.
The viscosity range required for the particular foaming agent used can be determined by one skilled in the art. The size of the cells in the above-described foaming materials is determined by a number of other factors: the size of the cells depends for one thing on the nature and quantity of the blowing atent used, the reaction temperature, and the hardening characteristics of the resin. Thus, by changing the type and quantity of the foam-ing or interlacing agent, the temperature employed and the compo-sition of the resin, it is possible to produce foams of different density, hardness and rigidity, i.e., foams having pores of dif-i~: ~d~ ~ 7 ferent sizes.
The resoles preferably used in the present composition are the reaction product of a phenol and an aldehyde. Generally, from about 1.3 to 2.8 mols of aldehyde per mol of phenol are em-ployed. The lowest density foamed structures (0.2 pound percubic foot) have been obtained when condensation products were used based on 1.3 to 1.6 mols of formaldehyde reacted per mol of phenol. Phenolic condensation products in which more than 1.6 mols and up to 3 mols of formaldehyde have been reacted with the phenol tend to release loosely bound formaldehyde during the acid-catalyzed reaction. Since this release of formaldehyde is an endothermic type of reaction, it correspondingly reduced the amount of exothermic heat of reaction caused by the acid cata-lyst. Therefore, there is less heat available for vaporizing the volatile matter in the reaction mixture whereby a lower degree of expansion occurs resulting in cellular structures of higher ap-parent densities, e.g., 2 to 20 pounds per cubic foot. On the other hand, "A" stage condensation products having a reacted formaldehyde ratio between 1.0 and 1.2 mols per mol of phenol tend to harden before maximum expansion can occur and have less exothermic heat; this is reflected by a somewhat higher density of the foamed structures made therefrom.
Typical of the phenols that are useful in producing suitable resole resins are those represented by the formula OH

R' ~ R' R ~ R
I

g 7~G~7 wherein at least two groups represented by R' are hydrogen atoms and the groups represen-ted by R and any remaining group repre-sented by R' are hydrogen atoms or groups which do not impede the condensation of the phenol with an aldehyde (e.g., a substituent such as halogen atom or a hydroxy, alkyl or aryl group). Illus-trative of suitable phenols are phenol, cresols (particularly m-cresol), xylenols (particularly 3,5-xylenol) and dihydroxyben-zenes (particularly resorcinol). Typical of the aldehydes that can be useful in producing suitable resole resins are formalde-hyde (including the oligomers and polymers of formaldehyde suchas trioxane), furfural, sugars and cellulose hydrolyzates. Such aldehydes can be employed without dilution or dissolved in suit-able solvents including aqueous alcohols (e.g. aqueous methanol, n-propanol, isobutanol or n-butanol).
FOAM PREPARATION
The manufacture of the foams is generally performed by thoroughly mixing a phenolic resole resin with a surface active substance, a metal powder to form said foamable resole resin com-position. When uniformly mixed an acid curing agent is uniformly mixed with said composition and the composition allowed to foam and cure using the reaction exotherm or applied heat. The tem-perature of the reaction is generally kept under 100C. if a closed cell foam is desired. Higher temperatures can be used to form open-celled foams.
The foaming of the phenolic resin is performed after the individual components have been mixed together, the blowing agent being transformed to the gaseous state. Depending on the compo-sition of the mixture to be foamed, the foaming takes place at temperatures between 0 and 100C., preferably at 15 to 60C.

The resin can be foamed either in open or in closed molds to pro-duce bodies of a shape corresponding to the shape of the open or closed mold selected.
It is also possigle to perform the foaming process con-tinuously in a double band press. In this case the componentsare proportioned and mixed by means of a known automatic pro-portioning and mixing apparatus and the mixture is fed continu-ously to the bands of a double band press by means of a charging device moving crosswise to the direction of movement. Then the mixture is passed through a gap of selectable thickness formed between one roll and a support which may, if desired, also be a roll. The rolls can be preheated if desired. By this process boards of selectable thickness are obtained.
The hardening is generally so controlled that, as soon as the desired foam volume is reached, the foam structure has solidified to such an extent as to forestall collapse.
SURFACTANTS
Improvements in foam cell uniformity and size are se-cured by the use of a surface active agent. Particularly useful are the non-ionic types such as polyethers and polyalcohols, such as condensation products of alkylene oxides (such as ethylene oxide and propylene oxide) with alkyl phenols, fatty acids, alkyl silanes and silicones and like materials, as is exemplified by such products as octadecyl phenol-ethylene oxide, decyl phenol-ethylene oxide sulfate and the low polymers of such materials aspolyoxyethylene dodecyl phenol, octyl phenol polyethylene glycol ether, ricinoleic acid polyethylene glycolate, stearic acid polyoxyethylene, glycolates and similar polyoxyethylates fatty acids and vegetagle oils as well as polyoxyethylated fatty acid il~78~7 esters as polyoxyethylene sorbitan monolaurate, polyoxyethylene sorbitan tristearate, polyoxypropylene sorbitan monolaurate, polyoxy(propylene-ethylene) sorbitan monolaurate and polyoxy-ethylene sorbitan pentaoleate; polyoxyethylene sorbitan mono-palmitate and siloxane-oxyalkylene block copolymers such as those containing a Si-0-C linkage between the siloxane and oxyalkylene . , .
;i ~ moieties and those containing a Si-C linkage between the silox-~ ane and oxyalkylene moieties. Typical siloxane-oxyalkylene ,. :
block copolymers contain a siloxane moiety composed of recurring ; lO dimethylsiloxy groups end-blocked with monomethylsiloxy and/or trimethylsiloxy groups and an oxyalkylene moiety composed of re-curring oxyethylene and/or oxypropylene groups end-blocked with s~ alkoxy groups. Similarly useful are the quaternary ammonium compounds with at least 2 alkyl groups attached to the nitrogen atom like cetyl dimethyl benzyl ammonium chloride, octadecyl ` dimethyl benzyl ammonium chloride, octadecanol-9-dimethyl ethyl ammonium bromide and diisobutylphenoxyethoxy ethyl dimethyl benzyl ammonium chloride and sorbitan fatty acid esters such as sorbitan monolaurate, sorbitan monopalmitate sorbitan mono-stearate, sorbitan trloleate and like esters.
- When present, these surface active agents can be em--~ ployed in any desired amount depending on what results are de-sired. They serve to aid the generation of smaller and more uniform cells. Best results seem to be secured in using amounts from 0.3 to about S% by weight of the agent based on the weight of resole resin with preferred results at between about 0.5 to 3% by weight. Certain surfactants may cause collapse of the foam if employed in too great a concentration and optimum con-centration may vary with the individual surfactant selected.

.

: .. - :
- - . ~

~L~78~i7 BLOWING AGENTS
The foaming agents which may be used to foam the resins of this invention include carbon dioxide liberating materials, low boiling aliphatic hydrocarbons, polyhalogenated saturated fluorocarbons and ethers. Exemplary of carbon dioxide, liberat-ing compounds are alkali and alkaline earth carbonates such as sodium bicarbonate or calcium carbonate which, in the presence of an acid, liberate carbon dioxide. Another group of blowing agents comprises low-boiling organic compounds, such as carbon-tetrachloride, ethylene dichloride, n-butyl ether, methylal, n-pentane, chlorofluoromethane or the like. These latter mate-rials are vaporized by the heat evolved in the condensation of the resin or by additionally supplied heat, thereby bringing about foaming of the liquid phenolic resin. Simultaneously with the foaming process, the hardèner present in the mixture pro-duces an increasing solidification and finally a hardening of the foam.
Fluorocarbon foaming agents which may be used include dichlorodifluoromethane, 1,2-dichloro-1,1,2,2-tetrafluoro-ethane, 1,1,1-trichloro-2,2,2-trifluoroethane, 1,2-difluoro-ethane and trichlorofluoromethane. The compounds should have boiling points ranging from about -30 to 125C. The blowing agents are employed in an amount sufficient to give the result-ant foam the desired bulk density which is generally between 0.5 to 10 and preferably between 1 and 5 pounds per cubic foot.
The blowing agent generally comprises from 1 to 30, and prefer-ably comprises from 5 to 20, weight percent of the composition.
When the blowing agent has a boiling point at or below ambient, it is maintained under pressure until mixed with the other com-7~ 7 ponents. Alternatively, it can be maintained at subambient temperature until mixed with the other components.
ACID CATALYSTS
As hardeners both liquid and pulverulent substances may be utilized. The quantity required partially depends on the foaming agent used. If the foaming agent consists of a solid salt which evolves gases, part of the acid is used to release the gases. If low-boiling solvents are employed as foaming agent, the proportion of hardener is lower in accordance there-with. In addition to mineral acids such as HCl, H2S04 and the like, water-soluble sulfonic acids are particularly well suited as water-soluble acids, i.e., those sulfonic acids where the sulfonic acid group is directly linked to an aromatic ring which may be substituted. Examples thereof include benzene sulfonic acid, p-toluene sulfonic acid., phenol sulfonic acid, cresol sul-fonic acid and the like. The aqueous solutions of these acids are mainly utilized as 40 to 70% by weight solutions. Some acids, such as p-toluene sulfonic acid, may also be used in the pulverulent foam as hardener. The quantity O r the hardener used varies between about 1 and 15% by weight, calculated as 100%
acid, based on phenol-resole resin.
The preferred sulfonic acid is a mixture of equal parts by weight of toluene sulfonic acid and xylene sulfonic acid, as described in Mausner et.al. U. S. Patent No. 3,458,449. Another foaming catalyst which has been found to give excellent results are novolac sulfonic acids, described in British Patent No.
1,283,113.
The catalyst is generally present in the minimum amount that will give the desired cream times of 10 to 50 seconds and _ 14 -firm times of 40 to 500 seconds to the reacting mixture. The catalyst, however, generally comprises foam 0.5 to 20, and preferably comprises from 1.0 to 15 weight percent based on the weight of the resole resin.
The following examples will further illustrate the present invention, however, it is to be understood that the scope of the invention is not limited by the examples.
METAL POWDERS
Corrosion resistance for the foamable composition and the cured foam is gained by dispersing particular powdered metals in the foamable resole composition. The powdered metals are selected from the group consisting of zinc, iron, magne-sium, calcium and barium or mixtures thereof. The particle size of such metal powders have been found to be most effective if they have a particle size of about -lOO mesh size, prefer-ably -140 mesh size, i.e., all particles pass through a 100 or preferably a 140 mesh screen. Larger particles may be used, however, larger particles detract from the appearance and physical properties of the foam. The mesh or sieve sizes dis-closed refer to U. S. Sieve Series of the U. S. Bureau of Standards.
The powdered metals can be dispersed in the resole com-position by conventional means such as stirred tanks or mixers, continuous ribbon blenders or mixers wherein the mixing agita-tion is sufficient to disperse the metal powder uniformly in the resole composition in amounts of 1 to 15% by weight, pre-ferable 2 to 10% based on the amount of acid used.
Phenolic foams are prepared by adding a strong acid catalys-t to a resole resin composition generally having 1 to _ 15 -~ 7~

20% by weight of a blowing agent and 0.3 to 5% by weight of a surfactant all based on said resole resin composition. Said acid catalyst is present in an amount of 0.5 to 20% by weight based on the weight of said resole composition. The acid cata-lyst brings the pH of the resole composition to generally less than a pH of 3 giving an exotherm to aid in blowing said foam and causing rapid methylene bridge formation to crosslink and cure the foam. The strong acids remain in the foam and are water leachable leading to corrosion problems.
Most basic materials if added to the resole composition before catalyst addition, e.g., metal oxides, hydroxides and carbonates react preferentially and rapidly with the acid cata-lyst reducing its effectiveness as a catalyst. It has been found that metal powders will unexpectedly allow the resin com-`~ lS position to foam and cure with acid catalysts yet yield a cured foam having a ph of about 5 to 10. Corrosion tests showed the ` foam to be non-corrosive as disclosed in the Examples.
`~ EXAMPLE 1 A base catalyzed aqueous resole resin solution is pre-pared by reacting 1.57 mol of aqueous formaldehyde (50%) per 1 mol of phenol in the presence of 0.035 mol of sodium hydroxide and 0.032 mol of calcium hydroxide, initially below 60C., to control reaction exotherm. The reaction is then conducted at 60-70C. range until the unreacted formaldehyde content drops below 0.5%. The reaction is cooled to 40C. and 0.033 mol of oxalic acid is added with agitation. The resulting resin has a viscosity of 450 cps.

.. .... , . ., : , ~7~v 7 A base catalyzed resole resin solution is prepared by reacting 2.54 mol of aqueous formaldehyde (50%) per l mol of phenol in the presence of 0.035 mol of sodium hydroxide and 0.14 mol of calcium hydroxide, initially below 60C., to control re-action exotherm. The reaction is then conducted at 70C., re-flux until the unreacted formaldehyde content drops to 2.3%.
The reaction is cooled to 50C., and 0.14 mol of oxalic acid is added rapidly with agitation. The viscous dispersion (Brookfield viscosity 3800 cps) is stable to storage at 0-10C., with no bottom settling.

To 100 parts of resole resin of Example 2 were added 10 parts of Freon 113(a) and 2 parts DC-193(b) surfactant and mixed. The Ultra TX(C) acid (50% in glycerine) was mixed in.
The latent acid neutralizers (metal powders) when used, were added before the acid. The following examples show the effect of latent acid neutralizers of this invention upon foam forma-tion, pH of foamed composition and corrosion of iron metal tabs in foamed composition.

_ o o U~ 0 ~ C ~ ~ ~ ~
E~ ~ ~ h ,~
~ ~ O O O O O O O ~1 0 0 0 0 0 ~ O O
~,H c~ C~ ec~

,_ a~ ~3 ~O y ~ Y Y x ~ ~ ~ Y ~ ~ Y x ~ Y Y
0.,l o o O o O O O o o o o o o o o O
l ~

~c~ r~ ~ c~ o o o o o o Xo X U

C
Q~ O
:~: U

3 ,~ U C E ~ Uc Uc o oC oa)C C O O
O ~: O -~ ~ ~1 0 ~ o ~
C ~ H ~ C ~1 ~JH H H C C~ ~ H H

a X ~ ~ a ,o~

"~ O U~ O

~r .~ - 18 -~7~ 7 _, ,~
a~
E~ h a ooooooo o ~:: ~ u~ a) a) h h h h h h h -1 O ~ ~ ~ h h S~ h h h h 0 h ~ ,1 O O O O O O O o o O
~1 ¢ G ~ ~: O u C) O CJ o O h C~ ~ O
C) O
~ 0 ~-J ~ ~ 3 0 :~ ~- a~ o c~, c~, ~ c~
~ c o ~ r~l h a~ ~ 0 ~ v ~ X O
o-,l OOOOOOOooo ~ ~ ~ ~1 0~
_ ~ rl ¢ ~ .~ o o o o o o o o o o ~ ~ C
X O X O ~ C`l C~ N C~lC~l C~l C~ ~rl ~
~1 ,r~ n~ O ~
C~ 0 o a) ~rlO Y
~ 0 0~l _ ~ a~ E
S ~ h,~: 2 ~1 0 a h ~1 0 ~1 CD C~ a) ~ O O O ~ h 0 b~ O
~ ~ ~ Y
g ,t ,I h U~

~ra ~-'1 ~: ~ 0 h ~ e a) ~
a~ ~ ~: ~I h O
h ~1 '~ S X-rl ~ 0 0 ~a ~ E~ ~ h 3 ~) o ~ o o r~ a~
O ~ ~ 00 bO ~ ~ .Q O ~ ~ O ~ O
11~ ¢ :~: X Z u~ c~ o o o ~
1 0 h ~1 a) I a~ E~ 0 ~ ~: ~ P. ,a h o~ O ~ ~ o :~
Ql O O ~ ~ S
F~ ~1 ~--I h o ~ a- o ~I c~ ~rl O
X

,_~_ _ _ ~ _ _ ~_ U~ o U~ o ,1 ~ C~

~;i - 19 -,, ,..~.

Claims (26)

The embodiments of the invention in which an exclusive property or privilege is claimed are defined as follows:
1. An improved foamable resole resin composition curable to a non-corrosive foam, comprising a resole resin, a blowing agent and a surfactant, wherein the improvement comprises, having present in said composition dispersed metal powders selected from the group consisting of zinc, iron, magnesium, calcium and barium or mixtures thereof, said blowing agent being a low boiling organic compound having a boiling point of about -30 to 125 degrees centigrade selected from the group consisting of aliphatic hydrocarbons, halogenated hydrocarbon ethers and mixtures thereof, said metal powders acting as latent neutralizers being present in said composition in amounts sufficient to provide said composition with a pH of about 5 to 10 when foamed and cured with an acid catalyst.
2. A composition of Claim 1 wherein said resole resin is contained in an aqueous solution having a pH of about 3 to 8.5.
3. A composition of Claim 1 wherein said resole comprises:
A. a resole resin having a number average molecular weight of less than about 300, a water tolerance greater than 50%, a combined formaldehyde to phenol ratio in the range of from about 1.0:1 to 2.9:1, and B. a dispersion of insoluble oxalate salt particles, wherein said resole being prepared with a catalyst comprising alkaline earth metals hydroxides selec-ted from the group consisting of magnesium, calcium, barium, strontium and mixtures thereof, said pH

being adjusted with a compound selected from the group consisting of oxalic acid, ammonium oxalate and mixtures thereof providing a stable disper-sion of insoluble oxalate salt particles of said alkaline earth metal ions in said solution, where-in said solution is stable to salt flocculation at a resole resin content of from about 60 to 99% by weight.
4. A composition of Claim 2 having an aqueous solution wherein said pH range is 6 to 8.5, the resole resin having an average molecular weight of from about 150 to 300, a water tolerance greater than 50%, a combined formaldehyde to phenol ratio of from about 1.0:1 to 2.9:1, wherein the inert oxalate salt is calcium or barium oxalate and wherein said resole resin is present in from about 60 to 99% by weight of said solution.
5. A composition of Claim 1 wherein said metal powders are present in said composition in amount of 1 to 15% by weight of said composition.
6. A composition of Claim 1 wherein said metal powders have a particle size of about -100 mesh size.
7. A composition of Claim 1 wherein said blowing agent is selected from the group consisting of carbon tetrachloride, ethylene dichloride, dichlorodifluoromethane, 1,2-dichloro-1,1,2,2-tetrafluoroethane, 1,1,1-trichloro-2,2,2-trifluoro-ethane, 1,2-difluoroethane, trichlorofluoromethane, pentane, N-butyl ether and mixtures thereof.
8. A composition of Claim 1 wherein said blowing agent is present in amounts of from about 1 to 20% by weight based on said composition.
9. A composition of Claim 1 wherein said surfactant is selected from the group consisting of polyethers, polyalcohols, siloxane-oxyalkalene polymers, quaternary ammonium compounds, sorbitan compounds and mixtures thereof.
10. A composition of Claim 1 wherein said surfactant is present in amounts of from about 0.3 to 5% by weight based on said resole resin.
11. A composition of Claim 1 wherein said metal powder is zinc.
12. A composition of Claim 1 wherein said metal powder is iron.
13. An improved process for preparing a foamable resole resin composition, curable to a non-corrosive foam, comprising blending a resole resin, a blowing agent and a surfactant wherein the improvement comprises dispersing in said composition a metal powder selected from the group consisting of zinc, iron, magnesium, calcium and barium or mixtures thereof, said blowing agent being a low boiling organic compound having a boiling point of about -30 to 125 degrees centigrade, said metal pow-ders acting as latent neutralizers being present in said composition in amounts sufficient to provide said composition with a pH of about 5 to 10 when foamed and cured with an acid catalyst.
14. A process of Claim 13 wherein said resole resin is contained in an aqueous solution having a pH of about 3 to 8.5.
15. A process of Claim 14 wherein said resole comprises:
A. a resole resin having a number average molecular weight is less than about 300, a water tolerance greater than 50%, a combined formaldehyde to phenol ratio in the range of from about 1.0:1 to 2.9:1, and B. a dispersion of insoluble oxalate salt particles, wherein said resole being pre-pared with a catalyst comprising alkaline earth metals hydroxides selected from the group consisting of magnesium, calcium, barium, strontium and mixtures thereof, said pH being adjusted with a compound selected from the group consisting of oxalic acid, ammonium oxalate and mix-tures thereof providing a stable disper-sion of insoluble oxalate salt particles of said alkaline earth metal ions in said solution, wherein said solution is stable to salt flocculation at a resole resin content of from about 60 to 99% by weight.
16. A process of Claim 14 having an aqueous solution wherein said pH range is 6 to 8.5, the resole resin having an average molecular weight of from about 150 to 300, a water tolerance greater than 50%, a combined formaldehyde to phenol ratio of from about 1.0:1 to 2.9:1, wherein the inert oxalate salt is calcium or barium oxalate and wherein said resole resin is present in from about 60 to 99% by weight of said solution.
17. A process of Claim 13 wherein said metal powders are present in said composition in amounts of 1 to 15% by weight of said composition.
18. A process of Claim 14 wherein said metal powders have a particle size of about -100 mesh size.
19. A process of Claim 14 wherein said blowing agent is selected from the group consisting of carbon dioxide, aliphatic hydrocarbons, chlorohydrocarbons, chlorofluorohydrocarbons, and mixtures thereof.
20. An improved process of Claim 13 wherein said blowing agent is present in amounts of from about 1 to 20% by weight based on said composition.
21. A process of Claim 20 wherein said surfactant is selected from the group consisting of polyethers, polyalcohols, siloxane-oxyalkalene polymers, quaternary ammonium compounds, sorbitan compounds and mixtures thereof.
22. A process of Claim 20 wherein said surfactant is present in amounts of from about 0.3 to 5% by weight based on said resole resin.
23. A process of Claim 20 wherein said metal powder is zinc.
24. A process of Claim 20 wherein said metal powder is iron.
25. A cured non-corrosive foam formed from the composi-tion of Claim 1 wherein the foam was cured with a acid condens-ing agent, said cured foam having a pH of 5 to 10.
26. A cured non-corrosive foam formed from the process of Claim 13 wherein the foam was cured with an acid condensing agent, said cured foam having a pH of 6 to 8.
CA314,550A 1977-11-16 1978-10-27 Foamable resin resole composition Expired CA1107897A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US85201077A 1977-11-16 1977-11-16
US852,010 1986-04-14

Publications (1)

Publication Number Publication Date
CA1107897A true CA1107897A (en) 1981-08-25

Family

ID=25312285

Family Applications (1)

Application Number Title Priority Date Filing Date
CA314,550A Expired CA1107897A (en) 1977-11-16 1978-10-27 Foamable resin resole composition

Country Status (3)

Country Link
AU (1) AU519814B2 (en)
CA (1) CA1107897A (en)
GB (1) GB2008120B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4525492A (en) * 1982-06-04 1985-06-25 Fiberglas Canada Inc. Modified phenolic foams

Also Published As

Publication number Publication date
GB2008120A (en) 1979-05-31
AU4159178A (en) 1979-05-24
GB2008120B (en) 1982-06-30
AU519814B2 (en) 1981-12-24

Similar Documents

Publication Publication Date Title
CA1084199A (en) Foamable resole resin composition
US4207400A (en) Foamable resole resin composition
US4511678A (en) Resilient foam based on a melamine-formaldehyde condensate
CA1151350A (en) Preparation of resilient foams based on a melamine/formaldehyde condensate
EP0382561B1 (en) Semiflexible or flexible resin compositions
US4207401A (en) Foamable resole resin composition
CA1068049A (en) Phenolic polymer, related products and processes thereof
BE1002739A6 (en) MAINLY phenolic foam cell formation CLOSED AND METHOD FOR MAKING THIS phenolic foam.
GB1562769A (en) Foamable resole resins
US4192923A (en) Amino resin foam, one-phase solution foam precursor and method of producing foam
CA1107898A (en) Foamable resole resin composition
EP0017488A1 (en) Phenolic foam materials and method of making same
US3872033A (en) Foamed reaction product of a resale with a sulfonated novolac
EP0579321B1 (en) Process for producing a mainly closed cell phenolic foam
GB2024226A (en) Foamable resole resin compositions containing dolomite
CA1107897A (en) Foamable resin resole composition
US4409361A (en) Fire retardant polymer resin
US6013689A (en) Method for making a closed-cell phenolic resin foam, foamable composition, and closed-cell phenolic resin foam
US3741920A (en) Manufacture of thermal shock resistant foams
US4471089A (en) Fire retardant polymer resin
US4640934A (en) Process for the preparation of cellular products and laminates based on furan prepolymers
JP4170163B2 (en) Phenol foam raw material composition, phenol foam using the same, and method for producing the same
DE1669795C3 (en) Process for the production of phenolic resin foam bodies
JP4776304B2 (en) Resin composition for foam production, foam production method using the composition, and foam
GB1604657A (en) Phenolic resins and products prepared therefrom

Legal Events

Date Code Title Description
MKEX Expiry