CA1103551A - Apparatus for automatically water charging a centrifugal fire pump - Google Patents

Apparatus for automatically water charging a centrifugal fire pump

Info

Publication number
CA1103551A
CA1103551A CA330,394A CA330394A CA1103551A CA 1103551 A CA1103551 A CA 1103551A CA 330394 A CA330394 A CA 330394A CA 1103551 A CA1103551 A CA 1103551A
Authority
CA
Canada
Prior art keywords
pump
vacuum
fire
water
switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
CA330,394A
Other languages
French (fr)
Inventor
Reuben E. Peterson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JENOFF Inc
Original Assignee
JENOFF Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JENOFF Inc filed Critical JENOFF Inc
Priority to CA330,394A priority Critical patent/CA1103551A/en
Application granted granted Critical
Publication of CA1103551A publication Critical patent/CA1103551A/en
Expired legal-status Critical Current

Links

Landscapes

  • Fire-Extinguishing By Fire Departments, And Fire-Extinguishing Equipment And Control Thereof (AREA)

Abstract

Abstract of the Disclosure The apparatus comprises a motor driven centrifugal pump having a suction line extending to a source of water which is located at a level below the pump. The discharge line of the pump extends to the area to be sprinkled in the event of fire.
A sight glass is provided at a remote location and has a vacuum line extending from the lower portion thereof to the interior of the pump. A vacuum pump is connected to the upper portion of the sight glass for creating a vacuum within the sight glass, when actuated, so that a vacuum is created in the vacuum line extend-ing from the sight glass to the pump so that water will be drawn from the source of water upwardly to the pump and thence to the sight glass. When a sufficient water level has been reached within the sight glass, the motor operating the centrifugal pump is energized so that water will be discharged onto the area experiencing the fire. The vacuum pump is controlled by means of an alarm system located in the area to be protected.

Description

~ 3~iS~ I

AN APPARATUS FOR AUTOMATICALLY WATER CHARGING A CENTRIFUGAL
FIRE PUMP
, In rural areas, the fire figh-ting equipment is sometimes less than desirable. It has therefore become necessary for com- !
panies owning grain elevators or the like to establish their own fire fighting equipment. Frequently, centrifugal or turbine fire pumps are provided on site to pump water from an underground ' water supply onto the area experiencing the fire. The use of centrifugal pumps does create several problems since centrifugal pumps do not have the ability to establish a wet suction from the stored water supply when the storage tank is below pump level.
Since the pump must have a solid charge of water before it is operated, some means of establishing a dependable prime must be `I
provided since it is destructive to high-speed turbines to even operate only a few revolutions without water. If the water supply was located above the pump, water would be continually supplied to the pump but most locations do not have sufficient grade to position the large water storage tank above the pump. Addition-ally, the continual presence of water within the pump is quite harmful to the pump since many rural areas have ex~remely corro-sive water supplies. ;' Several current methods of prlming centrifugal pumps are presently being employed. Among the most common methods are:
(lj positive head or flooded suc~ion; (2) priming rom draft;
(3) hand operated vacuum pump ejector priming; (4) electric pump priming; and (5) retention of water at pump level by a foot valve.
None of the above methods function without the aid of manual operation and someone must be on the site when the fire pump is operated.
Therefore it is a principal object of the invention to provide an automatic means for positively charging a centrifugal water pump wherein the water supply is located below the pump~

3~

A still further ohject of the invention is to provide an apparatus for positively charging a centriugal pump which allows the pump to be operated only when the pump has sufficient water therein so as to prevent damage thereto.
A still further object of the invention is to proviae an automatic vacuum and water charge system for a positive water pump prime prior to the water pump being actuated.
A still further object of the invention is to provide an apparatus for positively charging a centrifugal fire pump includ-ing means for deactivating the fire pump if the prime is lost.
A still further object of the invention is to provide an~automatic fire protection system which is ideally suited for rural areas. ¦
These and other objects will be apparent to those skilled ,~
in the art. ;
This invention consists in the construction, arrange-ments and combination of the various parts of the device, whereby the objects contemplated are attained as hereinafter more fully set forth, specifically pointed out in the claims, and illus-trated in the accompanying drawings, in which:
Figure 1 is a schematic of the system:
Figure 2 is a partial schematic of the system:
Figure 3 is a schematic view illustrating the prime water raising the float within the sight glass:
Figure 4 is a schematic of the electrical circuitry of the invention when in an inoperative condition: ' ' Figure 5 is a schematic,view similar to Figure 3 except that the water level within the sight glass has risen from that of Figure 3 to activate the system:
Figure 6 is a schematic of the electrical circuitry of the invention when in an actuated position:
Figure 7 is a view similar to that of E~igures 3 and 5illustrating the water level initially rising within the pump; and Figur~ 8 is a schematic view of the float stop and reed switch.
The numeral 10 refers to a conventional magnetic contactor pump motor operatively connected to a conventional centrifugal pump 12 having a suction line 14 extending therefrom to a source of water 16 such as an underground supply tank or the like. It is recommended that a stored water supply be used and that a sub-merged cast concrete tank be employed with the bottom thereof no lower than 14 feet and having the top thereof covered with 24 inches to 36 lnches of dirt to prevent freezing. It is also recommended that the top of the tank be provided with a pre-stressed portion to allow truck traffic over the tank. The suc-tion pipe 14 is kept within six inches of the bottom of the tank to allow full usage of the stored water. Ordinarily in older facilities, the tank will be located just outside of the elevator office with the pump 12 being located in a concrete room in the basement of the elevator.
Discharge line 18 extends from the pump 12 to the area to be protected and has a plurality of sprinklers 20 provided thereon adapted to spray or sprinkle water onto the area in the event that a fire should occur. A conventional alarm system 19 including a fire switch 80 is located in the area to be protected and it is operatively connected to a control panel 21. Control panel 21 is electrically connected to a conventional vacuum pump 26 including a motor 27. Pump 26 has a vacuum line 23 extending therefrom to the upper portion of a transparent sight glass 22.
Vacuum line 24 extends from the lower portion of the sight glass ,.. . . . . .
, . .. , . . ~ . ........... ... .. .

- 4 _ 22 to pump 12 and is in communication with the interior thereof.
Generally speaking, actuation of the vacuum pump 26 causes a vacuum to be created in line 23, sight glass 22, line 24, pump 12 and line 14 so that water will be drawn upwardly through line 14, into pump 12, through line 24 and into the interior of sight glass 22 as will be described in more detail hereinafter.
Referring now to the circuitry of the invention, the numeral 28 refers generally to a source of 120 volt alternating current including leads 30 and 32. Lead 32 is connected to the vacuum pump motor 27 by leads 34 and 35. Lead 30 is connected to switch 37 of transfer relay 36 by lead 38. Contact 42 of relay 36 is connected to relay 44 by lead 46. Relay 44 includes switch 47 and contacts 48 and 50. Contact 50 is electrically connected to the motor 10 by lead 52. Switch 47 and motor 10 are electri-cally connected to the source of alternating current as illus-trated in the drawings. As seen in the drawings, relay 44 is connected to the lead 34.
The numeral 54 refers to a transformer electrically connected to rectifier 56. Rectifier 56 is connected to relay 36 by lead 60. Rectifier 56 also has a lead 62 extending there-from which is connected to lead 98. The numerals 69 and 71 reer to a resistor and capacitor which interconnect leads 60 and 62 as illustrated in the drawings.
Lead 68 is connected to relay 70 including switch 72 and contacts 74 and 76. Lead 78 is connected to relay 70. Leads 68 and 70 are connected to the fire switch 80 of fire alarm 19.
Contact 81 of test switch 82 is connected to lead 86 which con-nects contact 76 and motor 27. Contact 87 of switch 82 is con-nected to contact 40 of switch 37 by lead 88. Contact 87 is connected to lead 88 by lead 9~. Relay 36 is connected to float ~355~

switch 94 by lead 96. Lead 98 connects contact 100 of switch 94 with flow switch 102. Lead 110 connects contact 106 of switch 94 with contact 104 of switch 102 as seen in the drawings.
Sight glass 22 is provided with an upstanding tube 112 having a stop 116 at the upper end thereof. A noxmally open magnetically sensitive reed switch (float switch 94) is positioned in the upper end of the tube 112. 1eads 96 and 98 are connected to the read switch and extend downwardly through the interior of the tube 112. Float 114 slidably embraces tube 112 and rises and falls with the water level within sight glass 22. Float 114 has magnets cast into the interior of the float cavity. Float 114 is adapted to close the float switch 94 when in its upper most posi-tion. As the float is guided up the tube 112 by the rising water level within sight glass 22, the magnets within the float 114 act on the reed switch 94 and cause it to close the circuit. Closing of the switch 9~ causes the relay 36 to deactivate the vacuum pump motor and to activate the fire pump as will he described in more detail hereinafter.
In the stand-ready state of Figure 4, no prime water is contained in the sight glass 22 or i~ the pump 12. The relays 36, 44 and 70 are unenergized at this time. Ie alarm system 19 senses a condition meriting sprinkler water, the first switch 80 energizes relay 70. Energizing of relay 70 closes -the contacts on the relay which causes the vacuum pump 27 to be energized or started to establish a vacuum in the sight glass 22, line 24, pump 12 and line 14. As air is exhausted from the sight glass 22, prime water will enter the pump turbine from the line 14 and will proceed to the sight glass by means of line 24. The water enters the sight glass at the lower end thereof through small orifice outlets provided ~herein. As the water rises in le~el in the ~35~

sight glass 22, the magnetic 1Oat 114 moves upwardly on the pipe or ~ube 112 towards the upper stop position (llh~. As float 114 reaches stop 116, the magnets in the float 114 cause the reed switch 94 to close which energizes the transfer relay 36.
It should be noted that the reed switch 94 is enclosed within the tube 112 and is isolated from water. The sight glass is then approximately one-half full of prime water which indicates a solid charge above turbine level. The closing of relay 36 breaks the circuit to vacuum pump 27 and causes the vacuum pump 27 to be deactivatedO As relay 36 closes, it energizes ~he pump motor lO.
This brings the fire pump on line while the vacuum pump is idle.
As the fire pump begins to establish a head o water in the sprinkler system, the suction o the pump at the suction side is strong enough to pull the one-half full sight glass down to empty while pumping. The float 114 naturally follows the water level and very quickly is restin~ at the bottom of the tube 112 to open the reed switch 9~. However, since there is a high pressure discharge, the flow switch 102 is closed sensing the pressure which keeps the relay 36 in a closed attitude so that the pump is self-monitoring. If during the cours of pumping the prime is lost (low waterr etc.), the flow switch 102 senses no flow and opens the circuit which deactivates or drops the relay 36 to deactivate the fire pump. When relay 36 is deactivated, the vacuum circuit is re-established and th~ cycle is restarted towards a Eull prime. Thus it can be seen that the first pump cannot run without a full prime charge.
Test switch 82 is provided for in-pump room periodical testing. It is also suggested that a control switch be provided under lock and key mounted in the master breaker on the outside of the elevator for pump control in the event of a serious fire when the fire alarm might lose control or for safety reasons not to enter the plant.
Thus it can be seen that a novel apparatus has been provided for automatically water char~ing a centrifugal fire p .p which accomp1ishes at 1ea~t all of its stated objectives.

: ' :

Claims (2)

The embodiments of the invention in which an exclusive property or privilege is claimed are defined as follows:
1. In combination, a source of water, a fire pump means comprising an electric motor connected to a centrifugal pump, said pump being positioned at a level above said water source, said pump having a suction line in communication with said water source, said pump having a discharge line extending to an area to be protected in the event of a fire, a fire alarm system at said area to be protected, a flow switch in said pump discharge line, a vacuum system including an electric motor driven vacuum pump in operative communication with the upper end of an upstanding hollow cylinder means, a vacuum line in communication with said cylinder means at the lower end thereof and extending to said fire pump means and being in communication with the interior thereof, a vertically disposed hollow tube positioned in said hollow cylinder means and being sealed so that water in said cylinder means cannot enter said tube, a normally open magnetic float switch positioned in said tube above the lower end thereof, a float vertically movably mounted on said tube for closing said float switch when the water level in said cylinder means reaches a predetermined level, control means connecting said alarm system, vacuum system, flow switch, float switch and electric motor of said fire pump means whereby said vacuum system is initially actuated by said alarm system in the event of a fire so that a vacuum is created in said cylinder means, said vacuum line and said fire pump means to draw water upwardly through said suction line, fire pump means, vacuum line and cylinder means; said fire pump means being activated and said vacuum pump being simultaneously deactivated when said float causes said float switch to be closed; the opera-tion of said fire pump means causing the water level to drop in said cylinder means thereby opening said float switch; said flow switch remaining closed with said fire pump means being continu-ously operated until said flow switch senses a predetermined drop in pressure in said pump discharge line thereby causing said flow switch to open and to deactivate said fire pump means and to reactivate said vacuum pump to initiate another priming cycle.
2. The combination of claim 1 wherein said hollow cylin-der means is transparent.
CA330,394A 1979-06-22 1979-06-22 Apparatus for automatically water charging a centrifugal fire pump Expired CA1103551A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA330,394A CA1103551A (en) 1979-06-22 1979-06-22 Apparatus for automatically water charging a centrifugal fire pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CA330,394A CA1103551A (en) 1979-06-22 1979-06-22 Apparatus for automatically water charging a centrifugal fire pump

Publications (1)

Publication Number Publication Date
CA1103551A true CA1103551A (en) 1981-06-23

Family

ID=4114530

Family Applications (1)

Application Number Title Priority Date Filing Date
CA330,394A Expired CA1103551A (en) 1979-06-22 1979-06-22 Apparatus for automatically water charging a centrifugal fire pump

Country Status (1)

Country Link
CA (1) CA1103551A (en)

Similar Documents

Publication Publication Date Title
US4183721A (en) Apparatus for automatically water charging a centrifugal fire pump
US3048875A (en) Pneumatic systems
US2488506A (en) Hydrostatic control for pumps
US5790991A (en) Apparatus for automatically regulating water level in a swimming pool
US4309157A (en) Protection device and sump pump
KR950007213B1 (en) Deaeratin apparatus and method
US4422829A (en) Sump drain system
US4170048A (en) Toilet installation
CA1103551A (en) Apparatus for automatically water charging a centrifugal fire pump
CN208558374U (en) A kind of buried compressor
KR200298174Y1 (en) Simplified type sprinkler system
CN219001841U (en) Indoor fire hydrant with leak self-checking function
CN215633830U (en) Deep-well pump with water level measurement and remote transmission functions
CN102247681A (en) Sprinkling fire extinguishing pump system
US5340281A (en) Protective device for a water-pump apparatus
JPH0623756Y2 (en) Vertical pump
JPH10219711A (en) Drainage system of inundation in basement
JPS6226636Y2 (en)
CN207799856U (en) A kind of power distribution room comprehensive alarm device
JPS586072B2 (en) automatic water supply device
JPS569681A (en) Automatic running pump
JP3970472B2 (en) Scum removal device for sewage tank
CN217379188U (en) Rainwater collecting tank control system
CN220225600U (en) Automatic drainage device for cable well
KR950002143B1 (en) Pump starting method

Legal Events

Date Code Title Description
MKEX Expiry