CA1098886A - Butterfly valve - Google Patents

Butterfly valve

Info

Publication number
CA1098886A
CA1098886A CA326,035A CA326035A CA1098886A CA 1098886 A CA1098886 A CA 1098886A CA 326035 A CA326035 A CA 326035A CA 1098886 A CA1098886 A CA 1098886A
Authority
CA
Canada
Prior art keywords
throttle
essentially
seat
butterfly valve
seal face
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
CA326,035A
Other languages
French (fr)
Inventor
Folke H. Hubertson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SOMAS AB
Original Assignee
SOMAS AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SOMAS AB filed Critical SOMAS AB
Priority to CA326,035A priority Critical patent/CA1098886A/en
Application granted granted Critical
Publication of CA1098886A publication Critical patent/CA1098886A/en
Expired legal-status Critical Current

Links

Landscapes

  • Lift Valve (AREA)

Abstract

ABSTRACT OF THE DISCLOSURE:
A butterfly valve with a seal face having two opposite, essentially spherical sections intersected by a symmetry plane through the throttle which coincides with the torsional axis of the throttle and two opposite, essen-tially conical sections on both sides of the symmetry plane.
The spherical and the conical sections successively merge into each other. When the throttle is revolved, the conical surfaces are pressed against a valve seat shaped as a circular ring made of steel. This seat then assumes a more and more elliptical shape finally to adjust itself entirely to the elliptical mean line of the seal face.

Description

g~

The invention refers to a butterfly valve embodying a valve housing with a valve seat and a throttle arranged so as to revolve around a shaft going through the valve housing, between an open position and a shut-off position in which a seal face of the throttle is pressed against the seat in the valve housing.
The buttexfly valves in existence today are usually built on the principle of soft gaskets. A very frequent valve type is illustrated in e.g. the Swedish paten-t specification 199 078. With this valve type -the whole of the valve housing is lined with a soft material, e.g. rubber or other polymer.
A frequent thing is also to manu.~acture just the valve sea-t itself from a soft material. Examples of this valve type are illustrated in the Swedish patent specifications 175 149 and 178 131. I'here are also cases of the soft sealing element bein~
instead placed on the sealing face of the throttle. Examples of -this principle are shown in the Swedish patent specification 195 072 and the German patent specifications 1 011 683 and *

1 232 42~.
A ~isadvantage of soft sealing elements in butterfly valves is that their resistance to high~temperature media is often low. It is true that the insensitiveness of synthetic rubber and certain other polymers to high temperatures has gradually improved, but still these kinds of ma-terial cannot in any way compare favourably with the resistance to high tempera-tures of steels and other metals and alloys. The same thing also applies to the resistance to certain chemically aggressive media. In these cases, too, the properties of high-alloyed stainless steels and other alloys are qu.ite superior to those of soft materials of rubber type. These circumstances are of course well-known, and many a trial has been made with replacing the soft sealing elements by metallic ones. In * see page 7 for publication dates `

B~

these cases, however, the sealing has not been to satisfaction or has the sealing device and/or the equlpment part~ belonging to it become so complicated that this valve type has not got any practical importance so far. An example of a valve belonging to this category is shown in the Swedish patent speci~ication 193 923.
The main object of the present invention is to provide a butterfly valve having good sealing capacity and not implying soft sealing element made of rubber, plastic or similar materials. More specifically an object is to produce a valve having good sealing capacity and which can be entirely manu-factured of metal. An object of the present invention is, however, that the principles of the invention shall not exclude the use of such soft materials as e.g. PTFE and nylon~ There is rather an object that such materials will also have to be used, e.g. in valve seats, if for some reason or other these are more suitable or otherwise more desirable than metallic materials. In other words, a purpose of the present invention is to create liberty of choice between different materials in regard to their convenience for the medium which the valve is intended to operate with.
Another object is to provide a valve the throttle of which when being turned from its shut-off to its open position and vice versa is not principally in contact with the valve seat, which is favourable from a wear point of view~
An object of this invention is also to provide a butterfly valve being sturdy and reliable, simple to operate and having a long life.
These and other objects can be attained by the seal face of the swivel throttle having two opposite, essentially spherical sections intersected by a symmetry plane through the throttle, which plane coincides with the swivel stem of * published January 12/ 1965 ~88~3~
the throttle and two opposite, essentially conically shaped --sections on both sides of the aforementioned symmetry plane between the two essentially spherically shaped sections, and by the fact that the essentially spherically and the essentially conically shaped sections successively mer~e into each other.
Moreover, according to the lnvention, the pivot shaft of the conically shaped faces is placed at a slight angle to a shaft coinciding with the above-rnentioned symmetry plane and is perpendicular to the pivot shaft of the damper. The angle may vary according to the angle between -the pivot shaft and -the generating line and is also determined by the dimensions of the throttle, like its diameter and the width of the seal face. In the normal case the angle should be between 5 and 8. At the sam~ time it is suitable that the angle between the conical sections, i.e. the top ra~e of the cone, amounts to between 10 and 40, at which the optimal angle is determined.
According to the invention the seat is arranged to be flexible in its plane so that, when the essentially conically shaped faces are being pressed against it, the seat can concur with the shape of the curve going around -the circumference of the seal face at the level determined by the contact points between seal face and valve seat. According to the invention the curve m~n-tioned befoxe essentially consists of an elliptic curve, the major axis of which coindices with the symmetry plane of the throttle. In the open position of the valve the seat has furthermore a preferably circular shape. This implies that the seat is fle~ible at the level of the sea-t so that it can be drawn out by the conical faces in the direction of the major axis and at the same time be compressed in the direction of the minor axis maintaining an essentially constant circumference. The valve seat is then suitably arranged displaceable in an annular groove in the valve housing.

- ~ 3 --~ccording to the best mode of carrying out the invention the annular groove is formed by a couple of spring washers which are for sealing reasons pressed to both sides of the valve seat ring.
Further objects and advantages as well as character-istics of the invention will appear from the following descrip-tion of the best mode of carrying out the invention.
In the following description of the best mode of carrying out the invention reference will be made to the drawing figures.
FigO 1 illustrates the geometrical conditions at the throttle containéd ln the valve.
Fig. 2 shows a planar view of the butterfly valve according to the best mode of carrying out the invention.

.
Fig. 3 constitutes a section III-III of Fig. 2, and Fig. 4 constitutes a section IV-IV of Fig. 2.
Reference is first being made to Fig. 1 that shows a lateral view of the throt-tle according to the best mode of carrying out the invention, the throttle in general shown as 1. The throttle 1 consists of a throttle disk 2 with an annular seal face 4 and a bearing 3. The mean llne a going all around the seal face 4 has an elliptic shap3. More specifically the mean line a forms an ellipse obtained as a taper section through an imaginary cone having the top rake ~, with the perpendicular b to the taper section level forming the angle ~ to the axis c of the cone.
The torsional axis i f the throttle 1, which axis i is parallel to the level of the mean line a, is dislo-ated the distance X from said level More specifically the distance X
is chosen so that the straight lines d and e between said torsional axis i (at the symmetry level of the -throttle as per Fig. 1) and the points of intersection f and ~ of the mean line form the angles 90 ~ ~ and 90 ~ ~ , resp., to the major axis of the ellipse, to the generating line of the envelope surface 4 which in the area of points f and q has a conical shapeO More specifically the distance X is chosen so that the ang e ~ lS - ~.
These geometrical conditions imply that the point called f1 in Fig. 1 will describe an arc havin~ a radius which is larger thall the radius o-f the arc described by a point f2 when the throttle is turned around its torsional centre i.
On the opposite side of the seal face 4, i.e. in the conical area of point q, the conditions are contrary. Thus the arc generated by point q, has a smaller radius than the circle generated by point q2. These conditions may also be expressed as if2~ if >i~ and ~ q >lq2 P
In the areas of points f and ~, i.e. in the areas of the intersecting points between mean line a and its major axis, the seal face 4 has a conical shape. In the areas of the intersecting points h and i of the minor axis with the mean line a the seal face 4 has, however, been given a spherical shape, with the radius R of the sphere co.rresponds to the distance from points h and 1 to the centre of the ellipse formed by the mean line a. In the areas between the conic~l and spherical sections of seal face 4, the conical and spherical shapes successively merge into each other. The shapes of the throttle 1 may be produced by copying a cast workpiece.
In Figs. 2-4 a valve housing is generally marked with the digital 5. The valve housing 5 forms a circular opening 6 for the medium to be led through the valve, the opening 6 having a somewhat larger diameter than the major axis of the ellipse created by the mean line a on the seal face 4 of the throttle 1. The valve housing 5 is provided with a flange 7 for the connection of an adjustin~ appliance and with a gland ~ mounted by means of stud bolts. A couple of lugs 10 are provided with holes 11 to make fitting into a piping easier.
A stem 12 carried in a bearing in the valve housing 5 goes through the housing and is tightened on the contxol side by a stuffing box 13 and on the opposite side ~y a plug 14.
Furthermore, the stem 12 goes through the bearing 3 of the throttle 1. The throttle 1 is fixed to the s-tem 12 by means of conical rivets 15. The axis of spindl~ coincides with the torsional axis i f the throttle.
A covering plate 16 is fixed to the valve housing 5 by means of screws 17. Be-tween covering plate 1~ and valve housing 5 is arranged for a valve seat 18. The valve seat 18 consists of a comparatively flat ring having a rounded inner edge. By "comparatively flat" is understood that the thickness is considerably smaller than the radial extension. The material of the valve'seat ring 18 is normally steel or some other alloy, 'but other comparatively stiff though to a certain extent elastic materials are thinkable, such as certain rigid plastics type PTFE. The valve seat ring 18 is carrLed in a bearin~ between a couple of opposite spring washers 19 and 20 which form a groove 21 in which the valve seat is displaceable in the radial direction. Two gaskets have been marked 22 and 23 resp.
The flat ring constituting the valve seat 18 has in its resting position, ie.e -when -the valve is open, a quite circular shape. When the valve is shut by turning the stem in an anti-clockwise direction around the torsinal axis 1, Fig. 2 and Fig. 4, the conical parts of the seal face 4 in the areas of points f and ~ will slide towards the valve seat 18. Since the distance between -the torsional axis i and the contact points of the conical parts continuously grow bigger as the throttle is turned in an anti~clockwise direction (cf.

if ~ifl and 1~1 <~ ~it~2 ), the conical parts of the seal face 4 will draw out the valve seat ring 18 in the direction of the major axis of the mean line a. At the same time the valve seat ring 18 yields inwards in the direction of the minor axis so that the circumference of the valve seat will principally reamin constant. Finally the valve seat is pressed again~t the seal face 4 around the whole of its circumference which occurs when the valve seat 18 concurs with the elliptical shape of the mean line a, which implies that in this position the valve seat 18 is also pressed against the spherical parts of the seal face. Those latter in this position act as spherical slide bearings towards valve seat 18, minimizing the wear and maintain-ing the flatness of the valve seat~ The deformation of the valve seat 18 at the level of the seat is furthermore so in-considerable that it is well inside the area of elasticity of the material. When the throttle is opened by turning it in a clockwise directionl Figs. 2 and ~, from the closed position, the valve seat will then recover its circular shape. At the~
same time the surface contact between the throttle 1 and the seat is released by the valve seat yielding out in the direction of the minor axis and recovers its larger, entirely circular extension in said direction. During the main part of the turning of the throttle from its closed to its open position, and vice versa, the throttle thus is not in co~tact with the valve seat 18 which is of course very advantageous from a wear point of view.
* Publication dates (from pa~e 1) SE 199 078 - Ot~tober 19, 1965 - S~ 195 072 - March 16, 1965 SE 175 149 - April 25, 1961 - DE 1 011 683 - July 4, 1957 SE 178 131 - February 6, 19~2 - DE 1 232 422 - January 12, 1967 ~`'''' .

Claims (7)

The embodiments of the invention in which an exclusive property or privilege is claimed are defined as follows:
1. Butterfly valve comprising a valve housing with a valve seat and a throttle arranged so as to be turned around a stem going through the valve housing between an open position and a shut-off position in which a seal face on the throttle is pressed against the seat in the valve housing, characterized by the said seal face having two opposite, essentially spherical shaped sections intersected by a symmetry plane through the throttle coinciding with the torsional axis of the throttle, and two essentially conically shaped sections on each side of said symmetry plane between the two essentially spherical and essentially conical sections, that the essentially spherical and the essentially conical sections successively merge into each other.
2. Butterfly valve according to claim 1, further characterized in that the seat is arranged flexibly in its plane so that, when the essentially conical surfaces are pressed against the seat, it can concur with the shape of an oval, preferably essentially elliptically shaped curve going around the circumference of the seal face.
3. Butterfly valve according to claim 2, characterized by the torsional axis, parallel to the plane determined by the curve going around the circumference of the seal face, being arranged so far from said plane that the perpendiculars from the intersecting points, between the preferably essentially elliptically shaped curve and its major axis to the torsional axis form the angles 90° + ? and 90° - ? , resp., to the generating lines of said conical surfaces, with the angle ?
being essentially equal to the angle .alpha. between the center line of the conically shaped surfaces and a perpendicular to the plane formed by the above-mentioned preferably essentially elliptical curve.
4. Butterfly valve according to claim 3, characterized by the angle a being between 5° and 8°.
5. Butterfly valve according to claim 3, characterized by the top rake of the conical surfaces being between 10° and 40°.
6. Butterfly valve according to claim 1, characterized by the valve seat being made up by a comparatively flat ring arranged so as to be displaceable in radial direction in a groove in the valve housing.
7. Butterfly valve according to claim 6, characterized by the said valve seat ring having a circular shape in its resting position.
CA326,035A 1979-04-20 1979-04-20 Butterfly valve Expired CA1098886A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA326,035A CA1098886A (en) 1979-04-20 1979-04-20 Butterfly valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CA326,035A CA1098886A (en) 1979-04-20 1979-04-20 Butterfly valve

Publications (1)

Publication Number Publication Date
CA1098886A true CA1098886A (en) 1981-04-07

Family

ID=4114029

Family Applications (1)

Application Number Title Priority Date Filing Date
CA326,035A Expired CA1098886A (en) 1979-04-20 1979-04-20 Butterfly valve

Country Status (1)

Country Link
CA (1) CA1098886A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5839717A (en) * 1997-03-25 1998-11-24 Feigel; Kurt R. Valve with improved shaft retainer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5839717A (en) * 1997-03-25 1998-11-24 Feigel; Kurt R. Valve with improved shaft retainer

Similar Documents

Publication Publication Date Title
US4284264A (en) Butterfly valves
US4254937A (en) Butterfly valve
US3986699A (en) Positive shut-off seal
CA1225980A (en) Cam valve self-centering seat
US3598363A (en) Ball valve
US3902697A (en) Butterfly valve
US3442488A (en) Valve
CA1233454A (en) Valve seat assembly and valve
US5482253A (en) Ball valve
US5211373A (en) Gate valve having expanding gate and floating seats
US3145733A (en) Swivel ring valve
US5934645A (en) Rotary valve with pressure energized seal
CA2129330A1 (en) Sealing assembly for valve member
EP1034391B1 (en) Ball valve
US3485476A (en) Butterfly valve
CA1098886A (en) Butterfly valve
US3475007A (en) Skewed seat butterfly valve
US4286769A (en) Valve seat
GB2047387A (en) Butterfly valve
US4066240A (en) Self compensating seat for a spherical plug valve
JP3261091B2 (en) Eccentric butterfly valve
CA1131607A (en) Valve seat
JPH0714702Y2 (en) Ball valve
US4520995A (en) Dished disc free-disc butterfly valve
KR830002043Y1 (en) Butterfly valve

Legal Events

Date Code Title Description
MKEX Expiry