CA1097077A - Production of purified synthesis gas and carbon monoxide - Google Patents

Production of purified synthesis gas and carbon monoxide

Info

Publication number
CA1097077A
CA1097077A CA302,856A CA302856A CA1097077A CA 1097077 A CA1097077 A CA 1097077A CA 302856 A CA302856 A CA 302856A CA 1097077 A CA1097077 A CA 1097077A
Authority
CA
Canada
Prior art keywords
gas
stream
zone
purification zone
synthesis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
CA302,856A
Other languages
French (fr)
Inventor
Charles P. Marion
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Texaco Development Corp
Original Assignee
Texaco Development Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US05/810,709 external-priority patent/US4081253A/en
Application filed by Texaco Development Corp filed Critical Texaco Development Corp
Application granted granted Critical
Publication of CA1097077A publication Critical patent/CA1097077A/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/15Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively
    • C07C29/151Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases
    • C07C29/1516Multisteps
    • C07C29/1518Multisteps one step being the formation of initial mixture of carbon oxides and hydrogen for synthesis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/15Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively
    • C07C29/151Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases
    • C07C29/1512Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by reaction conditions
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/15Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively
    • C07C29/151Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases
    • C07C29/1516Multisteps
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/10Preparation of carboxylic acids or their salts, halides or anhydrides by reaction with carbon monoxide
    • C07C51/12Preparation of carboxylic acids or their salts, halides or anhydrides by reaction with carbon monoxide on an oxygen-containing group in organic compounds, e.g. alcohols

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Tea And Coffee (AREA)

Abstract

PRODUCTION OF PURIFIED
SYNTHESIS GAS AND CARBON MONOXIDE
(D#76,169-F) ABSTRACT
A continuous process for simultaneously producing (1) a stream of purified synthesis gas having a controlled mole ratio H2/CO, and (2) a separate stream of CO-rich gas. Methanol may be synthesized from the purified synthesis gas and reacted with CO to produce acetic acid.
In the process, raw synthesis gas from a noncatalytic partial-oxidation gas generator is cleaned (if necessary), cooled, and dehumidified. At least a portion of the resulting gas stream is then partially purified by removing H2S and COS if present, and at least a portion of the CO2 in a first gas purification zone. The remainder of the clean dehumidified gas stream if any, by-passes the first gas purification zone. Partially purified gas from the first gas purification zone is introduced into a second gas-purification or separation zone and at least a portion of the remainder if any, by-passes the second gas purification zone. A product stream of CO-rich gas and a separate stream of H2-rich gas is removed from the second gas purification zone. The product stream of purified synthesis gas may be then produced by mixing together at least a portion of said H2-rich gas stream with at least a portion of at least one of the following by-pass gas streams:
(a) gas processed in the first gas purification zone that by-passes the second gas purification zone; (b) clean dehumidified gas that by-passes the first gas purification zone.

I

Description

10970~7 BACKGROUND OF THE INVENTION
_ Field of the Invention:
This is a partial-oxidation process in which syn-thesis gas having a controlled H2/CO mole ratio and either a C0-rich gas or substantially pure C0 are simultaneously produced. Methanol may be made from the synthesis gas and then may be reacted with the C0-rich gas or with substan-tially pure CO to produce acetic acid.
Description of the Prior Art:
10Synthefiis gas may be prepared by partial oxidation of a fossil fuel with a free-oxygen-containing gas, option-ally in the presence of a temperature moderator. The efflu-ent gas stream from the gas generator is cooled (below the temperature at which the gas composition approaches equilib-rium) by, for example, direct immersion in water in a ~uench . ~
drum such as described in coassigned U.S. Patent No.
2,896,927. By this method of gas cooling the sensible heat in the effluent gas stream is used to produce steam in the pxoduct gas.
Alternatively, the effluent gas stream from the gas~ generator may be cooled in a syngas cooler, such as shown in coassigned U.S. Patent No. 3,920,717. By this , method of gas cooling, the efluent gas stream does not become saturated with the water. In coassigned U.S.
1~ :
Patent No. 3,929,429, in order to prepare an oil-carbon dispersion and a separate water-carbon dispersion which . ~
are simultaneously fed to a gas generator for producing ,:~ ' ~ .

'';

07q fuel gas, a portion of the effluent gas stream is cooled in a syngas cooler and then scrubbed with oil; and another stream is quenched in water. Noncatalytic thermal shift is used to adjust the H2/CO mole ratio of a single stream of synthesis gas in coassigned U.S. Patent No. 3,920,717.
SUMM~RY
The present invention provides a process for simultaneous production of a product stream of purified synthesis gas and a product stream of CO-rich gas, comprising:
(1~ reacting a hydrocarbonaceous feedstock with a free-oxygen-containing gas, optionally in the presence of a temper-ature moderator, in the reaction zone of a free-flow noncatalytic partial-oxidation gas generator at a temperature in the range of about 130a to 3Q00F and at a pressure in the range of about 1 to 250 atmospheres to produce an effluent gas stream comprising H2, C0, H2O, CO2, and optionally at least one mater~al from the group H2S, COS, CH4, N2, Ar~ and solid particles;
~2~ rem~ving a portion o~ said solid particles if present, 2a coolin~ the effluent g~s stream hy indirect heat exchange in a s.epa.rate heat-exchange zone, removing any remaining entrained : s~lid particles, and dehumidifying the cooled gas stream;
(~3~ intxoducing at le.ast a portion of the clean dehumidi-fied gas stream from (2~ into a first gas-purification zone and by-passing said first gas-purification zone with the remainder if any; removing from the gas stream in said first gas-purification zone any H2S, COS, and at least a portion of the CO2;
(.4) introducing partially purified gas from the first gas
3~ purification zone in (3~ into a second gas-purification zone T~
L~
.

` 10~70'~7 and by-passing said second gas-purification zone with at least a portion of the remainder, if any, and removing from said second gas-purification zone said product stream of C0-rich gas and a separate stream of H2-rich gas; and (5) mixing together at least a portion of the H2-rich gas from (.4) with at least a portion of at least one of the following:
(a~ gas processed in the first gas purification zone that ~y-passes the second gas purification zone in (4);
lQ (.b~ soot-free dehumidified gas that by-passes the first gas-purification zone in (~31; producing said product stream of purifi,ed $ynthesis gas having a controlled H2/C0 mole rati In the subject process, the effluent gas stream directly from a ~ree-flow unpacked noncatalytic partial-oxidation synthesis gas generator may have an H2/C0 mole ratio in the : range of about 0.5 to 1.~ and may contain entrained particulate solids, i.e. ash and carbon soot. A portion of the ash if present, may first be removed as slag. The gas stream is then , 2~ cooled by indirect heat exchange in a gas cooler, and boiler-feed w.ater is. thexe~y converted into steam. Any remaining entrained soli.ds, i,.e. pa~ticulate carbon are then removed.
The soot-free gas stream is dehumidified and then at least a .~ poxtion of the s~ot-free and dehumidi.fied gas stream is int~oduced ~nto a ~.Xst gas-purifi.cation zone. The remainder of the soot-~ree and dehumidified gas stream if any, by-passes the ~iræt gas-puXi~ication zone. In the first gas-puri~ication æone, depending on the composi.t~on of the soot-free and : ~ h.umidified ~afi stream any H2S, COS, ~nd at leaæt a portion of 3~ the'C02 is xem~ed ~x con~entional procedures. This may be -2a-B
- . . ~ ... .
.... .. .. . ..

109'7(9';~7 done in one or t~o stages. Gas which has been processed in the first gas-purification zone is introduced into a second gas-purification or separation zone where, by conventional procedures a product B

. . ~ . ~ .

-109~0~77 stream of CO-rich gas and a separate stream of H2-rich gas, and optionally CH4-rich gas are separated. For example, at least a portion of the gas from the first gas purification zone containing no H S and COS and with at least a portion of the CO2 removed is passed into the second gas purification zone. The remainder of the gas which has been processed in the first gas puri~ication zone if any, by-passes the second gas purification zone.
The product stream of purified synthesis gas having a controlled H2/CO mole ratio i.e. in the range of about 2 to 12 is produced by mixing together at least a portion of the H2-rich gas from the second gas purification zon~
with at least one i.e. either one or both of the following:
(a) gas processed in the first gas purification zone that by-passes the second gas purification zone if any; and (b) soot-free dehumidified gas stream that by-passes the first gas-purification zone if any. For example: In one embodiment where the soot-free and dehumidified synthesis gas stream is substantially free-from H2S and COS, then :` ~
H2-rich gas may be mixed with at least a portion of at least one of the following: (a) soot-free and dehumidified gas that by-passes the first gas-purificltlo~
zone; (b) soot-free and dehumidified gas having at least 1: :
a portion of the CO removed from the first gas purification zone that by-passes the second gas-purificalion zone.
Ir. another embodiment where the soot-free and dehumidified gas stream contains H2S and COS tnen the H2-rich :
gas may be mixed with at least a portion of at least one i.e.
either one or both of the following: (a) desulfurized gas from the firs~t stage of the first gas purification zone;

(b) desulfurized gas with at least a portion of the CO2 removed from the second stage of the first gas purification zone that by passes the second gas purification zone.
The step of catalytic water-gas shift reaction is not a required step in the subject process. Optionally, thermal noncatalytic shift may be employed to increase the H2/CO mole ratio of the raw effluent gas stream from the gas generator.
In another aspect, the subject invention pertains to a process for the production of methanol, comprising:
(1) reacting a substantially sulfur-free hydrocar-bonaceous feedstock with substantially pure oxygen, op-tionally in the presence of a temperature moderator, in the reaction zone of a free-flow noncatalytic partial-oxidation gas generator at a temperature in the range of about 1300 to 3000~F and at a pressure in the range of about 1 to 250 atmospheres to produce an effluent gas stream comprising H2, ~` CO, H2O, CO2, and at least one material from the group consisting of CH4, N2, Ar, particulate carbon, and ash;
(2) cooling the effluent gas stream by indirect heat ~ exchange in a separate heat-exchange zone, removing any en-.~ trained particulate carbon and ash, and dehumidifying the ~ cooled gas stream;
~ (3) splitting the soot-free dehumidified gas stream -: ~ from (2) into first and second gas streams with said first `-split gas stream comprising about 10 to 90 volume percent of the effluent gas stream from (2~, and said second split stream comprising the remainder;
(4) purifying said first split gas stream from (3) in ; 30 a first gas-purification æone and separating therefrom at least a portion of the CO2;

~ ~.

.

~0970~7 (S) splitting the gas stream from (4) into third and fourth gas stream with said third gas stream comprising about 10 to loO volum~ percent of said synthesis-gas stream from (4) and said fourth gas stream containing the remainder if any and introducing all of said third gas stream into a second gas-purification zone;
(6) removing a stream of CO-rich gas and a stream of H2-rich gas from said second gas-purification zone;
(7) mixing together at least a portion of said second gas stream from (3), at least a portion of said H2-rich gas stream from (6), and at least a portion of said fourth gas stream if any from (5), to produce a stream of methanol-synthesis gas; and (8) reacting at least a portion of said methanol synthesis gas in the presence of a methanol catalyst in a methanol-synthesis zone at a temperature in the range of about 400 to 750F and at a pressure in the range of about 40 to 350 atm. to produce crude methanol, and purifying said crude methanol to produce substantially pure methanol and by-product oxygen-containing organic materials.
: In still another aspect, the subject invention pertains to a pxocess for producing acetic acid comprising steps (1) to (8) of the previously described process for producing substantially pure methanol and in which the ~: CO-rich gas in step (6) is substantially pure CO, and provided with the additional steps of reacting at least a portion of said substantially pure methanol with at least a portion of said substantially pure carbon monoxide in the presence of a carbonylation catalyst in an acetic acid-syn-thesis zone, at a temperature in the range of about 302 to 608 F and at a pressure in the range of about 1 to 700 -4a-,~

109~ 7~

a~mospheres, to produce impure acetic acid, and purifying said impure acetic acid to produce substantially pure acetic acid and by-product oxygen-containing organic materials.

BRIEF DESCRIPTION OF_THE DRAWING
The invention will be further understood by reference to the accompanying drawing. Fig. lA is a sche-matic representation of a preferred embodiment of the process for simultaneously making a product stream of clean and purified synthesis gas having a mole ratio H2/CO
in the range of about 2 to 12, and a separate product stream of CO-rich gas and preferably substantially pure CO. Fig.
lB as shown to the right of the line A-A is a schematic representation of another embodiment of the process, in which pure methanol is produced from a product stream of methanol synthesis gas made by the subject process. Op-tionally, at least a portion of said pure methanol may be - then reacted with at least a portion of the substantially pure carbon monoxlde stream to produce acetic acid.
DESCRIPTION OF THE INVENTION
In the first step of the subject process, raw synthesis gas, substantially comprising hydrogen and carbon monoxide and having a mole ratio (H2/CO) in the range of about 0.5 to 1.9, is produced by partial oxidation of a hydrocarbonaceous fuel with substantially pure oxygen, op-tionally in the presence of a temperature moderator in the reaction zone of an unpacked ., ~ ..
-5-.

A
.

~097(~77 free-flow noncatalytic partial-o~idation gas generator.
The steam-to-fuel weight ratio in the reactio~ ~one is in the range of about 0.1 to 5, and preferably about 0.2 to O.7. The atomic ratio of fre~~oxygen to carbon in the fuel (O/C ratio), is in the range of about 0.6 ~o 1.6, and pref-erably about 0.~ to 1.4. The reaction time is in the range of about l to lO seconds, and preferably about 2 to 6 seconds.
The raw synthesis gas stream exits from the r~ac'ior. zor.e at a temperature in the range of about 1300 to 3000F., such as 1600 to 3000F, say 2000 to 2800F and at a pressure in the range of about 1 to 250 atmospheres (atm.), such as lO to 200 atm. say 40 to 150 atm.
The composition of the raw synthesis gas leaving the gas generator is about as follows, in mole percent:
H2 60 to 29, CO 30 to 60, CO2 2 to 25, H 0 2 to 20, CH4 nil to 25, H2S nil to 2, COS nil to 0.1, N2 nil to l, and ~.rnil to 0.5. There may also be present particulate carbon in the range of nil to 20 weight %
(basis carbon content in the original feed), and ash in the amount of nil to 60 weight % of the original hydrocar-bonaceous feed.

~ ;~

~ .

1097(~77 The synthesis gas generator comprises a vertical cylindrically shaped steel pressure vessel lined with re-fractory, such as shown in coassigned U.S. Patent No.
2,809,1~4. A typical quench drum is also shown in said patent. A burner, such as shown in coassigned U.S. Patent No. 2,928,460, may be used to introduce the feed streams into the reaction æone.
A wide range of combustible carbon-containing organic materials may be reacted in the gas generator with a free-oxygen containing gas, optionally in the presence of a temperature-moderating gas, to produce the synthesis gas.
The term hydrocarbonaceous as used herein to describe various suitable feedstocks is intended to include -gaseous, liquid, and solid hydrocarbons, carbonaceous materials, and mixtures thereof. In fact, substantially any combustible carbon-containing organic material, or slurries thereof, may be included within the definition of the term "hydrocarbonaceous". For example, there are (l) pumpable slurries of solid carbonaceous fuels, such as coal, particulate carbon, petroleum coke, concentrated sewer sludge, and mixtures thereof, in a vaporizable liquid carrier, such as water, liquid hydrocarbon fuel, and mixtures thereof; (2) gas-solid suspensions such as finely ; ground solid carbonaceous fuels dispersed in either a temperature-moderating gas or in a gaseous hydrocarbon;
and (3) gas-liquid-solid dispersions, such as atomized liguid hydrocarbon fuel or water and particulate carbon dispersed in a temperature moderating gas. The hydro-carbonaceous fuel may have a sulfur content in the range of about 0 to lO wt. percent and an ash content in the range of about 0 to 60 wt. percent. By definition, the term 1 097(~ ~7!7 "substan,ially sulfur-free hydxocarbonaceous fuel" as used herein shall be a hydrocarbonaceous fuel as previously des-cribed which when subjected to the noncatalytic partial oxida-tion process will produce raw synthesis gas, in the manner previously described, containing less than 5 parts per million (PPM) of M2S and COS.
The term liquid hydrocarbon, as used herein to de-scribe suitable liquid feedstocks, is intended to include var-ious materials, such as liquefied petroleum, liquefied nat-ural gas, petroleum distillates and residua, gasoline, naph-tha, kerosine,crude petroleum, asphalt, gas oil, residual oil, tar-sand oil and shale oil, coal derived oil, aromatic hydro- -carbons (such as benzene, toluene, xylene fractions), coal tar, cycle gas oil from fluid-catalytic-cracking operations, furfural extract of coker gas oil, and mixtures thereof.
Gaseous hydrocarbon fuels, as used herein to describe suitable gaseous feedstocks, include methane, ethane, propane, butane and other unsaturated light hydrocarbon gases, pentane, natural gas, water-gas, coke-oven gas, refinery gas, acetylene tail gas, ethylene off-gas, synthesis gas, and mixtures there-: of. Solid, gaseous, and liquid feeds may be mixed and used simultaneously; and these may include paraffinic, olefinic, ~; acetylenic, naphthenic, and aromatic compounds in any proportion.
, . Also included within the definition of the term hydrocarbonaceous are oxygenated hydrocarbonaceous organ.ic ~:;: materials including carbohydrates, cellulosic materials, : aldehydes, organic acids, alcohols, ketones, oxygenated fuel oil, waste llquids and by-products from chemical process-es containing oxygenated hydrocarbonaceous organic materials, and mixtures thereof.
The hydrocarbonaceous feed may be at room tem-perature, or it may be preheated to a temperature up to as _~_ 1~9'7(1 7~

high as about 600 to 1200F. ~ut preferably below its crackirg temperature. The h~drocarhonaceous feed may be introduced into the gas~genera-tor burner in llquid phase or in a vaporized mixture with the temperature moderator.
The need for a temperature moderator to control the t~mperature in the reaction zone depends in general on the carbon-to-hydrogen ration of the feedstock and the oxygen content of the oxidant stream. A temperature mod-erator may not be required with some gaseous hydrocarbon fuels; however, generally one is used with liquid hydro-carbon fuels and with substantially pure oxygen. Steam may lo be introduced as the preferred temperature moderator in admixture with either or both reactant streams. Alternative-ly, the temperature moderator may be introduced into the reaction zone of the gas generator by way of a separate conduit in the burner. Other suitable temperature moderators may include CO2 and a portion of cooled and ; recycled synthesis gas separated downstream in the process.
The term free-oxygen-containing sas as used here-in means substantially pure oxygen, i.e. g~eater than about - 95 mole % oxygen (the remainder usually comprising ~l2 ard rare ga9es). Free-oxygen-containing gas may be introduced by way of the partial-oxidation burner at a temperatu;~e in the range of about ambient to 1800F.
; A continuous stream of hot effluent gas, at substantially the same temperature and pressure as in the reaction zone leaves from the axial exit port of the gas generator and is cooled in a gas cooler. Howe~er, for hydrocarbonaceous fuels containing a high ash con,ent such as coal, a solids separation zone is pref2rably inserted between the exit port of the gas generator and said gas _9_ 1097(~77 .

cooler in order to remove the larger entrained solid particles. This solids separation zone may comprise a catch-pot, slag chamber, cyclone separator, electrostatic precipitator, or combinations of such schemes for removing at least a portion of any solid matter i.e. particulate carbon, ash, metal constituents, scale, slag, refractory, and mixtures thereof that may be entrained in the hot effluent gas stream, or which may flow from the gas generator i.e. slag, ash, bits of refractory. T~us, a portion of the larger solid particles, if present may be separated from the effluent gas stream and recovered with very little, if any temperature or pressure drop in the process gas stream. A typical slag chamber that may be employed is shown in the drawing, or in Fig. 1 of the drawing for coassigned U.S. Patent No. 3,528,930. Any coarse solid particles above the size of about 12 microns are ;~ preferably removed at this time by means of gravity or cyclone sepaxation or other physical cleaning process. If particulate carbon soot is entrained in the ~~fluent gas ~ stream, a small amount may be removed with the coarser -~ ; ;20 particles. However, most of the soot and finer entrained solids are remo~ed subsequently by scrub~ing the process gas stream with water. In the preferred embodiment, the step of water-gas shift reaction to increase the H /CO mole ratio is not required. This wlll eliminate costly water-gas shlft catalysts. Optionally, in a separate embodiment, noncatalytic thermal shifting, as described in coassigned U.S. Patent No. 3,723,345 may be employed.

~ ;: ' :' : , :

- ~

~(~97(~77 In such case, the stream of hot effluent gas leaving the gas generator is passed into a separate refractory lined free-flow reactior. -h~r where some of the entrained solids are removed and adjustment of the mole ratio (E2/CO) is effected.
Preferably the process gas stream is at a temperature in the range of about 1600 to 3500F as produced in the gas generator and at the same pressure as in the gas generator e.g. 15 to 200 atmospheres such as 60 to 150 atmospheres. A chamber as'shown in coassigned U.S. Pat. No. 3,565,588 may be used.
For example, spherical chamber 37 as shown in the drawing is unpacked and free from catalyst or obstruction to the flow of gas therethrough. A portion of the solid matter that may be entrained in the process gas stream may drop out and may be removed through an outlet located at the bottom of the spherical chamber which leads to a lock hopper.
A stream of supplemental H20 i.e. cteam as prcduced subsequently in the process is simultaneously introduced into the spherical chamber at a temperature in the range of about 500 to 1500F and at a pressure slightly above that in the gas generator. On a dry basis, about 0.1 to 2.5 moles of supplemental H 0 are preferably introduced into the spherical chamber per mole of effluent synthesis gas from the gas generator,where the gases mix.
Alternatively, the supplemental H20 may be introduced into ~ the separate noncatalytic unobstructed thermal shift - ~ conversion zone in admixtura with the effluent synthesis ~ gas from the gas generator. By noncatalytic thermal direct ~ :~
water-gas shift reaction at a temperature of at least 1500F and preferably in the range of about 1700F to 2800F, the supplemental H20 reacts with a portion of the carbon 1C~97077 monoxide in the effluent synthesis gas stream from the generator so as to produce additional H2 and CO2. The mole ratio (H2/CO) of the effluent stream of gases from the gas generator may be increased by this step to a value in the range of about 0.8 to 6, such as 2.0 to 4Ø The aforesaid high temperature adiabatic nonc~talytic ther~al direct water-gas shift reaction may begin for example in the insulated spherical chamber. The shift reaction may continue in an insulated line connecting the side outlet of the spherical chamber with the bottom flanged inlet to a gas cooler. Thus, the effluent stream of synthesis gas is thermally shifted without a catalyst in transit between stages in the process. Residence time in the water gas shift conversion zone is in the range of about 0.1 to 5 seconds. Preferably, the condition of temperature and presure at which the noncatalytic thermal direct water-gas shift reaction takes place are substantially the same as those in the synthesis gas generator, less ordinary line drop and less any cooling due to the sensible heat of the supplemental H20 and any heating due to the heat of reaction.
Next, the process gas stream is passed through ; an inline separate gas cooler in noncontact heat exchange with water. The stream of-synthesis gas is cooled to a temperature in the range of about ~50 to 750F. By-product saturated steam may be produced thereby at a pressure above the pressure of the synthesis gas for use elsewhere in the process. Substantially all of the steam requirement in the system may be therefore met. For example, the aforesaid steam may be used as a working fluid in an - expansion turbine for the production of power, The steam turbine may be used to drive the air and oxygen compressors :
~ 12-lO9~V~7~ .

in a conventional air separation unit, the recycle gas compressor in the methanol synthesis loop to be further described, or the feed gas compressor if any. Preferably, a portion of the steam may be introduced into the gas generator as at least a portion of the temperature moderator and into the thermal shift reactor as a reactant.
It may also be used to provide heat in a reboiler in a methanol or DME distillation column.
The stream of synthesis gas leaving the waste heat boiler may be passed through a gas cleaning zone where any remaining entrained solid particles if present, are removed.
When there is substantially no entrained particulate matter in the process gas stream, such as with some gaseous fee~stocks, both gas cleaning zones may be by-passed or eliminated. The amount of solid particles i.e., selected from the group: particulate carbon, ash, and mixtures thereof, that may be entrained in the synthesis gas is dependent on the type of hydrocarbonaceous fuel and the atomic ratio tO/C) in the reaction zone.
When the generator fuel contains metals i.e. nickel and vanadium compounds, a small amount o~ entrained particulate carbon i.e., about 1-2 wt. ~ ~basis weight of C
in the hydrocarbonaceous feed), will increase the life ~ of the refractory lining the gas generator.
; Any suitable means may be used for cleaning entrained solid particles from the process gas streams.
For example the gas stream leaving the gas cooler may be contacted with a scrubbing fluid, such as water or .

liquid hydrocarbon in one or more steps in a gas-scrubbing zone, such as shown in coassigned U.S. Patent No. 3,544,291. The solids dispersed in scrubbing fluid from the gas cleaning zone, may be returned to the gas generator as at least a portion of the feed. Thus, if the gas stream is scrubbed with water, the dispersion of particulate carbon and water which is formed may be concen-trated or separated by conventional means to yield clarified water. This water may be recycled to an orifice, nozzle, or venturi scrubber in the gas cleaning zone. Carbon concen-tration may be effected by any suitable means; e.g., filtration, centrifuge, gravity settling, or by well-known lir~uid hydrocarbon extraction, such as the process described in coassigned U.S. Patent No. 2,992,906.
The gas stream leaving the cleaning zone is cooled below the dew point by indirect i.e. noncontact heat exchange and then introduced into a knockout or separation vessel in which substantially all of the water is removed to produce a clean i.e. soot-free dehumidified gas stream.
When the H2S and COS content of the soot-free dehumidified gas stream is less than about 5 PPM (parts per million), then the gas stream does not have to be desulfurized. In such case, the ~irst gas purification zone is used only to remove at least a portion i.e. about 10 to 100 vol. % of the C02 present~ Thus, about 10 to 100 vol. %, such as 10 to 90 vol. ~ of the clean dehùmidified gas from the partial oxidation gas generator may be introduced into the first gas prufication zone.

.~ . .
':
~ ' 1097(~77 The remainder of the soot-free dehumidified gas stream if any by-passes the first purification zone. The CO2-rich gas stream removed in the first gas purification zone may comprise the following in mole %: CO2 40 to 100, H2 5 to 25, Co 10 to 40, and C~ nil to 5.
When a portion i.e. (about 10-90 vol %) of the soot-free dehumidified synthesis gas by-passes the first gas purification zone then, at least a portion i.e. about 10 to 100 vol. % of the gas stream leaving the first gas purification zone with at least a portion of the CO2 removed is passed into a second gas purification zone.
The remainder of the gas stream from the first gas purification zone if any, by-passes the second gas purification zone. When no soot-free dehumidified synthesis gas by-passes the first gas purification zone then a portion i.e, about 10 to 90 vol. % of the gas stream leaving the first gas purification zone is passed into the second gas purification zone, and the remainder i.e. about 90 to 10 ; ~ vol. % by-passes the second gas purification zone. Thus, in this embodiment there is always at least one gas stream that by-passes the first, second, or both gas purification zones, and which may be mixed with H2-rich gas stream produced in the second gas purification zone to produce the product synthesis gas.
A CO-riah product gas stream and a H2-rich gas stream are separated in said second gas purification or separation zone. The composition of the CO~rich gas stream produced in the second gas purification zone is about as follows in mole % : CO 61 to 99; N nil to l; CO nil to 15; H2 2 to 8; CH4 nil to 1; and Ar nil to 0.5.
Preferablv by further purification, substantially pure carbon monoxide ~go~gg,5mole % CO) may be produced, The H2-rich gas stream produced in the second purification zone may comprise in mole ~ : H2 98 to 60; CO nil to 5;
C2 nil to 5; CH4 nil to 5; Ar nil to 4; and N2 nil to 20.
From about 20 to 100 vol. %, and preferably all of the H2-rich gas stream may be included as one of the ingredients in the product gas. The remainder of the H2-rich gas stream may be exported.
When the soot-free dehumidified process gas stream contains substantially no H2S and CoS, the product gas stream of purified synthesis gas is made by mixing at least a portion i.e. about 10 to 100 vol. % of said H~-rich gas stream with at least-a portion i.e. about 10 to 100 vol.
% of at least one of the following by-pass gas streams:
(a) soot-free dehumidified gas that by-passes the first gas purification zone; (b) soot-free dehumidified gas with at least a portion of the CO2 removed that leaves the first gas purification zone and which by-passes the second ~ -gas purification zone. Mixtures o (a) and (b~ may include about 10 to 90 vol. % of ~a) and the remainder (b).
In another embodiment, more than 5 PPM of acid gases i.e. H2S, COS, and CO are found in the soot-ree dehumidiied gas stream. In such case, all of this gas stream is introduced into a first gas purification zone which comprises a first-stage for desulfurizing the process gas streams and a second-stage for removing at ;

least a portion of the Co2. At least a portion i.e. about 10 to 100 volume % of the desulfurized gas stream from the first stage is introduced into the second stage where at least a portion of the CO2 contained therein is removed. The remainder of the desulfurized gas stream by-passes said second stage and the second gas purification zone. One or more liquid solvent absorbents may be used in the two-stages to absorb the acid-gas impurities. The rich liquid solvent absorbent is then removed from the absorption tower and regenerated by heating, stripping, or flashing, or a combination thereof to produce a lean liquid solvent absorbent which is then recycled to the conventional gas a~sorption tower. The acid-gases are recovered during the regeneration of the solvent absorbent and may be sent to a Claus unit for the production of sulfur. When a ; portion of the desulfurized gas stream from the first stageby-passes the second i.e. CO2-absorption stage of the first gas purification zone and the second gas purification zone then at least a portion i.e. about 10 to 100 vol. % of the desulfurized gas stream leaving the second stage of the first gas puri~ication zone is introduced into a second gaa purification zone where a H2-rich gas stream and a CO-rich product gas stream are separated. The remainder of ~; the gas stream leaving the second stage of the first gas purification zone if any, ~y-passes said second gas purification zone. Alternately, when all of the desulfurized gas stream from the first stage is introduced into ~he second stage of the first gas purification zone, then a portion i.e. about 10 to 90 vol. % of the desulfurized gas stream with at least a portion of the Co removed from the first gas purification zone is introduced into the second gas purification ~one. The remainder i.e. about 90 to 10 vol. ~ of the gas stream leaving the second stage of the first gas purification zone by-passes the second gas purification zone. Thus, in this embodiment there is always at least one gas stream that by-passes the second gas purification zone which may be mixed with the H2-rich gas stream to produce the purified synthesis gas product. As previously mentioned, the H2-rich gas is produced in the second gas purification zone along with a CO-rich product stream.
The product stream of purified synthesis gas having a controlled mole ratio H2/CO is produced in this embodiment by the following manner. At least a portion i.e, about 10 to 100 vol. % of the H2-rich gas from the second purification zone i5 mixed with at least a portion - i.e. about 10 to 100 vol. % of at least one i.e, either one or both of the following gas streams: (a) desulfurized ~as stream from the first stage that by-passes the CO2-removal stage of the first gas purification zone; (b) desulfurized gas stream with at laast a portion i.e. about 10 to 100 vol. % of the CO2 removed that leaves the second stage of said first gas purification zone and by-passes said second gas purification zone. Mixtures of (a) and ; (b) may comprise about 10-90 vol. ~ of (a) and the remainder ~b).

Alternately, a liquid solvent absorbent may be employed which absorbs all of the H2S and COS and at least a portion of the C0 in a single stage absorption tower which constitutes the first gas purification zone. In such case all of the clean soot-free dehumidified gas stream is passed into the first gas purification zone and a portion i.e. about 10 to 90 vol. % of the desulfurized gas with at least a portion i.e. 10 to 100 vol. % of the CO2 removed from the first gas purification zone is introduced into the second gas purification zone, while the remainder of this gas stream by-passes the second gas purification zone. A CO-rich product gas stream and a H2-rich gas stream are separated in the second gas purification zone.
The purified synthesis gas product stream is produced ; by mixing together at least a portion i.e. 10 to 100 vol.
% of ~aid H2-rich gas stream and at least a portion i.e.
about 10-100 vol. % of the desulfurized gas with at least a portion i.e. 10 to 100 vol. ~ of the CO2 removed that by-passes the second gas purification zone.
Any suitable conventional proaess may be used for purifying the gas stream in the first gas purification zone~
` Typical gas purification processes may involve refrigeration :
and physical or chemical absorption with a solvent, such as methanol, N-methyl-p-~rrolidone, triethanolamine, prop~-lene carbonate, or alternatively with hot potassium carbonate.
` Advantageously, when methanol is used as the ; solvent, a portion of the product methanol may be used as make-up to the gas-purification zone. By scrubbing the 10~7(~77 synthesis gas with methanol at 0C and 10 atmospheres 100 volumes of CO2 are absorbed per volume of methanol.
This concentration is increased to 270 vol/vol at - 30C.
At a high partial pressure of CO2 e.g. 25~ psi. methanol offers a very high absorption power. Similarly, cold methanol is an excellent selective solvent for separating H2S and COS from CO2. For example, the gas stream may be washed with cold methanol and the total sulfur, H2S + COS, may be reduced to less than 0.1 ppm. By selective absorp-tion of H2S and COS a concentration of high sulfur in the off-gas is obtained that contributes toward economic sulfur recovery.
In physical absorption processes, most of the CO2 absorbed in the solvent may be released by simple flashing.
The rest may be removed by stripping. This may be done most - economically with nitrogen. Nitrogen may be available as a low cost by-product when a conventional air separation unit is used for producing substantially pure oxygen (95 mole % 0 or moxe) for use as the free-oxygen contalning gas in the synthesis gas generator. ~ptionally, a portion of the CO2 separated in the first gas purification ~one may be recycled to the gas generator. ~he regenerated solvent is then recycled to the absorption column for reuse. When necessary, final cleanup may be accomplished by passing the gas stream thxough iron oxide, zinc oxide, or activated carbon to remove residual traces of H2S or organic sulfur, Similarly, the H2S and COS-containing solvent may be regenerated by flashing or by stripping with nitrogen or, alternatively, by heating and refluxing at reduced pressure without using an inert gas. The H2S and CoS may be then converted into sulfur by a suitable process. For example, the Claus process may be used for producing elemental sulfur from H2S, as described in Kirk-Othmer Encyclopedia of Chemical Technolo~y, Second Edition Volume 19, John Wiley, 1969, Page 352. Excess S02 may be removed and discarded in chemical combination with limestone, or by means of a suitable commercial extraction process.
In an alt~rnate gas purification scheme employing autorefrigeration, from about 30 to 95% of the carbon dioxlde may be removed from the synthesis gas stream, along with substantially all of the H2S, in the first gas purification zone. For example, reference is made to coassigned U.S. Patent No. 3,614,872 in which a stream `~ of shifted synthesis gas is separated into an enriched ~; hydrogen stream and an enriched carbon-dioxide stream by ;~ counter-current cooling with a departing stream of liquid C2 which is expanded and vaporized to produce low temperature.
The partially purified synthesis gas stream leaves ~ ~ the first gas puxification zone at a temperature in the ;~ range of about -80 to 250F and at a pressure in the range of about 10 to 450 atmospheres (pxeferably substantially equal ~ ,~
to the pressure in the reaction zone of the synthesis gas generator, less ordinary line drop). The composition of this partially purified stream of synthesis gas is about as follows in mole %: H 70 to 30, CO 30 to 60, CO2 nil to 15, H20 nil to 2, CH4 nil to 2, Ar nil to 2, N2 nil to 15, H S nil, and COS nil.

, ..,.._ _ 1097~77 The aforesaid stream of partially purified synthesis gas may be split into two streams, depending upon the amount and composition of the carbon monoxide-ri h gas required and the desired composition of the product stream of synthesis gas. The split may be pre-determined by material balances. Thus from about 10 to 100 vol. %, such as 10 to 90 vol. % of the stream of cleaned and partially purified synthesis gas leaving the first gas purification zone may be introduced into a second gas purification zone.
The second gas purification or separation zone may comprise any suitable conventional process for separating out a CO-rich gas, a H2-rich gas stream, and optionally a CH4-rich gas stream. Cryogenic cooling or physical absorption with a liquid solvent e.g. copper ammonium acetate or cuprous aluminum chloride, liquid nitrogen, and liquid methane may be employed.
One system for remo~ing CO from the gas stream by physical absorption in cold copper liquor in a CO-absorption column will be described below. Upon applying heat and releasing the pressure on the cop~er liquor in a . ~
copper-liquor regeneration column, a relatively pure carbon ;~ monoxide i9 obtained. The reaction is shown in Equation I.
~ ~ .
Cu2 (NH3)~+4 + 2CO + 2NH3-~-Cu2(NH4)6 (CO)2 (I) Thus, in the second gas purification zone at least a portion of the effluent gas stream from the first gas purification zone may be contacted in a conventional packed or tray-type column with a countercurrent flowing stream . ~ .

~09~()77 of, for example, cuprous acetate dissolved in aqua-ammonia solution. The temperature is preferably in the range of about 32 to 100F and the pressure is preferably in the range of about 50 to 600 atm. Preferably, the pressure in the CO separation zone is substantially the same as that in the gas generator, less ordinary pressure drop in the lines and equipment. By keeping the pressure in the gas generator high enough, a gas compressor may be avoided between the acid-gas-absorption column in the first gas purification zone and the CO-absorption column in the second gas purification zone. Advantageously, the product stream of purified synthesis gas may be delivered at a pressure which is about that in the partial oxidation gas ; generator less ordinary drop in the intervening lines and equipment.
;~ A typical analysis (by weight %) of the copper-liquor solution may include the following: C`u 10; Cu++ 2.2;
+
CO3 (carbonate) 13.9; HCO3 (bicarbonate) 1.3; and NH4 16.5.
The acid radical in the aqueous solution may be either car-bonate, formate, or acetate.
20~ Regeneration of the copper liquor and release of the CO-rich gas stxeam takes place in a copper-liquor regenerator. The pressure difference between the scrubber -: ' and the regenerator is about 68 to 204 atm. e.g, 109 atm.
By the reduction of pressure and the addition of heat and a free-oxygen conta ming gas, e.g. air, pure 0 , and mixtures thereof, the direction of Equation I may be reversed and the carbonate and bicarbonate ions may be regenerated. The ~0~70~7 normal temperature range in the regenerator may be about 170 to 180F. Fresh make-up ammonia and, for example, acetic acid may be added to the copper liquor in the regenerator in order to maintain the proper solution chemistry. Optionally, the acetic acid may be produced subsequently in one embodiment of the subject process.
In one separation process, the partially purified synthesis gas stream from the first gas purification zone is contacted with liquid methane or a sulfur-free liquefied C~4-rich gas comprising at least 85 vol. % CH4, such as liquid natural - 10 gas in a separation column. The bottoms stream from the column may be then passed into the partial oxidation gas generation operation as at least a portion of the feed.
In one embodiment of the subject invention, clean purified methanol synthesis gas is produced having a mole ratio H2/CO in the range of about 2 to 4 by the previously described process steps. ~y conventional catalytic steps the synthesis gas may be converted into ~; methanol.
The equilibrium exothermic reaction of carbon ; 20 oxldes and hydrogen to produce methanol, as shown in Equations II and III below, is favored by low temperature a~d high pressure. However, elevated tempera~ures may be ~; ~ necessary with some catalysts to obtain commercially adequate reaction rates.
CO + 2H2 _ CH30H II
CO2~ 3H2~ CH30~ III
Conventional high-pressure methanol processes opexate at temperatures in the range of about 650 to 750F, at pressures in the range of about 250 to 350 atm. and with zinc-oxide/chromium-oxide catalysts.

~a_ 1~97(~77 Conventional low- and intermediate-pressure methanol processes operate at temperatures in the range of about 400 to 660F., such as 440-520F.; at pressures in the range of about 40 to 250 atm., such as 40 to 150, and with catalysts composed largely of copper oxide with a lesser amount of zinc oxide and either chrome or aluminum oxides. The proportions of these three oxides are 30 to 60%, 20 to 40%, and 5 to 20%, respectively, Durability and thermal stability of the catalyst may be improved by the addition of manganese or vanadium. Methanol catalysts may be prepared by alkaline precipitation from nitric-acid solution, followed by drying, calcining, and pelletizing.
Space velocities may range from about 10,000 to 40,000 hr 1. Contact times are below 1.0 second. This rate of methanol formation is from about 0.3 to 2.0 kg/liter of catalyst/hr.
Optionally, the gaseous feed to the methanol converter may contain about 2 to 12 mole % of CO2. Also, the mole ratio, H2/(~CO+3CO2), in the feed gas stream to the methanol converter may be in the range o~ about 1.01 to 1.05. The presence of sQme CO2 reduces the cost of the prior g~s purification step. Further, the greater mo}ar specific heat of the CO2 relative to CO and the lower heat of reaction of the CO2 provide a more uniform tempera-. ~
ture control in the methanol reactor. The presence of C2 appears to be beneficial in repressing the formation of dimethyl ether. Optionally, CO2 obtained from said first gas puriication zone may be mixed with the methanol synthesis gas to adjust the mole % of CO2 present.

. .
i 1097(;~77 Each mole of fresh methanol synthesis gas may be mixed with 0 to 10 moles of unconverted recycle gas from the methanol converter, i.e. 3 to 8 moles of recycle gas per mole of fresh methanol synthesis gas. A
steam-turbine-driven circulating compressor may be used to compress and to circulate a mixture comprising the fresh methanol synthesis gas and the recycle gas. The working fluid for the turbine, i.e. steam, may be obtained from the main syngas cooler following the gas generator.
The feed-gas mixture to the methanol con-verter is prefera~ly preheated by indirect heat exchange with the gaseous effluent stream departing from the methanol converter at a temperature in the range of about 500 to 800F and at a pressure in the range of .
about ~ to 4S0 atm., preferably at the pressure in .
the synthesis gas generator less ordinary drop in the tervening lines and equipment.

::

`

~ , ;

1097()77 The effluent stream from the methanol reactor may have the following pri~ ~pal ingredients, in mole %: CH30H 5 to 15 C0 8 to 25; H2 40 to 80; Co2 3 to 12; H20 0.5 to 15; and (CH3)20 0.5 to 0.6. Minor amounts of other alcohols, aldehydes, and ketones may be present.
Further cooling of the effluent gas stream in air and water coolers may be effected to condense crude methanol and water. This condensate flows to a separation zone in which uncondensed unreacted gases, i.e H2, C02, CH4, N2, Ar are separated, for example by flashing, and re-cycyled to the gas compressor, with the exception of any purge stream. The crude methanol is purified by fractional distillation. Impurities including low-boiling compounds, principally dimethyl ether and higher alcohols, may be withdrawn from the distillaticn zone and optionally may be disposed as a waste stream or be used by recycling to the gas generator as a portion of the feed. Advantageously, these waste streams contain combined oxygen and therefore reduce the free-oxygen gas required for a given level of soot production. A portion of the product methanol may ~e introduced into one or both gas-purification zones in the first and second trains, as make-up solvent absorbent.
In the following embodiment of the subject invention, first methanol synthesis gas having a mole ratio H2/C0 in the range of about 2 to 4 is made by the previously des-cribed process steps, concurrently with the C0-rich gas stream (or preferably substantially pure carbon monoxide.) Crude methanol is then prepared in the manner previously ; described and purified. Although unpurified methanol and ~ 30 the C0-rich gas stream may be reacted to produce crude ~09~77 acetic acid, it is preferable to react purified methanol with substantially pure carbon monoxide in order to in-crease the reaction rate and to improve the selectivity.
Theoretically, one mole of carbon monoxide per mole of methanol is necessary to produce one mole of acetic acid, as shown in Equation IV below. The reaction is mildly exothermic; and, in practice, excess carbon monoxide is re~uired, i.e. about 22%.
CH30H + CO -~ CH3COOH IV
Catalysts are commercially available for car-bonylation reactions to produce acetic acid at high or low pressure, by either li~uid-or vapor-phase reaction.
High-pressure carbonylation reactions for the preparation of crude acetic acid may take place at a temperature in the range of about 338 to 608F., such as 392-482F and at a pressure in the range of about 15 to 700 atmospheres, such as 150 to 315 atmospheres.
Suitable commercially-available high-temperature carbonylation catalysts for the preparation of acetic acid often comprise two main compounds. One component is a carbonyl-forming metal of the iron group, i.e. Fe, CO, or Ni in the form of a salt i.e. acetate. The other component is a halogen i.e. I, Br, or Cl as a free halogen ar a halogen compound. For example, CoI or a mixture of cobalt ; acetate with an iodine compound are suitable catalysts. A
contact time of about 2-3 minutes may be required to obtain 50-65% conversion of methanol by vapor-phase reaction at high pressure. Liquid phase reaction at about 356F at 25~
atm. may take about 3 hrs., for about 51% conversion. Water is used as a solvent or diluent, and it increases the .. . .
-:, , . : .. ., . - . ~ , 1097()77 methanol conversion while suppressing the production of methyl acetate. For example, about 30-40 wt. % of water may be present in th~ reaction zone.
Carbonylation reactions, ~or the preparation of crude acetic acid by reacting together methanol and carbon monoxide-rich gas or preferably substantially pure C0, may take place at a temperature in the range of about 302 to 392F. and at a pressure in the range of about 34 to 680 atm., for liquid phase. ~or 50% conversion of the methanol, the reaction time is about 40-200 minutes. A temperature in the range of about 392 to 572F. and a pressure in the range of about 1 to 10 atm. may be used for vapor-phase reaction.
Suitable commercially available low-temperature carbonylation catalysts for the preparation of acetic acid comprise the following combination of ingredients: (1) noble metal catalyst, (2) catalyst promoter, and (3~ dis-persant or carrier. The noble metal active catalyst may be , ~
selected from the group consisting of rhodium, palladium, platinum, iridium, osmium, or ruthenium~ in the ~orm of an oxide, organometallic compound, salt, or a coordination compound, consisting of one of said noble metals, C0, a halide, such as chloride, bromide, or iodide, and a suitable amine, organo pho~phine, organoarsine, or organostibine ligand. The catalyst promoter may consist of a halogen or ~; halogen compound. The dispersant in liquid-phase processes is a solvent for the metal catalytic component i.e. mixture o~ acetic acid and water. In vapor-phase processes the same noble-metal compound and promoter as previously described are dispersed on a carrier, i.e. pumice, alumina, activated carbon, or silica.
--2g--10970'77 For example, a typical low-pressure catalyst for the li~uid-phase process may comprise 10 2 to 10 4 mol/liter of chlorocarbonyl-bis-triphenolphosphine rhodium, and 10 4 to 2 mol/liter of methyl iodide dissolved in a mixture of acetic acid and water. The ratio of atoms of halogen in the promoter to atoms of noble metal in the catalyst is prefer-ably in the range of about 3 to 300.
In the low-pressure process for the production of glacial acetic acid by li~uid-phase carbonylation, at least a portion of the pure methanol as produced previously is mixed in a reactor surge tank with recovered recycled unre-acted methanol, catalyst, catalyst promoter, acetic acid solvent for the catalyst, methyl acetate, and water. The mixture is then pumped into a carbonylation reactor, along with substantially pure carbon monoxide, in which the carbony-lation reaction takes place at a temperature, for example, of 392F. and at a pressure of about 35 atmospheres. The gaseous product is cooled and sent to a separation zone in which uncondensed gases and condensate are separated. The uncondensed gas may be scrubbed with fresh methanol to , recover the entrained methanol, methyl acetate, and methyl iodide for recycle to the reactor surge tank. Optionally, the residual o~f-gas may be recycled to the gas generator, ~ -or to the water-gas shift converter, or vented. The liquid product rom the reactor and the condensate are sent to a separation zone, i.e. distillation zone, in which at a pres-sure o~ about 1-3 atm. the low-boiling constituents, such as methanol, methyl acetate and methyl iodide, are separated ~and recycled to the reactor surge tank, along with recovered rhodium compound catalyst dissolved in acetic acid, and with 109'7U77 water which may be recovered by azeotropically dehydrating acetic acid. Glacial acetic acid product is also separated along with a bottoms stream comprising propionic acid and heavy ends.
Advantageously, the waste bottoms stream of prop-ionic acid and heavy ends, as well as any off-gas stream that is not purged may be recycled to the gas generator as a portion of the feed. By this means the environment is not polluted. Preferably, the pressure in the acetic-acid synthesis zone is the same as that in the partial oxidation gas generator less ordinary pressure drop in the intervening lines and e~uipment.

, ~

.~ .

1()9'7077 DESCRIPTION OF THE DRAWING
A more complete understanding of the invention - may be had by reference to the accompanying schematic --drawing, A preferred embodiment of the process of this invention is illustrated by that portion of the drawing, Fig, IA, to the left of line A-A. Other embodiments are shown ~n Fig. IB to the right of line A-A. It is not intended to limit the continuous process illustrated to the particular apparatus and materials described.
With reference to the Fig. I~, unpacked, free-flow noncatalytic partial oxidation-synthesis gas generator 1, as previously described has a refractory lining 2 and an annulus-type burner 3 mounted in its upper inlet port 4 along the vertical axis. The feed streams are introduced into the reaction zone 5 of the gas generator by way of burner 3. They include an oxygen stream which passes through line 6, and the central conduit 7 o the burner, a stream of steam which passes through lines 8 and 9, and a stream of hydrocarbonaceous fuel which passes through lines 10 and 9. The latter two streams are mixed together .
~ in line 9 and the mixture is then passed through the annulus passage 4 in burner 3.
The effluent stream of raw synthesis gas lea~es the reaction zone and passes through exit passage 15 and directly into a spherically shaped insulated chamber 16.
A portion of any entrained solids may drop out of the ~ ~ , ~ gas stream and pass through bottom outlet 17 and into slag , ~ , pot 18 by way of upper inlet 19. The solid material ; which collects in slag pot I8 is periodically removed :
~ _32-,~ . . -105~7(~'7 through bottom outlet 20, line 21, valve 22, and line 23, or by a lock-hopper system hot shown. When the process gas stream contains little or no entrained solids such as the csse with gaseous and some liquid fuels, slag pot 18 may be deleted. Optionally, steam in line 24 may be passed through inlet 25 and injected into the stream of synthesis gas in chamber 16. By this means, the H2/CO
mole ratio of the process gas stream may be increased by the thermal noncatalytic wate.r~ga~ ift reaction.
The stream of synthesis gas is passed through outlet 26 of chamber 16, insulated line 27 and then through inlet 29 of gas ~ooler 30 where it is cooled by indirect.
heat exchange with a stream of boiler feed water from line 31. The boiler feed water.passes through inlet 32 and leaves as steam through outlet 33 and line 34. The cooled synthesis gas leaves through outlet 35, lines 36, 37, valve 38, line 39 and is contacted with water from line 40 in orifice or venturi scrubber 41. Any remaining entrained solids i.e. particulate carbon and ash are thereby scrubbed from the raw synthesis gas and pass with the water through line ~20 42 into separation vessel 43. A mixture of solid particles and water is removed through line 44 near the bottom of vessel 43 and is sent to a separator tnot shown) where clarified water is separated and recycled to lines 40 and 45.
~ .
Additional gas scrubbing may be achieved t for example, by passing the stream of synthesis gas through water spray 46 prior to leaving vessel 43 through line 47. ~hen ~n gas , 10~'7()~7 scrubbing is required then all or a portion of the process gas stream in line 36 may be by-passed through line 48, valve 49 and line 50.
The synthesis gas in line 51 is cooled below the dew point in heat exchanger 52 by indirect heat exchange with cold water entering through line 53 and leaving by line 54. The cooled stream passes through line - 55 into separation vessel 56 where the condensed water is removed at the bottom by way of line 57 and the gas stream leaves through line 58 at the top.
In the embodiment is the process in which the soot-free dehumidified synthesis gas stream in line 58 contains less than SPPM of H2S and COS, valve 59 lS closed, valves 60 and 61 are opened, and valve 62 may be opened or closed to permit at least a portion of the gas in line 58 to pass into the CO2-absorption section 63 of first ; gas purification zone 64 by way of line 65, valve 60, lines 66, 67, valve 51, and line 68. Optionally, a portion of the soot-free dehumidified gas in line 58 by-passes first gas purification zone 64 and second gas purification zone 85, by way of line 69, valve 62, lines 70, 71, valve 72, and lines 73, 74~ and 91.
Optionally, a portion of the soot-free dehumidified gas stream in line 70 may be removed from the system through -~ }ine 75, valve 76, and line 77. Lean liquid solvent absorbent enters CO2-absorption zone 63 through line 78 and passes down the column over trays or packing thereby co~ing in direct contact with the gas stream passing up the column. Rich solvent absorbent leaves section 63 saturated with CO through line 79 and goes to a regeneration zone (not shown). The synthesis gas stream containing ' ' ' - ' ' ' ' ~

~097(~77 substantially no CO2 or a controlled amount leaves section 63 through line 80.
The partially purified synthesis gas stream leaving the first gas purification zone by way of line 80 may be then split into two streams 81 and 82. At least a portion of the stream of synthesis gas in line 80 is passed through line 81, valve 83, line 84, and is then subjected to further treatment in a second gas purification zone 85. The remainder of the gas stream if any comprising about 0 to 90vol. %, such as about 10 to 90 vol. % of the gas stream from line 80 is pasced through line 82, valve 86, lines 87-88, valve 89, line 90 and may be mixed in line 91 with the soot-free dehumidified stream of synthesis gas which by-passes the first gas purification zone,if any, from line 74. Optionally, a portion i.e. 0 to 50 vol. % of the partially purified : synthesis gas 3n line 87 may be removed from the system through line 92, valve 93, and line 94.
At least a portion and preferably all of the CO-rich gas or substantially pure carbon monoxide product gas which exlts the second gas purification zone 85 through line 95 and 96 may be used in organic synthesis.
The remainder may be exported through line 97, valve 98, and line 99. A stxeam of H2-rich gas leaves CO-separation .
: zone 85 by way of lines 100, 101, valve 102, and line 103.
~ In line 104 at least a portion of the H2-rich gas stream : ~ from line 103 is mixed with all of the stream of synthesis gas from line 91. ~ Thus the purifie~ synthesis gas ,: .

1~97(~77 product stream having an increased and controlled H2/C0 mole ratio in line 104 is made by mixing together at least a portion of the H2-rich gas stream from line 103 with at least a portion of one or both of the following streams:
(a) soot-free dehumidified synthesis gas which by-passes first and second gas purification zones 64 and 85 in line 91 by way of lines 69, 70, 71, 73, 74, and 91. (b) soot-free dehumidified synthesis gas with at least a portion of the C02 removed from line 80 that by-passes the second gas purification zone 85 by way of lines 82, 87, 88, 90, and 91.
Any remaining H2-rich gas from line 100 may be exported through line 105 valve 106 and line 107. The synthesis gas product stream in line 104 has a H2/C0 mole ratio in the range of about 2 to 12. At least a portion and preferably all of this gas stream may be passed through line 108 for use in organic synthesis. Any remaining portion of the synthesis gas product stream from line 104 may be passed through line 109, valve 110, and line 111 to export, or recycle to the gas generator either alone or in admixture with other recycle streams.
In another embodiment in which the soot-~ree dehumidified gas stream in line 58 comprises more than 5 PPM, a desulfurization section 120 is added to the bottom of the first gas purification zone 64. In such case with valves 61 and 62 closed and valves 59 and 60 . . .
. open, all of the soot-free dehumidified synthesis gas in line 58 is passed into first gas purification zane 64, and none of this gas stream i~ by-passed around the first . gas purification zone by way of line 69, valve 62, line 70 10~7~)77 etc. Thus the soot-free dehumidified gas in line 58 is passed through line 65, valve 60, lines 66, 121, valve 59, line 122, into the first stage i.e. lower desulfurization section 120 containing trays or packing where it passes up through the absorption column in direct contact with a stream of liquid solvent absorbent flowing down the column. Lean solvent absorbent in line 123 enters section 120, absorbs H2S and COS from the synthesis gas, and leaves as rich liquid solvent absorbent by way of line 124. The rich solvent absorbent passes into a regenerator tnot shown) to produce lean liquid solvent absorbent which is recycled to section 120 by way of line 123. Desulfurized synthesis gas leaves through line 125 and optionally may be split into two streams. At least a portion of the desulfurized synthesis gas may be passed through line 126, valve 127, and line 128 into upper section 63 of the first gas purification zone where at least a portion of the CO2 in the gas stream is removed in the manner previously described. The remainder of the desulfurized gas stream if any, in line 125 is passed through line 129, valve 130, and lines 131, 132, 74 and 91. Optionally, a portion of this desulfurized gas stream is removed from ::
the system through line 133j valve 134, and line 135.
. ~ :
~ A desulfurized synthesis gas stream with at ::, leaæt~a portion of the CO2 removed leaves the first gas purification zone through line 80, At least a portion of this stream passes into the second gas purification zone by way of line 81, valve 83, and line 84. The remainder of gas stream 80 if any, by-passes the second gas purification zone by way of line 82, valve 86, lines 87, 88, valve 89, ~ ., ., -and lines 90 and 91. Optionally, a portion of this by-pass stream may be exported through line 92. A CO-rich or substantially pure CO product stream is removed through line 95 of the second gas purification zone, and a H2-rich gas stream is removed through lines 100, 101, valve 102, and line 103. A product stream of purified synthesis gas having a controlled and increased H2/CO mole ratio in the range of about 2 to 12 is produced by mixing in line 104 at least a portion of the H2-rich gas stream produced in the second gas puxification zone in line 103 with at least a portion of one or both of the following: (a) desulfurized synthesis gas produced in the first stage 120 of first gas purification zone 64 and which by-passes the second stage 63 and the second purification zone 85 by way of lines 125/ 129, valve 130, lines 131/ 132/ 74/ and 91; (b) desulfurized synthesis gas with at least a portion of the C2 removed produced in the second stage 63 of first gas purification zone 64 and which by-passes the second gas purification zone 85 by way of lines 80/ 82/ valve 86, lines 87, 88, valve 89/ and lines 90 and 91.

:~ .
`:
.

-3a-!

1~)9~()77 In another embodiment shown in Fig. lB, pure methanol is made by the catalytic reaction of at least a portion of cleaned and purified product stream of methanol synthesis gas from line 108. The process steps are shown to the right of section line A-A in the drawing. The process gas stream from line 108 is passed through valve 200, and line 201 into steam turbocompressor-circulator 202 along with unconverted recycle gases from line 203. The compressed gases in line 204 are then preheated in heat exchanger 205 - by indirect heat exchange with the hot impure methanol vapor leaving catalytic methanol reactor 206 by way of line 207.
The preheated methanol synthesis gas stream in line 208 is passed through methanol reactor 206 where reactionS be~e9n .
and carbonic oxides take place to produce crude methanol.
Ater being partially cooled in heat exchanger 205, the methanol reaction products pass through line 209 into separ-ation zone 210 where the unreacted gases are separated from the crude methanol. The unreacted gases are passed through ; lines 215 and 203 into recycle compressor 202, except for the purge gas which is passed through line 216, valve 217, and line 218. The crude methanol in line 219 i9 introduced into the purification zone 220 where impurities are removed, ~or example, by distillation. Dimethyl ether may be removed through ~ , .
Iine 221, mixed alcohols through line 222, and water through line 223. Pure methanol may be drawn off through lines 224, 225, ~alve 226, and line 227. Optionally, by-product oxygen-containing organic compounds from lines 221, 222, and 218 may be recycled to the gas generator as a portion of the fuel and to reduce the free-oxygen requiremer.ts for a gi~en level of soot production.
In 9till another embodiment of the invention a raw stream of acetic acid is prepared by the low pressure liquid-~ ., ,, , . .. ... ~, ,. ... ... . . , ~ , ....... . .
- ' 10970~;'7 phase catalytic carbonylation reaction between the pure methanol and the substantially pure carbon monoxide made previously in the subject process. In such case, at least a portion of the pure methanol in line 224 is passed through line 240, valve 241, and line 242 into reactor surge tank 243 and mixed with a mixture of recycle materials from line 244.
Recycle stream 244 comprises a mixture of methanol, methyl acetate, and methyl iodide from lines 245 and 246 and a rhodium catalyst compound i.e. Rh(CO)~P(C6H5)3)2 Cl dissolved in a mixture of acetic acid and water from line 247.
By ~eans of pump 248, the reactant mixture in tank 243 is pumped through lines 249 and 250 into vertical carbony-lation reactor 251. Simultaneously, at least a portion of the substantially Fure CO gas stream in line 96 is passed into c-arbonylation reactor 251 by way of valve 255, line 256, optionally steam turbocompressor 257, and line 258. In reactor 251, methanol and CO react to produce acetic acid.
: An overhead gaseous stream is passed through line 259, cooled in heat exchanger ~60, and passed through line 261 into æeparator 262. The uncondensed gases in line 263 are scrubbed with fresh methanol in a tower ~not shown) to re-cover ~ntrained methanol, methyl acetate and methyl iodide :: for recycle to the reactor surge tank 243. Residual off-gas rom the scrubber may be recycled to the gas generator or : vented.
The liquid product from the reactor in line 264 :~ and the condensate from line 265 are passed through line 270 into separation zone 271. For example, by distillation, ~ ~ .

10~'70~7 the low boiling constituents comprising a mixture of methanol, methyl acetate, and methyl iodide may be separated and leave by way of line 245; water is removed through line 272; recovered rhodium compeund catalyst dissolved in acetic acid is removed through line 247;
and impure acetic acid is removed through line 273 and fed into separation zone 274. Glacial acetic acid is recov-ered as a distillate from line 275. Propionic acid and heav-ier components leave through line 276 and may be recycled to the gas generator as a portion of the fuel.
EXAMPLE
The following example illustrates an embodiment of the process of this invention for simultaneously and continuously producing a stream of methanol synthesis gas and a stream of substantially pure carbon monoxide. The example should not be construed as limiting the scope of ,~ the invention. Reference is made to the drawing.
The feed to a noncatalytic free-flow partial-oxidation gas generator comprises 20.99 million standard cubic feet per day of natural gas and 13.94 million standard cubic feet per day of substantially pure oxygen (99 mole ~ 2) The compo~ition of the natural gas follows: CH4 87.62, C2H6 7.96, C3H8 , 2 2 2.56. No H20 is introduced into the ga~ generator.
65.01 miliion standard cubic feet per day of raw synthesis gas leave the reaction zone of the gas generator at a temperature of 2600F and a pressure of 896,0 psig.

109'7V77 The amount in million standard cubic feet per day (MMSCF/day) and composition in mole ~ of the raw synthesis gas stream leaving the reaction zone at reference number 15 in the drawing is shown in column 1 of Table I, which follows, Because no solids are entrained in the gas stream leaving the gas generator, slag pot 18 and the carbon-scrub~ing zone comprising 41 and 43 in Fig. lA may be deleted.
Further, no water-gas shifting is required in the subject process to increase the H2/CO mole ratio.
The amount and composition of the dehumidified gas stream leaving gas-liquid separator 56 by way of line 58 is shown in column 2 o Table I. The gas stream in line 58 is then divided into two streams, One stream in line 69 by-passes tha first gas purification zone 64. The other stream in line 65 is introduced into the first gas purification zone. The amounts and compositions of gas streams 69 and 65 are shown respectively in columns 3 and 4 of Table I, Substantially all of the CO is separated in the first gas-purification zone. The amount and composition of the CO2 tail gas recovered in a solvent regenerator (not shown) is shown in column 5 of Table I, The purified synthesis gas stream leaving the first gas-purification zone through line 80 is shown in column
6 of Table Io Ali of this gas stream is introduced into ~ the second gas-purification zone, in which it is separated ,~ into the CO-rich product ga~ stream in line 96 and the H2-rich gas stream in line 100~ The amounts and compoæitions of these gas streams are shownr respectively, ., in columns 7 and 8 of Table I.

~",". -109~(~77 The product gas of methanol-synthesis ~as is then produced by mixing together in line 104 all of the soot-free dehumidified gas stream that by-passes the first gas purification zone by way of line 69, valve 62, lines 70, 71, valve 72, and lines 73, 74, and 91 with all of the H2-rich gas stream from lines 100, 101, valve 102 and line 103. The amount and composition of this methanol-synthesis product gas stream in line 108 is shown in column 9 of Table I. This is the proper gas composition for mixing with unconverted recycle gas from a catalytic methanol converter to produce a feed gas for converting into crude methanol. Pure methanol may be produced by distillation and reacted in a catalytic carbonylation reactor with at least a portion of the stream of substantially pure carbon monoxide from stream 96 to produce crude acetic acid in the manner described previously ~ in connection with Fig. 1 B of the drawing. Glacial acetic - acid may be then produced by purification.
`: : :
The process of the invention has been described generally and by examples, with reference to a hydrocarbon-aceous fuel, synthesis gas, and H2-rich gas of partlculax compositions, for purposes of clarity and illustration only.
It wil} be apparent to those skilled in the art from the ,. ~
foregoing that various modifications of the process and materials disclosed herein can be made without departure from the spirit of the invention.
'''; ~ ' ' ;

' ~... .,................... . ; . ~, ~097()77 oP ~ ~ CO O C~
_~ U~ i I ~ ~ ~ o U~ ~
~ ~1 V ~ ~ o c~ o ~ _1 L~ o o o o o O a~
"., ~ 1 o o o o a~

H ~ y~ ~
H ~ g ~ 0 ~ O 1` ~D O
O ~ ~ I` O O ~ C~
~ 3~ ,1 ~.0 o ' o O ~ 'I

U~ O
~ O X
I ~ ~ 1 1 i 0 U:~
H O u~ I O O O _I

U ~ 1 1 ~10 h~ I I I o X
~ i 0 0 0 U CO ~ O ~ ~ ~l ~ O O Cl:~
1~

~ r: ,~ ~ o O o z ~ y ,: o S~ ' o ~ ~, ~ e~~ ~ ~ o ~ ~ ~:
:: u a C~ :c u :: u ~C z ~ ~ 3 a .
~:

44_ ~:: -: : `.

~
!
.
109'71~'77 o~
O~D O 1 ~ ~ Oer ~1~Ir~ o O ~ oo _i o o o I o r~
~ ~ ~o o CO ~ ~ U~
O ~ ~ ~
o~ ,1 ~ ~r U o o u~ _I er o h o o ~ o U . . . . . . q.
U~~ r~ o o o o U~ U~

~P
. ~ o ~ ~ ~ o ~
_IU~ ~ o ~ o 1`
O . . I I I . .. I
r` ~ o o o a~
. ~ - . o o ~ . . ,1 o ~o _I
o u~
~ ~ ~ o ~ a~ ~D
UC~ ~ o o I I I ,1 _I
U~. ..1 ~:o o ' o o _I
-:
.
o~ ~0 ct~--I ~ ~ o . ~r Zo ~ _~ ~r ~ ~ ~ o ~D
~_~ _~
E~ ~ o o q ~ o ~ I~ ~ ~ .
O ~ ~ t` o o U:~
~) ~a~ I ~ o Uo~ o I I o o_I I I I ~1 o .` tl~ U~
~ ~r o o o o : ~ _ : . dP I~ I O ~r u~ O
' ~: : - Z ~ . . I I . . . I
:~ ~ o o o o a~' o ~ ,I c r ~ ~ ~
~ y~ O ~ 1`O o o I I I ,~ ,~

~ .
,1 ~ ~ er o ~ o o O o O ~ ~; o ~ ~ 0 0 ~ ,~

c ~ ~ ~ o ,, o o ~ o o o o o o ~r ~1 O ~ O ~ O O O O G O O O O
O
`: ~ Z

~1 ~ ~ o ~ cn u~
o ~ o ~ o ~ 3 ~ ~ ~ o a) ~ ~
u a o ~: c~ u ~C z ~ 3 a --: . , ~ _ --.4 5--.
.
: ` , - : `

Claims (37)

The embodiments of the invention in which an exclu-sive property or privilege is claimed are defined as follows:
1. Process for simultaneous production of a product stream of purified synthesis gas and a product stream of CO-rich gas, comprising:
(1) reacting a hydrocarbonaceous feedstock with a free-oxygen-containing gas, optionally in the presence of a temperature moderator, in the reaction zone of a free-flow noncatalytic partial-oxidation gas generator at a tempera-ture in the range of about 1300 to 3000°F and at a pressure in the range of about 1 to 250 atmospheres to produce an effluent gas stream comprising H2, CO, H2O, CO2, and optionally at least one material from the group H2S, COS, CH4, N2, Ar, and solid particles;
(2) removing a portion of said solid particles if present, cooling the effluent gas stream by indirect heat exchange in a separate heat-exchange zone, removing any remaining entrained solid particles, and dehumidifying the cooled gas stream;
(3) introducing at least a portion of the clean dehumidified gas stream from (2) into a first gas-purifica-tion zone and by-passing said first gas-purification zone with the remainder if any; removing from the gas stream in said first gas-purification zone any H2S, COS, and at least a portion of the CO2;
(4) introducing partially purified gas from the first gas purification zone in (3) into a second gas-purification zone and by-passing said second gas-purification zone with at least a portion of the remainder, if any, and removing from said second gas-purification zone said product stream of CO-rich gas and a separate stream of H2-rich gas; and (5) mixing together at least a portion of the H2-rich gas from (4) with at least a portion of at least one of the following:
(a) gas processed in the first gas purification zone that by-passes the second gas purification zone in (4);
(b) soot-free dehumidified gas that by-passes the first gas-purification zone in (3); producing said product stream of purified synthesis gas having a controlled H2/CO mole ratio.
2. The process of Claim 1 in which the effluent gas stream from the reaction zone in step (1) and the synthesis gas from the first-gas purification zone in step (3) have a mole ratio H2/CO in the range of about 0.5 to 1.9, and the product stream of purified synthesis gas from step (5) has a mole ratio H2/CO in the range of about 2 to 12.
3. The process of Claim 2 in which said product stream of purified synthesis gas is methanol synthesis gas having a H2/CO mole ratio in the range of about 2-4.
4. The process of Claim 1 in which said product stream of purified synthesis gas is delivered at a pressure which is about that in the synthesis gas generator less ordinary drop in the intervening lines and equipment.
5. The process of Claim 1 in which the following gas streams contain substantially no water: (a) the acid-gas free synthesis gas from step (3), (b) the H2-rich gas stream from step (4), and (c) the CO-rich product gas stream from step (4).
6. The process of Claim 1 in which said product stream of CO-rich gas from step (4) is substantially pure CO containing about 90-99.5 mole percent CO.
7. The process of Claim 1 in which from about 10 to 100 volume % of the clean dehumidified gas stream from step (2) is introduced into said first gas-purification zone in step (3).
8. The process of Claim 1 in which about 10 to 90 vol. % of the synthesis gas leaving the first gas-purification zone in step (3) is introduced into the second gas-purification zone in step (4), and the remainder of said synthesis gas comprising about 90 to 10 vol. % by-passes the second gas-purification zone in step (4) and is mixed with said gases in step (5) to produce said stream of product gas.
9. The process of Claim 1 provided with the additional step of introducing supplemental steam into the effluent gas stream from (1) in the amount of about 0.1 to 2.5 moles of supplemental steam per mole of effluent gas stream, and, in a separate free-flow unpacked reaction zone at a pressure substantially that in said synthesis-gas generator, less ordinary line drop, and at a temperature of at least 1500°F reacting together H2O and a portion of the CO in the effluent gas from (1) so as to increase the mole ratio (H2/CO).
10. The process of Claim 1 in which said free-oxygen-containing gas is substantially pure oxygen (95 mole percent O2 or more).

\
11. The process ofClaim 1 in which said hydro-carbonaceous feedstock is selected from the group consisting of liquefied petroleum gas, liquefied natural gas, petroleum distillates and residue, naphtha, gas oil, residual fuel, reduced crude, whole crude, asphalt, coal tar, coal-derived oil, shale oil, tarsand oil, and pumpable slurries of coal, particulate carbon, and petroleum coal in water or in liquid hydrocarbon fuel, and mixtures thereof.
12. The process of Claim 1 in which said hydrocarbonaceous feedstock is selected from the group consisting of methane, ethane, butane and other unsaturated light hydrocarbon gases, natural gas, water-gas, coke-oven gas, synthesis gas, refinery gas, and mixtures thereof.
13. The process of Claim 1 in which said hydrocar-bonaceous feedstocks are organic materials selected from the group consisting of carbohydrates, cellulosic materials, aldehydes, organic acids, alcohols, ketones, oxygenated fuel oil, waste liquids, and by-products from chemical processes containing oxygenated hydrocarbonaceous organic materials, and mixtures thereof.
14. The process of Claim 1 in which a portion of the CO2 from the first gas purification zone is recycled to the gas generator.
15. The process of Claim 1 in which the partially purified gas from the first gas purification zone is contacted with a sulfur-free liquefied CH4-rich gas stream in a separation column in said second gas-purification zone; and with the step of passing the bottoms stream from said separation column into the partial oxidation gas generation operation in step (1) as at least a portion of the feed.
16. The process of Claim 1 in which said product stream of purified synthesis gas is methanol synthesis gas having an H2/CO mole ratio in the range of about 2-4, said product stream of CO-rich gas from step (4) is substantially pure CO, and provided with the additional steps of reacting at least a portion of said methanol synthesis gas in the presence of a methanol catalyst in a methanol-synthesis zone at a temperature in the range of about 400° to 750°F and at a pressure in the range of about 40 to 350 atm. to produce crude methanol, and purifying said crude methanol to produce substantially pure methanol and by-product oxygen-containing organic materials.
17. The process of Claim 16 in which said methanol catalyst comprises zinc oxide and chromium oxide, the temperature in said methanol-synthesis zone is in the range of about 650° to 750°F, and the pressure is in the range of about 250 to 350 atm.
18. The process of Claim 16 in which said methanol catalyst comprises copper oxide, zinc oxide, chromium oxide, or aluminum oxide, the temperature in said methanol-synthesis zone is in the range of about 400° to 660°F, and the pressure is in the range of about 40 to 250 atm.
19. The process of Claim 16 in which the pressure in said methanol-synthesis zone is the same as that in the synthesis-gas generator less ordinary pressure drop in the intervening lines and equipment.
20. The process of Claim 16 in which at least a portion of said by-product oxygen-containing organic materials is recycled to the synthesis gas generator as a portion of the hydrocarbonaceous feed.
21. The process of Claim 16 in which at least a portion of said substantially pure methanol is used in said first gas-purification zone to absorb gaseous impurities from the gas streams.
22. The process of Claim 16 provided with the additional steps of reacting at least a portion of said substantially pure methanol with at least a portion of said substantially pure carbon monoxide in the presence of a carbonylation catalyst in an acetic-acid-synthesis zone at a temperature in the range of about 302 to 608°F
and at a pressure in the range of about l to 700 atmo-spheres to produce impure acetic acid, and purifying said impure acetic acid to produce substantially pure acetic acid and by-product oxygen-containing organic materials.
23. The process of Claim 22 in which said carbonylation catalyst comprises a carbonyl-forming metal selected from the group Fe, Co, and Ni, in the form of a salt, and a halogen selected from the group I, Br, Cl, in the form of a free halogen or halogen compound, and the temperature in said acetic-acid-synthesis zone is in the range of about 338 to 608°F, and the pressure is in the range of about 15 to 700 atmospheres.
24. The process of Claim 22 in which said carbonylation catalyst comprises in admixture (1) a noble metal from the group rhodium, palladium, platinum, iridium, osmium, and ruthenium, in the form of an oxide, organometallic compound, salt, or coordination compound; (2) a halogen or halogen-compound promoter; and (3) a dispersant selected from the group, acetic acid and water, pumice, alumina, activated carbon, and silica; and the temperature in said acetic-acid-synthesis zone is in the range of about 302 to 392°F, and the pressure is in the range of about 34 to 680 atm. for liquid-phase reaction.
25. The process of Claim 22 in which the tem-perature in said acetic-acid-synthesis zone is in the range of about 392 to 572°F and the pressure is in the range of about 1 to 10 atm. for vapor-phase reaction.
26. The process of Claim 22 in which the pressure in said acetic acid synthesis zone is the same as that in said synthesis-gas generator less ordinary pressure drop in the intervening lines and equipment.
27. The process of Claim 22 in which at least a portion of said by-product oxygen-containing organic materials is recycled to said synthesis-gas generator as a portion of the hydrocarbonaceous feed.
28. Process for the production of methanol, compri-sing:
(1) reacting a substantially sulfur-free hydro-carbonaceous feedstock with substantially pure oxygen, optionally in the presence of a temperature moderator, in the reaction zone of a free-flow noncatalytic partial-oxidation gas generator at a temperature in the range of about 1300 to 3000°F and at a pressure in the range of about 1 to 250 atmospheres to produce an effluent gas stream comprising H2, CO, H20, CO2 and at least one material from the group consisting of CH4, N2, Ar, particulate carbon, and ash;

(2) cooling the effluent gas stream by indirect heat exchange in a separate heat-exchange zone, removing any entrained particulate carbon and ash, and dehumidifying the cooled gas stream;
(3) splitting the soot-free dehumidified gas stream from (2) into first and second gas streams with said first split gas stream comprising about 10 to 90 volume percent of the effluent gas stream from (2), and said second split stream comprising the remainder;
(4) purifying said first split gas stream from (3) in a first gas-purification zone and separating therefrom at least a portion of the C02;
(5) splitting the gas stream from (4) into third and fourth gas streams with said third gas stream comprising about 10 to 100 volume percent of said synthesis gas stream from (4) and said fourth gas stream containing the remainder if any and introducing all of said third gas stream into a second gas-purification zone;
(6) removing a stream of CO-rich gas and a stream of H2-rich gas from said second gas-purification zone;
(7) mixing together at least a portion of said second gas stream from (3), at least a portion of said H2-rich gas stream from (6), and at least a portion of said fourth gas stream if any from (5), to produce a stream of methanol-synthesis gas; and (8) reacting at least a portion of said methanol synthesis gas in the presence of a methanol catalyst in a methanol-synthesis zone at a temperature in the range of about 400 to 750°F and at a pressure in the range of about 40 to 350 atm. to produce crude methanol, and purifying said crude methanol to produce substantially pure methanol and by-product oxygen-containing organic materials.
29. The process of Claim 28, in which the mole ratio, H2/(2CO+3CO2), of the methanol-synthesis gas from step (7) is in the approximate range of 1.01 to 1.05.
30. The process of Claim 28 in which a portion of said substantially pure methanol is recycled to said first gas-purification zone as a solvent absorbent.
31. The process of Claim 28, provided with the additional step of introducing supplemental steam into the effluent gas stream from (1) in the amount of about 0.1 to 2.5 moles of supplemental steam per mole of effluent gas stream, and, in a separate free-flow unpacked reaction zone at a pressure substantially that in said synthesis-gas generator, less ordinary line drop, and at a temperature of at least 1500°F, reacting together H20 and a portion of the CO in the effluent gas stream so as to increase the mole ratio (H2/CO) of the process gas stream.
32. The process of Claim 28, in which the CO-rich gas in step (6) is substantially pure CO, and provided with the additional steps of reacting at least a portion of said substantially pure methanol with at least a portion of said substantially pure carbon monoxide in the presence of a carbonylation catalyst in an acetic acid-synthesis zone, at a temperature in the range of about 302 to 608°F
and at a pressure in the range of about 1 to 700 atmospheres, to produce impure acetic acid, and purifying said impure acetic acid to produce substantially pure acetic acid and by-product oxygen-containing organic materials.
33. The process of Claim 32, in which at least a portion of said by-product oxygen-containing organic materials are recycled to the reaction zone of said gas generator.
34. The process of Claim 32, in which at least a portion of said pure acetic acid is recycled to said second gas-purification zone in step (5) to effect CO-separation from said third gas stream.
35. Process for the simultaneous production of a product stream of purified synthesis gas and a product stream of CO-rich gas, comprising:
(1) reacting a hydrocarbonaceous feedstock with a free-oxygen-containing gas, optionally in the presence of a temperature moderator, in the reaction zone of a free-flow noncatalytic partial-oxidation gas generator at a tempera-ture in the range of about 1300 to 3000°F and at a pressure in the range of about 1 to 250 atmospheres to produce an effluent gas stream comprising H2, CO, H2O, CO2, H2S, COS
and optionally at least one material from the group consisting of CH4, N2, Ar, and solid particles;
(2) removing a portion of said solid particles if present, cooling the effluent gas stream by indirect heat exchange in a separate heat-exchange zone, removing any remaining entrained solid particles and de-humidifying the cooled gas stream;
(3) desulfurizing the gas stream from (2) in the first stage of a two-stage first gas purification zone, introducing at least a portion of the desulphurized gas stream from the first stage into the second stage of said first gas purification zone and removing at least a portion of the CO2; and by-passing said second stage with the remainder of said desulfurized gas from the first stage of said first gas purification zone if any;
(4) introducing at least a portion of the gas stream leaving the second stage of said first gas purifica-tion zone into a second gas purification zone when there is a stream of desulfurized gas from the first stage that by-passes said second stage, or introducing into said second gas purification zone a portion of the gas stream leaving the second stage of said first gas purification zone when there is no desulfurized gas stream that by-passes said second stage; and by-passing said second gas purifica-tion zone with the remainder of said gas stream leaving the second stage of said first gas purification zone if any;
(5) removing from said second gas purification zone, a product stream of CO-rich gas and a stream of H2-rich gas; and (6) mixing together at least a portion of the H2-rich gas stream from (5) with at least a portion of at least one of the following: (a) desulfurized gas stream that by-passes the second stage of the first gas purifica-tion zone in (3); (b) desulfurized gas stream with at least a portion of the CO2 removed that leaves the second stage of the first gas purification zone and which by-passes said second gas purification zone in (4); producing said product stream of purified synthesis gas having a controlled H2/CO mole ratio.
36. Process for the simultaneous production of a product stream of purified synthesis gas and a product stream of CO-rich gas comprising:
(1) reacting a hydrocarbonaceous feedstock with a free-oxygen-containing gas, optionally in the presence of a temperature moderator, in the reaction zone of a free-flow noncatalytic partial-oxidation gas generator at a tem-perature in the range of about 1300 to 3000°F and at a pressure in the range of about 1 to 250 atmospheres to produce an effluent gas stream comprising H2, CO, H2O, CO2, H2S, COS, and optionally at least one material from the group consisting of CH4, N2, Ar, and solid particles;
(2) removing a portion of said solid particles if present, cooling the effluent gas stream by indirect heat exchange in a separate heat-exchange zone, removing any remaining entrained solid particles and dehumidifying the cooled gas stream;
(3) desulphurizing the gas stream from (2) and removing at least a portion of the CO2 by direct contact with a liquid solvent absorbent in a first gas purification zone;
(4) introducing a portion of the process gas stream from (3) into a second gas purification zone, and by-passing said second gas purification zone with the remainder of said desulfurized gas stream with at least a portion of the CO2 removed from (3);
(5) removing from said second gas purification zone a product stream of CO-rich gas and a stream of H2-rich gas; and (6) mixing together to produce said product stream of purified synthesis gas having a controlled H2/CO mole ratio at least a portion of said H2-rich gas stream with at least a portion of the remainder of the desulfurized gas stream with at least a portion of the CO2 removed that by-passes the second gas purification zone in step (4).
37. Process for simultaneous production of a product stream of purified synthesis gas and a product stream of CO-rich gas, comprising:
(1) reacting a substantially sulfur-free hydrocarbonaceous feedstock with a free-oxygen-containing gas, optionally in the presence of a temperature moderator, in the reaction zone of a free-flow noncatalytic partial-oxidation gas generator at a temperature in the range of about 1300 to 3000°F and at a pressure in the range of about 1 to 250 atmospheres to produce an effluent gas stream comprising H2, CO, H2O, CO2 and optionally at least one material from the group CH4, N2, Ar and solid particles;
(2) cooling the effluent gas stream by indirect heat exchange in a separate heat-exchange zone, removing any entrained solid particles and dehumidifying the cooled gas stream;
(3) introducing at least a portion of the dehumidified gas stream from (2) into a first gas-purification zone, and by-passing said first gas-purifica-tion zone with the remainder of said dehumidified gas stream from (2) if any; and removing from the process gas stream in said first gas purification zone at least a portion of the CO2;
(4) introducing at least a portion of the gas stream leaving the first gas purification zone into a second gas purification zone when there is a stream of soot-free dehumidified gas by-passing said first gas purification zone, or introducing a portion of the gas stream leaving the first gas purification zone into the second gas purification zone when there is no stream of soot-free dehumidified gas by-passing said first gas purification zone;
and by-passing said second gas purification zone with the remainder of the gas stream leaving the first gas purification zone if any;
(5) removing from said second gas purification zone, a product stream of CO-rich gas and a stream of H2-rich gas; and 6) mixing together at least a portion of the H2-rich gas stream from (5) with at least a portion of at least one of the following: (a) dehumidified gas stream from (2) that by-passes the first gas-purification zone in (3); (b) partially purified synthesis gas leaving the first gas purification zone with at least a portion of the CO2 removed and which by-passes the second gas-purification zone in (3) if any; producing said product stream of purified synthesis gas having a controlled H2/CO mole ratio.
CA302,856A 1977-06-28 1978-05-08 Production of purified synthesis gas and carbon monoxide Expired CA1097077A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US05/810,709 US4081253A (en) 1976-12-10 1977-06-28 Production of purified synthesis gas and carbon monoxide
US810,709 1977-06-28

Publications (1)

Publication Number Publication Date
CA1097077A true CA1097077A (en) 1981-03-10

Family

ID=25204495

Family Applications (1)

Application Number Title Priority Date Filing Date
CA302,856A Expired CA1097077A (en) 1977-06-28 1978-05-08 Production of purified synthesis gas and carbon monoxide

Country Status (14)

Country Link
JP (1) JPS5411096A (en)
AR (1) AR216940A1 (en)
BE (1) BE864838A (en)
BR (1) BR7801499A (en)
CA (1) CA1097077A (en)
DE (1) DE2827498A1 (en)
FR (1) FR2396068A1 (en)
GB (1) GB1572071A (en)
IN (1) IN147776B (en)
IT (1) IT1158662B (en)
NL (1) NL7802628A (en)
NO (1) NO780801L (en)
SE (1) SE7803338L (en)
YU (1) YU58878A (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0047596B1 (en) * 1980-09-04 1983-11-30 Imperial Chemical Industries Plc Synthesis for producing carbon compounds from a carbon oxide/hydrogen synthesis gas
NL8102840A (en) * 1981-06-12 1983-01-03 Stamicarbon METHOD FOR THE PREPARATION OF METHANOL.
JPS5987626U (en) * 1982-12-03 1984-06-13 大洋技研工業株式会社 Fuel tank with level gauge
DE3320227A1 (en) * 1983-06-03 1984-12-06 Kraftwerk Union AG, 4330 Mülheim POWER PLANT WITH AN INTEGRATED COAL GASIFICATION PLANT
GB2165551B (en) * 1984-10-10 1988-08-17 Shell Int Research Process for the production of synthesis gas
GB2199842A (en) * 1986-12-30 1988-07-20 Us Energy Power generating system and method utilizing hydropyrolysis
JPH0297632U (en) * 1989-01-23 1990-08-03
DE4321542C1 (en) * 1993-06-29 1994-09-01 Bfi Entsorgungstech Process for the separate removal of sulphur compounds and CO2 from gas
US6809123B2 (en) * 2002-08-07 2004-10-26 Rentech, Inc. Production of hydrogen and higher hydrocarbons
CN110655939B (en) * 2019-10-29 2024-06-18 中国华能集团有限公司 System and method for preparing LNG (liquefied Natural gas) from medium-low temperature carbonization raw gas through sulfur-resistant uniform temperature methanation

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2686801A (en) * 1947-09-27 1954-08-17 Kellogg M W Co Simultaneous production of hydrocarbons and oxygenated compounds
US2740706A (en) * 1951-10-10 1956-04-03 Texaco Development Corp Method of reducing metal oxides
NO133970C (en) * 1969-11-21 1976-07-28 Texaco Development Corp
US3919113A (en) * 1969-11-21 1975-11-11 Texaco Development Corp Oxo-synthesis gas
US3962300A (en) * 1970-05-19 1976-06-08 Metallgesellschaft Aktiengesellschaft Process for producing methanol
US3920717A (en) * 1973-03-26 1975-11-18 Texaco Development Corp Production of methanol

Also Published As

Publication number Publication date
DE2827498A1 (en) 1979-01-04
BR7801499A (en) 1979-01-16
IN147776B (en) 1980-06-28
JPS5411096A (en) 1979-01-26
SE7803338L (en) 1978-12-29
GB1572071A (en) 1980-07-23
IT1158662B (en) 1987-02-25
FR2396068A1 (en) 1979-01-26
JPS5621721B2 (en) 1981-05-21
BE864838A (en) 1978-09-13
NL7802628A (en) 1979-01-02
FR2396068B1 (en) 1982-10-22
NO780801L (en) 1978-12-29
IT7821131A0 (en) 1978-03-10
YU58878A (en) 1982-08-31
AR216940A1 (en) 1980-02-15

Similar Documents

Publication Publication Date Title
US4081253A (en) Production of purified synthesis gas and carbon monoxide
CA1094574A (en) Production of cleaned and purified synthesis gas and carbon monoxide
US3920717A (en) Production of methanol
US4189307A (en) Production of clean HCN-free synthesis gas
US3922148A (en) Production of methane-rich gas
US3890113A (en) Production of methane
CA1187702A (en) Process for converting coal and/or heavy petroleum fractions into hydrogen or ammonia synthesis gas
US6448441B1 (en) Gasification process for ammonia/urea production
US4407973A (en) Methanol from coal and natural gas
US4197281A (en) Production of ammonia synthesis gas from solid carbonaceous fuels
EP0629685B1 (en) Partial oxidation process for producing a stream of hot purified gas
AU2008285282B2 (en) Process for the generation of a synthesis gas
US3928000A (en) Production of a clean methane-rich fuel gas from high-sulfur containing hydrocarbonaceous materials
US6723756B2 (en) Aqueous separation of syngas components
US4338292A (en) Production of hydrogen-rich gas
JP2012514039A (en) Generation method of methane rich gas
US4064156A (en) Methanation of overshifted feed
JPH0466814B2 (en)
US4341531A (en) Production of methane-rich gas
CA1097077A (en) Production of purified synthesis gas and carbon monoxide
US3951617A (en) Production of clean fuel gas
US4124628A (en) Serial adiabatic methanation and steam reforming
US4443560A (en) Adiabatically reforming a reformed gas for producing methanol
CA1152293A (en) Purification of gas mixtures
US3927998A (en) Production of methane-rich gas stream

Legal Events

Date Code Title Description
MKEX Expiry