CA1095157A - Modular electrical control station - Google Patents

Modular electrical control station

Info

Publication number
CA1095157A
CA1095157A CA340,174A CA340174A CA1095157A CA 1095157 A CA1095157 A CA 1095157A CA 340174 A CA340174 A CA 340174A CA 1095157 A CA1095157 A CA 1095157A
Authority
CA
Canada
Prior art keywords
cover plate
push button
housing
hole
rows
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
CA340,174A
Other languages
French (fr)
Inventor
Frank R. Keller
Morton S. Rundel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gould Inc
Original Assignee
Gould Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US05/708,191 external-priority patent/US4092508A/en
Application filed by Gould Inc filed Critical Gould Inc
Priority to CA340,174A priority Critical patent/CA1095157A/en
Application granted granted Critical
Publication of CA1095157A publication Critical patent/CA1095157A/en
Expired legal-status Critical Current

Links

Landscapes

  • Push-Button Switches (AREA)
  • Switch Cases, Indication, And Locking (AREA)

Abstract

ABSTRACT OF THE DISCLOSURE
A modular control station construction wherein a single housing may receive numerous possible combinations of contact blocks (switches) and panel light socket blocks which cooperate with either one, two or three panel members, as desired. The panel members available are a spring-loaded push button contact block actuator, a rotary switch contact block actuator that is adjustable between two and three positive positions, and a panel light lens.

Description

i'7 BACKGROUND OF T~IE INVENTION
This invention relates generally to electrical control assemblies including control switches and the like~ and more particularly to such assemblies that provide a degree of flexibility as to the various switching functions that may be combined from common components.
Nearly every installation in lnd~stry involving heavy electrical equipment such as electrical motors inc:Ludes controls therefor of a low current type that is electrically connected to solenoid switches of the main electrical supply lines on the piece of equipment :Ltself. The control ls often remotely positioned from the equipmen-t to be controlled. A particular control assembly depends upon the application, of course, and may have various combinations of push button control switches, rotary switches and indicatiny pilot lights.
Presently, each particular combination of a control assembly is separately manu-factured and carried in inventory in a completed form.
Therefore, it is a primary object of the present invention to provide cooperating elements for easy assembly into any one of numerous possible modular electrical control station combinations.
SUMMARY OF THE INVENTION
Briefly and generally, this primary object is accomplished by the present invention wherein a housing is provided having a top opening giving access to its interior, a plurality of cover plates that differ by thè number of~
holes therein being easily snap fitted into the top opening of the housing, control members in turn being fitable into the openings of the cover plate (selected from a spring-loaded push button, a rotary switch or a pilot light lens)~
with means provided for snap fitting appropriate electrical contact assemblies or pilot light socket blocks within said housing at positions with respect to the openings of the cover plate that permits cooperation with the respective panel element installed in the opening.

'' . '.' :' `' ' ` ~

~s~

The result is that only a few different types of parts need to be manufactured and carried in inventory. The parts are designed to be combined substantially en~irely by hand through snap fittiny plastic members for providing a particular desired combination of switches and indica-tor lights~ These combi-nations may even be made by the ultimate user himself who can maintain a supply of the few required parts on hand, or they may be assembled to order by the manufacturer in a manner much more easiLy than heretofore.
Additionally, as part of the present invention, an improved snap fitting is provided for ~uick and sure assembly of contact blocks and light socket blocks into the housing without the use of tools. Upright inverted L-shaped hooks are provided at the bottom of the housing for receipt by mating receptacles at the bottom of the blocks. Once inserted, the block is moved along the bottom of the housing to engage the hooks. This movement also activates a resilient snap lock that prevents further movement of the block along the base until the snap lock is manually disengaged. This manner of connecting two elements further has additional applications in other environ-ments wherein two elements are desired to be connected together.
According to other aspects of the present invention, a particular rotary knob structure is provided that permits either two or three positive positions to be maintained by the rotary knob. The adjustment between two or three positions is easily carried ou-t by hand. Additionally, an improved push button structure is provided that permits easy insertion and removal by hand of a spring-loaded push button as.sembly. The rotary knob and push button assembly cooperate with contact blocks properly placed and connected within the control assembly housing for carrying out desired switching operations.
Additional objects, advantages and features of the present invention are given in the following detailed description of its preferred embodiment which should be taken in conjunction with the accompanying drawings.

~ - 2 ~

~'':

:
. . , : ,' ~ ' BRIEF DESCRIPTION OF THE DRAWINGS
Fiyure 1 is an exploded view of a control assembly embodying -the various aspects of -the present invention in a particular example;
Figures lA and lB show alterna-te cover plates to -tha-t shown in Figure l;
Figure 2 is a cross-sectional view of a ,portion of the assembly of Figure 1 taken at section 2-2 thereof i,n an assembled form;
Figures 2A and 2B illustrate the connection of parts shown in Figure 2 after further relative movement therebetween;
Figure 3 shows in plan view the cover plate of Figure l;
Figure 4 is a sectional view of the cover plate of Figure 3 taken across section 4-4 thereof;
Figure 5 is a sectional view of the cover plate o~ Figure 3 taken across section 5-5 thereof;
Figure 6 is a cross-sectional view of a portion o~ the assembly of Figure 1 taken across section 6-6 thereof in an assembled form;
Figure 6~ illustrates a modification of a portion of Figure 6;
E'igure 7 is a cross-sectional view of a portion o the assembly of Figure 1 taken across section 7-7 thereof when in an assembled form;
Figure 8 is a cross-sectional view of a portion of the assembly o Figure 1 taken across section 8-8 thereof when in an assembled form; and Figure 9 is a plan view of the base and retainer assembly of Figure 1 DESCRIPTION OF THE PREFERRED EMBODIMENT
The modular electrical control station construction of the present invention permits the formation of a large number of differen-t combinations of control functions into a single type of enclosure with only a few basic component types Referring principally to Figures 1, 1~ and lB, at least one of each of the b-sic components us~d as tullding tlocks to form a desired control ststion .. .

, .

' . ' .

~s~

is illustrated. A base 11 has a cover 17 attache~ thereto by screws 13 and 15.
On a bottom surface of the base member 11 is installed a retainer ]9 having seven parallel rows of tabs that each carry the same elements and extend across the narrow dimension of the rectangularly-shaped base bot-tom surface.
A contact block 21 is provided with mating connecting members ~or installation in any one of the seven rows of tabs on the retainer 19. The contact block 21 is characterized by a spring-loaded mechanical push button 23 on its top surface. The contact block 21 is chosen to be one of two types.
Depression of the button 23 on one type of contact block will cause an internal electrical connection to be made between its -two external electrical terminals (normally open type). Another type of contact block 21 will cause an electrical circuit between its two external terminals to break when the button 23 is pushed (normally closed type). Two other contact blocks 25 and 27 are also illustrated in the particular combination of Figure 1 and are individually chosen to be of the normally closed or normally open type according to the d~sired application.
A lamp socket block 28 attaches to the base 11 by any two adjacent ro~s of tabs of the retainer 19.
To the housing formed by attachment of the cover 17 to the base member 11 is added a cover plate 29. The cover plate 29 has a downwardly extending wall along each of its four sides, one such wall denoted by the reference number 31.
At the bottom of that wall is a rib 32. A rectangular opening 33 in the top of the cover 17 also has downwardly extending walls on each of its four sides, sueh as the wall 35. The lower portion of each of these cover walls contains either a groove or a lower most edge matched to receive a mating rib, such as the rib 32. All downwardly extending walls, molded integrally with their associated part, have some resiliency and thus results in the cover plate 29 securely snap-ping into place on the cover 17 when the downward extending walls of the cover plate 29 are inserted into the opening 33. For an additional secure eonneetion, _ 4 ~ ;

, ' ~ ' .
- . . .
:, ' ' ' :-s~

metal spring clips 37 and 39 may be used to urge adjoining walls, to which theyare clippea, toward each other.
The cover plate 29 has been shown to be of the type having three openings, 41, 43 and 45 therein or receiving three difEeren-t panel members.
Alternative cover plates 47 and 49 of Figures lA and lB, respectively, may alternatively be utilized for appropriate control stations. The cover pla-tes 47 and 49 are of the same size and fit in the same way in the opening 33 of the cover 17 as does the cover plate 29. The only difference between the cover plate types is in the number of holes provided for attachment of panel members.
If only two panel members are needed, the cover plate 47 is u-tilized having its two holes 51 and 53. Similarly, if only one panel member need be utilized, the cover plate 49 is chosen having a single hole 55.
Figure 1 illustrates one each of three possible panel members utilized together in a final control station. One of these panel mem~ers is a push button assembly that includes a push button 57 and a spring 59. The second panel member illustrated is a rotary switch assembly including a rotary knob 61 that is fixed to a cam element 63 protruding below the hole 43. The third panel member illustrated in Figure 1 is a panel light lens 65 -that receives light through the opening 43. The circularly shaped lens 65 snaps into a circular depression within the cover plate that surrounds the hole 45.
Although a particular combination of components is illustrated in Figure 1 for discussion pbrposes, the principal advantage of the components is that they may be combined in many different ways. A push button assembly may be installed into any one of the holes of the cover plates 29, 47 and 49. Similarly, the lens 65 can be installed into a depression surrounding any of the holes of any of the three different cover plates. Because of a slightly more complex structure, only one of the holes of each of the cover plates is necessarily formed with associated recesses and grooves for operably receiving the rotary . . . ~

, .
' ~

~s~s~

knob 61, as described in more detail hereinafter, but each of the holes could be so structured if desired. It should be noted that any o~ the possible custom arrangements of the various components illustrated can be made without the use of any tools except for a screw driver for the three screws illustrated in Figure 1.
In the particular combination of Figure 1, an electrical pilo-t lamp 67 is connected to the lamp block 28 for shining through the lens 65. The lens 65 can be manufactured in as many different colors as desired. The contact block 21 is positioned on the base 11 under the hole ~1 of the cover plate 29 in the path of the push button 57. The button 23 of the con-tact block 21 is depressed when the push button 57 is so depressed. The two contact blocks 25 and 27 are positioned for their top buttons to be depressed upon rotation of the cam 63 by the knob 61. The cam 63 ana the contact block top push button sides are coopera-- tively shaped so that rotation of the cam 63 by the knob 61 will cause one or the other of the contact blocks 25 or 27 to be depressed, depending upon which direction the knob is turned from the rest position shown in Figures 1, 7 ana 8.
It is often convenient that one of the contact blocks 25 and 27 be a normally open type and the other be a normally closed type.
Referring to Figures 2, 2A and 2B, the structure permitting a tooless snap connection of a contact block or lamp socket block to the retainer 19 of the base 11 is illustrated. Each of the seven rows of upstanding tabs~of the retainer 19 include two upwardly extending inverted L-shaped hooks 71 aDd 73 as well as a resilient tab 75 that normally extends upward upon its hinge connection with the retainer 19. Each of the hooXs 71 and 73 contains an orthogonally upright portion and a terminal portion integral therewith that is substantially parallel to the plane of the retainer plate 19 but spaced a distance thereabore.
Each of the contact and lamp socket blocks, such as the contact block 21 being illustrat:ed, includes two apertures 77 and 79 spaced apart in si~e to - ~ . , - . :

- : . : -. . , ~o~q~5~ 7 fit, respectively, downward over the hooks 71 and 73. As the block 21 is pushed downward against the force of the resilient tab 75, it is pushed against the sur~ace retainer 19, as shown ln Figure 2A. The b]ock 21 is then moved laterally across the narrow dimension of the retainer 19 until its bottom wall is held within the hooks 71 and 73, as shown in Figure 2B.
Of course, the upper portion of the hooks 71 and 73 are spaced ~ust far enough above the surface of the retainer 19 to permit the wall of the block 21 to securely fit thereunder.
As shown in Figure 2B, once the block 21 is moved as far as per-mitted by the hook 73, the tab 75 is permitted by a notch 81 at one end of the block 21 to resiliently return to an upright position. When in the position shown in Figure 2B, the block 21 is securely fastened to the re-tainer 19 until a time that the tab 75 is pushed downward to permit the reverse sliding movement of the block 21 and lifting up from the hooks 71 and 73.
As can best be seen from Figure 9, the hooks 71 and 73 have dif-ferent widths in plan view. The apertures 77 and 7~ in the bottom of a block 21 similarly have different matching widths, thereby assuring that the block will be oriented in the correct direction when inserted. The three connecting elements of each of the seven rows of the retainer 19 are similarly shaped and oriented for identical operation with a block to be connected therewith.
Referring again to Figure 9, the rows of the connecting elements are shown with the various holes of the cover plates 29, 47 and 49 (Figures 1, lA and lB) shown in dotted outline in order to illustrate the relative position therebetween. The hole 45 of the three hole plate ' '` ' ~' ' ~

.

~s~

29 is positioned so that the panel member selected therefor cooperates with a block or blocks attached to the ~irst two rows of connecting ele-ments of the retainer 19 (rows numbered from right to left). The center hole 43 of the three hole plate 29 and the hole 55 of the one hole plate 49 are superimposed in the position to cooperate with the blocks attached to either or both of the fourth and fifth rows of connecting elements of the retainer 19. The hole 41 in the three hole plate 29 cooperates with only the seventh row of connecting elements. An eighth row could be added to the retainer 19 for operation with the opening 41 as well, if desired.
The hole 51 of the cover plate 47 is similarly associated with;the fifth and sixth rows of contact elements and the hole 53 of that same plate is associated with the second and third rows.
Referring principally to Figures 3 and 4, a shape common to all of the holes in the cover plates may be described. Using the hole 41 as an example, it is formed of a circular portion 41a having a center at the center of the hole structure about which remaining structural features of the hole are symmetrical. On either side of the circular opening 41a are two additional circular openings 41b and 41c having lesser diameters than the opening 41a and having their centers removed along the length of the cover plate 29 from the center of the opening 41a. All three openings overlap, to form a single opening having a long direction in the long direction of the rectangular cover plate 29. Surrounding the hole 41 is a circular walled portion 81 and yet surrounding that is a circu~ar walled portion 83 extending upward to the top surface of the cover plate 29. The centers of the walled portions 81 and 83 are concentric with the cen'ter of the opening 41 ~, .. -, , ~ ~5~

ReEerring principally to Figure 6, the construction and operation of a push button panel member is described. The push button 57 is made of a unitary base portion 85 and two downwardly extending prongs 87 and 89 that form a stem of the push button assembly. Snapped onto the base 85 is a cap member 91. A selection of cap members may be provided as part of the components available for assembling particular control stations. The caps may be of various colors and may carry notations such as "start" and "stop". It is sometimes desirable to have the push button extend Eurther outward from the control station, so a second set of different sized caps, such as that shown in Figure 6A as cap 93, may be provided. The cap 93 has a larger thickness than the cap 91 but they both snap onto the base 85 of the push button assembly in the same manner.
Each of the prongs 87 and 89 of the push button assembly-have, respectively, enlarged outwardly extending portions 95 and 97 at their lower extremities. These portions join the main part of the stems ~7 and 89 by a ledge which, when the push button is installed as shown in Figure 6, serve to limit travel of the push button assembly away from the front of the cover plate 29. The outside surfaces of the enlarged por-tions 95 and 97, however, are tapered inwardly toward their button edges so that the knob stem can be inserted through the hole 41. The stems 87 - and 89 are resilient enough that they can be pressed together for fitting the enlarged portions 95 and 97 through the hole 41. After such insertion, an 0-ring spacer 99 may be placed in the gap between the prongs 87 and 89 in order to prevent them from moving together when it is not desired for them to do so.
, :' .' ~
, ~
-As can be seen best by the perspective view of Figure 1, the prongs 87 and 89 of the push button structure are elongated in width.
This elongated shape matches that of the hole 41 and provides enough width for operating two contact blocks simultaneously, if desired. The spring 59 is normally in a compressed state between the underslde of the push button base 85 and the region of the cover plate 29 surrounding the hole 41 within the depression Bl.
Referring to Figure 5, the rotating knob receiving structure of the cover plate 29 surrounding the opening 43 will be described. This structure is provided around at least one hole of every cover plate and permits the rotating knob to be maximally utilized. In a ledge adjoining circular depressions 81'and 83' are arcuate grooves 101 and 103. Each of these grooves has the same radius with respect to the center of the hole 43 and has a arcuate extent of somethi~g less than 180 . The arcuate grooves 101 and 103 are equally spaced around a complete circle; that is, there is equal space between them on either side.
` As further structure for a knob assembly operation, two circulardepressions 105 and 107 are provided on one side of the hole 43 and in the button of the circular portion 81'. On the other side of the hole 43 are three such deprassions 109, 111 and 113. All of these five circular depressions have their centers on a circle with its center coincident with that of the hole 43. The two depressions 105 and 107 are positioned in one 180 segment of that circle and the other three depressions 109, 111 and 113 are positioned on the other 180 segment of that circle.
Referring principally to Figures 7 and 8, the structure of the - lD ~

- ~ :

. ~ . . . ::
.. . : . ' : : . .
. .
. - . , - . - . . :
- .. .~ - . . .
- ~ : , .
. . , . .

s~

knob that cooperates with the just described features of the cover plate 29 will be described. A sprlng loaded detent 115 is carried by the knob 61 at a positionto engage any of the circular depressions 105 through 111 of Figure 3. The bottom of the detent 115 is rounded so that the knob is not prevented from moving past such an engagement but rather the detent 115 merely provides a positive position that the operator can feel. When in any of the depressions 101, 105, 109 and 113, the detent 115 also main-tains the cam 63 in a position holding down the top button of one of the contact block 25 and 27.
A slide 117 (Figure 8) is provided within the knob 61. It has at a lower extremity thereof a projection 119 that is radially positioned for riding in either of the grooves 103 or 101 (Figure 3) of the cover plate 29. When the projection 119 is riding in the groove 103, the knob 61 will have three positive positions since the detent llS will move among the circular holes 109, 111 and 113 of the cover plate 29. The finite arcuate extent of the groove 103 prevents the knob from being rotated any further than that. If for a particular installation, however, a rotary knob having only two positive positions is desired, then the slide 117 of the knob is lifted upward to disengage the projection 119 from the groove 103. The knob is then rotated 180 and the slide 117 again depressed back into the knob for its projection 119 to engage the slot 101. The upward limit of the slide 117 is shown in dotted outline in Figure 8. These features per-mit a single rotary knob structure to be used for two or three position operation rather than requiring two different component structures to be built.

~, , . _ _.. .... ...... .. .. .

.

~ , .
.

Although the various aspects of the present invent:Lon have been described with respect to a particular preferred embodiment thereof, it will be understood that the invention is entitled to protection within the full scope of the appended claims. For instance, although certain of the aspects of the present invention have been described with respect to a particular modular electricalcontrol station assembly where they have a high degree of utility, it will be recognized that these features have a broader application in other environments and applications as well.

12 ~

' ~:,-., - : . ' , . . .
' .

Claims (8)

THE EMBODIMENTS OF THE INVENTION IN WHICH AN EXCLUSIVE PROPERTY OR
PRIVILEGE IS CLAIMED ARE DEFINED AS FOLLOWS:
1. An electrical control station, comprising:
an enclosed housing having a top opening giving access to its interior;
a plurality of cover plates that differ by the number of holes therein, each of said cover plates sized and adapted for snap fitting into said top opening of the housing;
a plurality of components from which to select for operable attachment of one component to each hole of said cover plates, said plurality of components including a push button actuator having a base extending below the cover plate when installed, a rotary switch actuator having a cam surface below the cover plate when installed, and a panel light lens;
a plurality of electrical contact blocks each having a push button on its top for either making or breaking electrical contacts therewithin;
a panel lamp socket block;
means attached to the inside of the housing on a bottom surface thereof and cooperatively shaped with the bottom of each of said blocks for selective snap engagement therebetween at positions under any of said plurality of cover plates for mechanical cooperation with an appropriate one of said plurality of components attached to said holes of a cover plate.
2. The electrical control station according to claim 1, wherein said snap engagement means comprises:
a plurality of rows of contacting elements positioned along said bottom surface in a manner that at least one row is positioned beneath a hole of each of said plurality of cover plates, each of said rows containing substantially identi-cal connecting elements including two spaced apart upright hooks having an inverted L-shape;

a bottom surface of each of said blocks having two receptacles spaced apart for concurrent insertion of said hooks therein, said receptacles further being characterized by permitting sliding of said block along said base a distance in one direction to engage each of the two hooks therewithin in a manner holding the block firmly against the bottom surface of said housing; and each of said rows of connecting elements additionally including a manually disengageable tab that prevents lateral movement of said block in a direction opposite to said one direction, whereby said block is firmly attached to the bottom surface of said base structure.
3. The electrical control station according to claim 1, wherein each hole of said plurality of cover plates includes an oblong portion and further wherein the base structure of said push button actuator includes two resilient spaced apart prongs each having abutments extending outward in opposite directions at their ends removed from said push button actuator that are designed for abutting the underside of said cover plate about said oblong opening for pre-venting the base from being urged through said opening, said abutments and the spacing between said prongs being such as to permit manual insertion of the push button actuator assembly into the hole by squeezing the prongs together, and wherein said push button actuator additionally includes a resilient element attached for normally urging said push button outward away from said cover plate.
4. The electrical control station according to claim 3, wherein said push button actuator additionally comprises at least two cap members that are snapable in place to said base, said cap members differing by their thickness, whereby the distance that said push button actuator normally extends from the surface of the cover plate of a finished control station may be selected.
5. The electrical control station according to claim 1, wherein at least some of the holes of the cover plates are surrounded by a knob control structure that includes two arcuate tracks each of less than 180 in duration and positioned opposite one another equally spaced around said track, and further including three receptacles equally spaced around one side of the hole over an extent less than 180 with two receptacles spaced apart on the other side of said hole over a different space extending less than 180° around said hole, said rotary switch including a knob positioned on the top of said cover plate for operation through said hole, said knob including a spring loaded detent extending downward therefrom for engaging one of said receptacles for positive positioning of the knob and further including a slidable detent therein operable by hand between two extreme positions, one position of which engages one of said circular tracks and the other position of which removes the detent from a track to permit 180 rotation of said knob for engagement of the other track, whereby the knob may be easily adjusted for having three positive positions as defined by the positions of said three receptacles or two positions defined by the positions of said two receptacles depending upon which of the two circular tracks that said hand movable detent is selected to engage.
6. The electrical control station according to claim 1, wherein said housing comprises as major components thereof a base structure including said bottom surface and a cover attachable thereto and including said top opening.
7. The electrical control station according to claim 1, wherein said housing has a downwardly projecting wall around at least a portion of said top opening and said plurality of cover plates each include a downwardly projecting wall around the same portion their perimeter, said housing walls and cover plate walls including matching detent and receptacles, thereby permitting positive engagement upon insertion of the cover plate into the top opening of the housing.
8. An electrical control station, comprising:
an elongated housing having a rectangular top opening oriented with its long dimension along the length of said housing, thereby to provide access to the interior of the housing;
three types of cover plates that are rectangular in shape with a size and structure for cooperative snap fitting into said top opening of the housing, one type of cover plate having only one hole therein at its middle, another type of cover plate having two holes therein spaced along its length and the third type having three holes therein equally spaced along its length;
a plurality of components from which to select for operable attachment to the holes of said cover plates including a push button actuator having a base extending below the cover plate when installed, a rotary switch having a cam surface below the cover plate when installed, and a panel light lens;
at least seven equally spaced parallel rows of attachment elements carried by a bottom surface of said housing and each row extending across the narrow width of said housing, these rows being oriented with respect to the housing and the holes of each of -three types of cover plates so that the first two rows, the fourth and fifth rows and the seventh row are oriented under the three holes of the three hole cover plate, the second and third rows and sixth and seventh rows being oriented under the two holes of the two hole cover plate, and the fourth and fifth rows being oriented under the single hole of the single hole plate;
an electrical contact block having a spring-loaded mechanical push button on its top for making or breaking electrical contacts within, said contact block having a bottom structure for attachment to any one row of said bottom surface attachment structure;
a panel lamp socket block having a bottom surface for engagement by any two rows of said bottom surface attachment assembly;

said push button base being shaped for simultaneous operation of the mechanical push buttons of two adjacent contact blocks held under the hole in which the push button actuator is installed and said rotary switch cam having a shape for operating one of two adjacent contact blocks when said knob is rotated in one direction and operating the other of two adjacent contact blocks when the knob is rotated in an opposite direction.
CA340,174A 1976-07-23 1979-11-20 Modular electrical control station Expired CA1095157A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA340,174A CA1095157A (en) 1976-07-23 1979-11-20 Modular electrical control station

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US05/708,191 US4092508A (en) 1976-07-23 1976-07-23 Modular electrical control station with switch detent means
US708,191 1976-07-23
CA283,324A CA1082344A (en) 1976-07-23 1977-07-22 Modular electrical control station
CA340,174A CA1095157A (en) 1976-07-23 1979-11-20 Modular electrical control station

Publications (1)

Publication Number Publication Date
CA1095157A true CA1095157A (en) 1981-02-03

Family

ID=27165198

Family Applications (1)

Application Number Title Priority Date Filing Date
CA340,174A Expired CA1095157A (en) 1976-07-23 1979-11-20 Modular electrical control station

Country Status (1)

Country Link
CA (1) CA1095157A (en)

Similar Documents

Publication Publication Date Title
US4209820A (en) Modular electrical control station
US3944761A (en) Rotary switch
US3983341A (en) Simplified slide switch
US4816626A (en) Slide switch
US4092508A (en) Modular electrical control station with switch detent means
US4355211A (en) Push button key modules
CA1095157A (en) Modular electrical control station
US5657861A (en) Slide switch
JPH0142897Y2 (en)
US4355216A (en) Electric switch
US4623763A (en) Rotary multi-contact switch
JPH0329225A (en) Miniature switch
US4682142A (en) Rotary potentiometer with switch
US3727020A (en) Electrical switch unit
US4762967A (en) Modular push type latching and cross cancelling switches
GB2071916A (en) Indexed slide switch
JPH0526661Y2 (en)
GB2199697A (en) Arc preventing and contact moving in electrical switches
JP2002367740A (en) Multiple plug outlet
JP3082339U (en) Double outlet
JPH0741927U (en) Compound operation type switch
JPH0724752Y2 (en) Slide switch
JPS5824341Y2 (en) slide switch
JPH083948Y2 (en) Movable contact support structure for electrical equipment
JPH0526660Y2 (en)

Legal Events

Date Code Title Description
MKEX Expiry