CA1092620A - Skateboard having a flexible and resilient chassis with speed control means - Google Patents
Skateboard having a flexible and resilient chassis with speed control meansInfo
- Publication number
- CA1092620A CA1092620A CA303,183A CA303183A CA1092620A CA 1092620 A CA1092620 A CA 1092620A CA 303183 A CA303183 A CA 303183A CA 1092620 A CA1092620 A CA 1092620A
- Authority
- CA
- Canada
- Prior art keywords
- chassis
- skateboard
- central portion
- brake
- wheel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Motorcycle And Bicycle Frame (AREA)
- Automatic Cycles, And Cycles In General (AREA)
Abstract
ABSTRACT OF THE DISCLOSURE
A skateboard having a flexible and resilient, generally planar chassis to which are affixed front and rear wheel assemblies The skateboard includes brake means for controlling the speed of at least one of the wheel assemblies. Engagement and disengagement of the brake means is controlled by and responsive to the amount and direction of the flexing of the skateboard chassis. One embodiment of the brake mean is described.
A skateboard having a flexible and resilient, generally planar chassis to which are affixed front and rear wheel assemblies The skateboard includes brake means for controlling the speed of at least one of the wheel assemblies. Engagement and disengagement of the brake means is controlled by and responsive to the amount and direction of the flexing of the skateboard chassis. One embodiment of the brake mean is described.
Description
~- ~ 2~
BACKGROUND OF THE INVENTION
This invention relates to skateboards in ~eneral, and more particularly, to a skateboard having speed control means.
The resurgence of interest in skateboards has been well documented in the press during the last year. Skateboards were first seen in the-mid-60s when surfers used them to practice and develop their surfing skills on "sidewalk surfboards". Over the last decade, attempts to improve the control and stability of kateboards have significantly advanced skateboard design and onstruction. The new skateboard, with its flexible chassis, wide, ¦ stable steering trucks and precision bearing urethane wheels, is a l far cry from the "sidewalk surfer" of the 1960s. These improvement ¦ have made skateboarding safer and more enjoyable for a larger group f people and now skateboarding has come into its own both as a ¦recreational activity and as a sport in which amateurs and ¦professionals alike can compete for prizes in events ranging from freestyle acrobatics to high-speed slalom and downhill racing.
¦ Un~ortunately, with the increase in skateboarding ¦popularity there has been a concomitant increase in skateboard ¦related injuries. At present, the direction and speed of the ¦~kateboard is limited to the dexterity of th~ rider. Directional control is achieved by leaning in the direction one would like to ~ steer~ Speed control is achieved by steering transversely to the : ill in a zig ag ~anner. The only practical way for the rider eo ``~ . .
:"
. .
. ~ ' ~ , . 2.
. `. .. .
. 1 1092621~ l stop is to jump off of his skateboard because the current skateboar s have no brakes.
Jumping from the skateboard imposes some very obvious an dangerous constraints on the skateboard rider. This is especially pertinent because skateboarding has now become a high-speed, hill coasting sport. Additionally, once the skateboard rider has falle or jumped from his ska~eboard, the skateboard continues to plummet down the hill and many have been injured by run-a-way skateboards.
The art of coasters and roller skates contains various illustrations of braking systems. Examples of such braking systems are shown in the following United States Patent Nos:
225,361; 1,026,712; 1,890,755; 2,014,060; 3,180,678; 3,224,785 and 3 J 288,251. The ground contacting rub block braking systems shown in Nos. 225,361 and 1,890,755 are not suitable for controllin~
modern day high-speed skateboards. The wheel contacting braking systems shown in the other patents are generally unsatisfactory or impractical for skateboards.
It is accordingly a general object of the present ¦invent~on to provide an improved skateboard with speed-control mea s.
¦ I~ is a specific object of the invention to provide a ¦speed control means that does not require steering changes to ¦maintain speed control It s another object of the invention to provide a speed ¦
., . ., :.. ,.. :: - ~ . .
control means for braking to a ful] stop without jumping from the skateboard.
It is ~till another object of the invention to provide for automatic engagement of the speed-control means when the rider S either jumps or falls off of the skateboard.
It is a further object of the invention to provide a skateboard having a flexible and resilient, generally planar chassis in which the amount and direction of flexing of the chassis controls the proportional engagement and disengagement o the brake means.
It is still a further object of the invention to provide a skateboard with speed-control means in which the degree of speed reduction is controlled by the rider's position and physical attitude on the skateboard.
It is a feature of the invention that the rider's position for brake engagement is instinctive and is a position that is best suited for the rider to resist the deacceleration forces of brakiny.
It is another feature of the invention that overbraking will cause a weight shift or dispostion of the rider which automatically disengages the brake.
It is still another feature of the present invention that the rider's position for disengaging the brake is a position best suited for t acceleration of the board after the speed control , - ~, ; 4.
l ~9~
has been disengaged.
It is a further feature of the invention that the rider's o~ition upon dlsengagement of the speed control means is the typical and normal riding position for control of the skateboard.
It is still a further feature of the invention that the natural resiliency of the skateboard chassis can be employed to operate a brake that is engaged automatically when the rider is not on the board and when the rider is on the board the brake can be released or engaged by the position and physical attitude of the rider.
It is an additional feature of the invention that existing yieldable, resilient skateboard can be modified to provide a skateboard having the desired speed control means.
Figure 1 is a view in side elevation showing an unloaded, flexi~le and resilient chassis skateboard having a brake mechanism which is depicted in the engaged position;
Figure 2 is a side elevational view o the skateboard of ~igure 1 showing the chassis in a irst loade~ condition for disengaging the brake mechanism;
~0 Figure 3 is another side elevational view of the skate-¦board o Figure 1 showing the chassis in a second loaded condition ¦for engaging the brake mechanism;
¦ Figure 4 is still another side elevational view of the skateboard o Figure 1 ~howing the second loaded condition of the ¦
.
~L09Z6ZO
skateboard in Figure 3 together with tilting of the chassis to . provide greater breaking force than that achieved when the skate-board is loaded and positioned as shown in Figure 3;
Figures 5, 6, 7 and 8 are diagrammatic views of the skateboard shown in Figures 1 through 4, respectively, illustrating the unloaded chassis of Figure 1 without a rider and the position of the skateboard rider for the loaded chassis conditions depicted in Figures 2 through 4;
Figure 9 is an exploded view in perspective of the brake mechanism;
Fiqure 10 is a view in side elevation of the brake mechanism in the disengaged position; and, Figure 11 is another view in side elevation of the brake ;ochanlsm sh ing the brake ~echanlsm in the eryaged pos tion.
, .
I ~
.; , , .
~ 26~
DETAILED DESCRIPTION OF A PREFERRED EMBODIMENT
Turning now to the drawings, there is shown a ska~eboard with brake means constructed in accordance with the present invention and indicated generally by the reference numeral 10.
The skateboard 10 comprises: a flexible and resilient, generally pla~ar chassis 12 having mounted thereon front and rear wheel assemblies 14 and 16, respectively; a brake mechanism, indicated generally by the reference numeral 18 and shown ln greater detail in Figures 9 through 11, and a brake linkage actuator 20.
The flexible and resilient, planar skateboard chassis 12 is formed preferably of aluminum or plastic, either solid or laminatedl with a predetermined degree of yielding for a given load A wide variety of currently available skateboards can be used for the chassis 12. Although the chassis has been described as "generally planar" it should be understood that the chassis can have an upwardly swept rea~ portion 22, commonly termed a "kicktai center and/or an upwardly bowed/portion, commonly referred to as a "camber .
Both o~ these configurations are included within the term "generall lanar'l as used herein.
The chassis 12 can be constructed as a single unit or as plurality of units. In the latter case, a rigid rear portion can e connected to a flexible forward portion or two rigid portions an be joined a resilient, flexible connection. In each of thes ~ 1 '.
',.
~L0926:Z0 linstances e connection is located in front of the wheel axis of the rear a~semblies. The term "flexible and resilient chassis" as used herein shall be construed to include all of these chassis configurations.
The ~ront wheel assembly 14 comprises a truck unit 24 upon which are mounted wheels 26. The truck unit 24 is a conventional truck unit that is readily available in the market-place. One representative example of a suitable truck unit is the "Tracker" truck. The wheels 26 can be formed from a variety of aterials, but preferably are the commercially available standard urethane wheels.
The rear wheel assembly 16 includes a truck unit 24 and rear wheels 28 at least one of which is provided with the brake ; mechanism 18. For purposes of simplicity, the rear truck unit has been illustrated as a non-steerable unit. It should be understood that if steerable truck units are employed for the rear truck, the brake linkage 20 should be connected to the truck at its center of steering in order to prevent engagement or disengagement of the brake as a result of steering.
The major components of the brake mechanism 18 are best ; viewed in Figures9 through 11 Referring to these Figures, rearwheel 28 is rotatably mounted on a threaded axle 30 and retained ¦thereon by 1 king nut 32. A brake drum 34 is mounted wlthin and .' .
.
.
~, . .
,. , : .
1(~19Z6ZO
and secured to the rear wheel 28. Radially movable brake shoes 36 are positioned within brake drum 34 for radial movement toward and away from the brake drum. The movement of the brake shoes 36 is controlled by means of a hrake shoe cam 38 that i~ rotatably mounte on axle 30. The brake shoe cam 38 has an actuator arm 40 that is rotatably mounted with respect to the brake linkage 20 by means of an a.ctuator pin 42.
It can be seen from an inspection of Figures 9 through 1 that longitudinal movement of the brake linkage 20 will rotate the brake shoe cam actuator 40 about the axle 30. This rotational movement causes the brake shoe cam 38 to bear against the brake shoes 36 thereby moving the brake shoes radially outward against the brake drum 34. Rotation of the brake shoes 36 is prevented by means of brake shoe pivot pins 44 which are slidably mounted within slots 46 formed in a brake shoe cage 48 that is secured to truck xle 30.
¦ Referring back to Figures 1-4, it can be seen that the ¦brake lingage 20 is pivotally mounted at pivot 50 with respect to ¦the frontwheel assembly 14 and pivotally mounted wi~h respect to ¦the rear wheel assembly 16 and brake mechanism 18 as described ¦above. Given this arrangement, any change in ~he angle of the ::
¦truck units with respect to a reference plane or a change in the ¦l heel length tween the front and rear wheel a~semblies will ~' . ' ~, '~' .
"I
~ .
~ 326;~9 produce a movement of the brake actuator arm 40 and a concomitant movement of the brake shoes 36 to engage or disengage the brake mechanism.
Referring back to Figures l through 8, Figures l and 5 illustrate the skateboard of the present invention in an unloaded s~ate with the brake mechanism in the engaged position. ~1hen the skateboard chassis is loaded by the weight of the rider in the ?osition shown in Figures 2 and 6, the brake mechanism is disengaged It can be seen from a comparison of Figures l and 2 that the brake actuator linkage 20 rota~es pin 42 in a counterclockwise direction to disengage the brake mechanism. This action is shown in detail in Figure lO.
If the skateboard rider shifts his weight as shown in ¦Figure 7, the skateboard chassis is loaded in a second and differen ¦position from that shown in Figure 2. The resulting weight shift ¦produces the loading indicated in Figure 3 by the arrows. This ¦loading causes the brake linkage 20 to rotate pin 42 in a clockwise ¦direction thereby engaging ~he brake mechanism. A detailed view of this action is illustrated in Figure ll.
~ ¦ It should be observed that under the chassis loading ; 1 conditions illustrated in Figures l through 3 there is a ¦ corresponding angular change of the truck units with respect to a 1 reference plane e.g., the ground plane. This angular change is ¦indicated as angle A, A' and A" in Figures l through 3, ; ¦ respectively. It can also be seen that there is a corresponding~change in the istance between the front and rear wheel axec.
I .
I
.
~' . .
. , ; . . :
-~ j lCD9Z6Z~D
Additional braking force can be generated by loading the chassis at the locations shown in Figure 3 and then tilting the chassis as shown in Figure 4. The increased loading on the rear portion of the chassi~ is represented by the thicker arrow in Figure 4.
¦ It will be appreciated from the foregoing discussion ¦ that the brake mechanism is engaged automatically when the skate-I board is in the unloaded state. Thus, if the rider jumps or falls I off of the skateboard the skateboard will stop automatically ¦ thereby preventing a runaway skateboard. The degree of brake ¦ engagement (from zero to full) in the unloaded state can be ¦ adjusted by varying the physical and/or angular relationships o ¦ the components e.g. shortening or lengthenin~ the brake linka~e ¦ actUator 20 or adjusting the angular relationship of the rear ¦wheel assembly 16 with respect to the chassis, etc.
¦ Although the preceding description has been directed to ¦ the operation of a brake mechanism, it will be appreciated that th ¦ mechanical action produced by the flexing of the chassis can be ¦ employed to operate a variety of different mechanisms. For exampl ¦ if the skateboard has a battery powered brake light, the brake light can be energized through a switch that is closed by the acti~n of the brake linkage 20. Sound devices and other warning apparatu~
can also be controlled by the present invention.
Having described in detail a preferred embodiment of my invention lt will now be apparent to those skilled in the art that numerous modiications can be made therein without departing from ¦¦ the s~ope of he inVention as defined in the following claims.
. ~ '.
. .
:~ .`- - 11
BACKGROUND OF THE INVENTION
This invention relates to skateboards in ~eneral, and more particularly, to a skateboard having speed control means.
The resurgence of interest in skateboards has been well documented in the press during the last year. Skateboards were first seen in the-mid-60s when surfers used them to practice and develop their surfing skills on "sidewalk surfboards". Over the last decade, attempts to improve the control and stability of kateboards have significantly advanced skateboard design and onstruction. The new skateboard, with its flexible chassis, wide, ¦ stable steering trucks and precision bearing urethane wheels, is a l far cry from the "sidewalk surfer" of the 1960s. These improvement ¦ have made skateboarding safer and more enjoyable for a larger group f people and now skateboarding has come into its own both as a ¦recreational activity and as a sport in which amateurs and ¦professionals alike can compete for prizes in events ranging from freestyle acrobatics to high-speed slalom and downhill racing.
¦ Un~ortunately, with the increase in skateboarding ¦popularity there has been a concomitant increase in skateboard ¦related injuries. At present, the direction and speed of the ¦~kateboard is limited to the dexterity of th~ rider. Directional control is achieved by leaning in the direction one would like to ~ steer~ Speed control is achieved by steering transversely to the : ill in a zig ag ~anner. The only practical way for the rider eo ``~ . .
:"
. .
. ~ ' ~ , . 2.
. `. .. .
. 1 1092621~ l stop is to jump off of his skateboard because the current skateboar s have no brakes.
Jumping from the skateboard imposes some very obvious an dangerous constraints on the skateboard rider. This is especially pertinent because skateboarding has now become a high-speed, hill coasting sport. Additionally, once the skateboard rider has falle or jumped from his ska~eboard, the skateboard continues to plummet down the hill and many have been injured by run-a-way skateboards.
The art of coasters and roller skates contains various illustrations of braking systems. Examples of such braking systems are shown in the following United States Patent Nos:
225,361; 1,026,712; 1,890,755; 2,014,060; 3,180,678; 3,224,785 and 3 J 288,251. The ground contacting rub block braking systems shown in Nos. 225,361 and 1,890,755 are not suitable for controllin~
modern day high-speed skateboards. The wheel contacting braking systems shown in the other patents are generally unsatisfactory or impractical for skateboards.
It is accordingly a general object of the present ¦invent~on to provide an improved skateboard with speed-control mea s.
¦ I~ is a specific object of the invention to provide a ¦speed control means that does not require steering changes to ¦maintain speed control It s another object of the invention to provide a speed ¦
., . ., :.. ,.. :: - ~ . .
control means for braking to a ful] stop without jumping from the skateboard.
It is ~till another object of the invention to provide for automatic engagement of the speed-control means when the rider S either jumps or falls off of the skateboard.
It is a further object of the invention to provide a skateboard having a flexible and resilient, generally planar chassis in which the amount and direction of flexing of the chassis controls the proportional engagement and disengagement o the brake means.
It is still a further object of the invention to provide a skateboard with speed-control means in which the degree of speed reduction is controlled by the rider's position and physical attitude on the skateboard.
It is a feature of the invention that the rider's position for brake engagement is instinctive and is a position that is best suited for the rider to resist the deacceleration forces of brakiny.
It is another feature of the invention that overbraking will cause a weight shift or dispostion of the rider which automatically disengages the brake.
It is still another feature of the present invention that the rider's position for disengaging the brake is a position best suited for t acceleration of the board after the speed control , - ~, ; 4.
l ~9~
has been disengaged.
It is a further feature of the invention that the rider's o~ition upon dlsengagement of the speed control means is the typical and normal riding position for control of the skateboard.
It is still a further feature of the invention that the natural resiliency of the skateboard chassis can be employed to operate a brake that is engaged automatically when the rider is not on the board and when the rider is on the board the brake can be released or engaged by the position and physical attitude of the rider.
It is an additional feature of the invention that existing yieldable, resilient skateboard can be modified to provide a skateboard having the desired speed control means.
Figure 1 is a view in side elevation showing an unloaded, flexi~le and resilient chassis skateboard having a brake mechanism which is depicted in the engaged position;
Figure 2 is a side elevational view o the skateboard of ~igure 1 showing the chassis in a irst loade~ condition for disengaging the brake mechanism;
~0 Figure 3 is another side elevational view of the skate-¦board o Figure 1 showing the chassis in a second loaded condition ¦for engaging the brake mechanism;
¦ Figure 4 is still another side elevational view of the skateboard o Figure 1 ~howing the second loaded condition of the ¦
.
~L09Z6ZO
skateboard in Figure 3 together with tilting of the chassis to . provide greater breaking force than that achieved when the skate-board is loaded and positioned as shown in Figure 3;
Figures 5, 6, 7 and 8 are diagrammatic views of the skateboard shown in Figures 1 through 4, respectively, illustrating the unloaded chassis of Figure 1 without a rider and the position of the skateboard rider for the loaded chassis conditions depicted in Figures 2 through 4;
Figure 9 is an exploded view in perspective of the brake mechanism;
Fiqure 10 is a view in side elevation of the brake mechanism in the disengaged position; and, Figure 11 is another view in side elevation of the brake ;ochanlsm sh ing the brake ~echanlsm in the eryaged pos tion.
, .
I ~
.; , , .
~ 26~
DETAILED DESCRIPTION OF A PREFERRED EMBODIMENT
Turning now to the drawings, there is shown a ska~eboard with brake means constructed in accordance with the present invention and indicated generally by the reference numeral 10.
The skateboard 10 comprises: a flexible and resilient, generally pla~ar chassis 12 having mounted thereon front and rear wheel assemblies 14 and 16, respectively; a brake mechanism, indicated generally by the reference numeral 18 and shown ln greater detail in Figures 9 through 11, and a brake linkage actuator 20.
The flexible and resilient, planar skateboard chassis 12 is formed preferably of aluminum or plastic, either solid or laminatedl with a predetermined degree of yielding for a given load A wide variety of currently available skateboards can be used for the chassis 12. Although the chassis has been described as "generally planar" it should be understood that the chassis can have an upwardly swept rea~ portion 22, commonly termed a "kicktai center and/or an upwardly bowed/portion, commonly referred to as a "camber .
Both o~ these configurations are included within the term "generall lanar'l as used herein.
The chassis 12 can be constructed as a single unit or as plurality of units. In the latter case, a rigid rear portion can e connected to a flexible forward portion or two rigid portions an be joined a resilient, flexible connection. In each of thes ~ 1 '.
',.
~L0926:Z0 linstances e connection is located in front of the wheel axis of the rear a~semblies. The term "flexible and resilient chassis" as used herein shall be construed to include all of these chassis configurations.
The ~ront wheel assembly 14 comprises a truck unit 24 upon which are mounted wheels 26. The truck unit 24 is a conventional truck unit that is readily available in the market-place. One representative example of a suitable truck unit is the "Tracker" truck. The wheels 26 can be formed from a variety of aterials, but preferably are the commercially available standard urethane wheels.
The rear wheel assembly 16 includes a truck unit 24 and rear wheels 28 at least one of which is provided with the brake ; mechanism 18. For purposes of simplicity, the rear truck unit has been illustrated as a non-steerable unit. It should be understood that if steerable truck units are employed for the rear truck, the brake linkage 20 should be connected to the truck at its center of steering in order to prevent engagement or disengagement of the brake as a result of steering.
The major components of the brake mechanism 18 are best ; viewed in Figures9 through 11 Referring to these Figures, rearwheel 28 is rotatably mounted on a threaded axle 30 and retained ¦thereon by 1 king nut 32. A brake drum 34 is mounted wlthin and .' .
.
.
~, . .
,. , : .
1(~19Z6ZO
and secured to the rear wheel 28. Radially movable brake shoes 36 are positioned within brake drum 34 for radial movement toward and away from the brake drum. The movement of the brake shoes 36 is controlled by means of a hrake shoe cam 38 that i~ rotatably mounte on axle 30. The brake shoe cam 38 has an actuator arm 40 that is rotatably mounted with respect to the brake linkage 20 by means of an a.ctuator pin 42.
It can be seen from an inspection of Figures 9 through 1 that longitudinal movement of the brake linkage 20 will rotate the brake shoe cam actuator 40 about the axle 30. This rotational movement causes the brake shoe cam 38 to bear against the brake shoes 36 thereby moving the brake shoes radially outward against the brake drum 34. Rotation of the brake shoes 36 is prevented by means of brake shoe pivot pins 44 which are slidably mounted within slots 46 formed in a brake shoe cage 48 that is secured to truck xle 30.
¦ Referring back to Figures 1-4, it can be seen that the ¦brake lingage 20 is pivotally mounted at pivot 50 with respect to ¦the frontwheel assembly 14 and pivotally mounted wi~h respect to ¦the rear wheel assembly 16 and brake mechanism 18 as described ¦above. Given this arrangement, any change in ~he angle of the ::
¦truck units with respect to a reference plane or a change in the ¦l heel length tween the front and rear wheel a~semblies will ~' . ' ~, '~' .
"I
~ .
~ 326;~9 produce a movement of the brake actuator arm 40 and a concomitant movement of the brake shoes 36 to engage or disengage the brake mechanism.
Referring back to Figures l through 8, Figures l and 5 illustrate the skateboard of the present invention in an unloaded s~ate with the brake mechanism in the engaged position. ~1hen the skateboard chassis is loaded by the weight of the rider in the ?osition shown in Figures 2 and 6, the brake mechanism is disengaged It can be seen from a comparison of Figures l and 2 that the brake actuator linkage 20 rota~es pin 42 in a counterclockwise direction to disengage the brake mechanism. This action is shown in detail in Figure lO.
If the skateboard rider shifts his weight as shown in ¦Figure 7, the skateboard chassis is loaded in a second and differen ¦position from that shown in Figure 2. The resulting weight shift ¦produces the loading indicated in Figure 3 by the arrows. This ¦loading causes the brake linkage 20 to rotate pin 42 in a clockwise ¦direction thereby engaging ~he brake mechanism. A detailed view of this action is illustrated in Figure ll.
~ ¦ It should be observed that under the chassis loading ; 1 conditions illustrated in Figures l through 3 there is a ¦ corresponding angular change of the truck units with respect to a 1 reference plane e.g., the ground plane. This angular change is ¦indicated as angle A, A' and A" in Figures l through 3, ; ¦ respectively. It can also be seen that there is a corresponding~change in the istance between the front and rear wheel axec.
I .
I
.
~' . .
. , ; . . :
-~ j lCD9Z6Z~D
Additional braking force can be generated by loading the chassis at the locations shown in Figure 3 and then tilting the chassis as shown in Figure 4. The increased loading on the rear portion of the chassi~ is represented by the thicker arrow in Figure 4.
¦ It will be appreciated from the foregoing discussion ¦ that the brake mechanism is engaged automatically when the skate-I board is in the unloaded state. Thus, if the rider jumps or falls I off of the skateboard the skateboard will stop automatically ¦ thereby preventing a runaway skateboard. The degree of brake ¦ engagement (from zero to full) in the unloaded state can be ¦ adjusted by varying the physical and/or angular relationships o ¦ the components e.g. shortening or lengthenin~ the brake linka~e ¦ actUator 20 or adjusting the angular relationship of the rear ¦wheel assembly 16 with respect to the chassis, etc.
¦ Although the preceding description has been directed to ¦ the operation of a brake mechanism, it will be appreciated that th ¦ mechanical action produced by the flexing of the chassis can be ¦ employed to operate a variety of different mechanisms. For exampl ¦ if the skateboard has a battery powered brake light, the brake light can be energized through a switch that is closed by the acti~n of the brake linkage 20. Sound devices and other warning apparatu~
can also be controlled by the present invention.
Having described in detail a preferred embodiment of my invention lt will now be apparent to those skilled in the art that numerous modiications can be made therein without departing from ¦¦ the s~ope of he inVention as defined in the following claims.
. ~ '.
. .
:~ .`- - 11
Claims (21)
PRIVILEGE IS CLAIMED ARE DEFINED AS FOLLOWS:
1. A skateboard comprising:
a. a generally planar flexible and resilient, longitudinal chassis having upper and lower surfaces, a front portion, a central portion and a rear portion;
b. front wheel means attached to the lower surface of the chassis at the front portion thereof;
c. rear wheel means attached to the lower surface of the chassis at the rear portion thereof;
d. brake means for controlling the speed of at least one of said wheel means; and e. means responsive to the upward flexing of the central portion of said chassis for controlling the engagement of said brake means.
a. a generally planar flexible and resilient, longitudinal chassis having upper and lower surfaces, a front portion, a central portion and a rear portion;
b. front wheel means attached to the lower surface of the chassis at the front portion thereof;
c. rear wheel means attached to the lower surface of the chassis at the rear portion thereof;
d. brake means for controlling the speed of at least one of said wheel means; and e. means responsive to the upward flexing of the central portion of said chassis for controlling the engagement of said brake means.
2. The skateboard of Claim 1 wherein said means responsive to the flexing of the chassis engages and disengages the brake means in proportion to the amount of flexing of the chassis.
3. The skateboard of Claim 1 further comprising means responsive to the downward flexing of the central portion of the chassis for disengaging the brake means.
4. The skateboard of claim 1 wherein said chassis has a portion extending rearwardly of said rear wheel means whereby maximum braking is achieved by bringing the chassis to a maximum flexed portion with the rear wheel means in contact with the ground and the front wheel means off of the ground.
5. The skateboard of claim 4 wherein said rearwardly extending portion of said chassis is a kicktail.
6. The skateboard of claim 1 wherein the central portion of said chassis has a first configuration in an unloaded state and a second configuration in a loaded state and further comprising means for engaging said brake means when said chassis central portion is in an unloaded state and for disengaging said brake means when the chassis central portion is in a loaded state.
7. A skateboard comprising:
a. a generally planar, flexible and resilient longitudinal chassis having upper and lower surfaces, a front portion, a central portion and a rear portion;
b. front wheel means comprising a truck assembly attached to the lower surface of the chassis at the front portion thereof and at least one wheel rotatably mounted on said truck assembly;
c. rear wheel means comprising a truck assembly attached to the lower surface of the chassis at the rear portion thereof and at least one wheel rotatably mounted on such truck assembly;
d. a brake means for controlling the speed of at least one of said wheel means wheels; and e. means responsive to a change in the angular relationship of said front and rear wheel means truck assemblies with respect to a reference plane as a result of the upward flexing of the central portion of the chassis for engaging the brake means.
a. a generally planar, flexible and resilient longitudinal chassis having upper and lower surfaces, a front portion, a central portion and a rear portion;
b. front wheel means comprising a truck assembly attached to the lower surface of the chassis at the front portion thereof and at least one wheel rotatably mounted on said truck assembly;
c. rear wheel means comprising a truck assembly attached to the lower surface of the chassis at the rear portion thereof and at least one wheel rotatably mounted on such truck assembly;
d. a brake means for controlling the speed of at least one of said wheel means wheels; and e. means responsive to a change in the angular relationship of said front and rear wheel means truck assemblies with respect to a reference plane as a result of the upward flexing of the central portion of the chassis for engaging the brake means.
8. The skateboard of claim 7 wherein said reference plane is a wheel supporting surface.
9. The skateboard of claim 7 wherein said reference plane is coplanar with or parallel to the plane of said planar chassis.
10. The skateboard of claim 7 wherein said brake means includes means for proportionally engaging and disengaging the brake means in response to the angular change of the truck assembly of the at least one wheel means wheel that is braked by said brake means.
11. The skateboard of claim 10 wherein the brake means includes means for engaging the brake means as the angular relationship between the truck assembly of the at least one wheel means wheel that is braked by said brake means and the reference plane changes in a first direction and for disengaging the brake means as said angular relationship changes in a second and opposite direction.
12. The skateboard of claim 7 wherein the central portion of said chassis has a first configuration in an unloaded state and a second configuration in a loaded state and further comprising means for engaging said brake means when said chassis central portion is in an unloaded state and for disengaging said brake means when the chassis central portion is in a loaded state.
13. A skateboard comprising:
a. a generally planar, flexible and resilient longitudinal chassis having upper and lower surfaces, a front portion, a central portion and a rear portion;
b. front wheel means attached to the lower surface of the chassis at the front portion thereof;
c. rear wheel means attached to the lower surface of the chassis at the rear portion thereof;
d. brake means for controlling the speed of at least one of said wheel means; and e. means responsive to a change in distance between said front and rear wheel means as a result of the flexing of the chassis for engaging and disengaging said brake means.
a. a generally planar, flexible and resilient longitudinal chassis having upper and lower surfaces, a front portion, a central portion and a rear portion;
b. front wheel means attached to the lower surface of the chassis at the front portion thereof;
c. rear wheel means attached to the lower surface of the chassis at the rear portion thereof;
d. brake means for controlling the speed of at least one of said wheel means; and e. means responsive to a change in distance between said front and rear wheel means as a result of the flexing of the chassis for engaging and disengaging said brake means.
14. The skateboard of claim 13 wherein said brake means includes means for engaging the brake means when the distance between said front and rear wheel means is decreased and for releasing the brake means when said distance is increased.
15. The skateboard of claim 14 wherein said brake means includes means for proportionally engaging and disengaging the brake means in response to the amount of change in distance between said front and rear wheel means.
16. The skateboard of claim 13 wherein the central portion of said chassis has a first configuration in an unloaded state and a second configuration in a loaded state and further comprising means for engaging said brake means when said chassis central portion is in an unloaded state and for disengaging said brake means when the chassis central portion is in a loaded state.
17. A skateboard comprising;
a. a generally planar flexible and resilient longitudinal chassis having upper and lower surfaces, a front portion, a central portion and a rear portion and which has a first configuration when the central portion is in an unloaded state and a second configuration when it is in a loaded state;
b. front wheel means attached to the lower surface of the chassis at the front portion thereof;
c. rear wheel means attached to the lower surface of the chassis at the rear portion thereof;
d. brake means for controlling the speed of at least one of said wheel means; and e. means for engaging said brake means when said central portion of the chassis is in an unloaded state and for disengaging said brake means when said central portion of the chassis is in a loaded state.
a. a generally planar flexible and resilient longitudinal chassis having upper and lower surfaces, a front portion, a central portion and a rear portion and which has a first configuration when the central portion is in an unloaded state and a second configuration when it is in a loaded state;
b. front wheel means attached to the lower surface of the chassis at the front portion thereof;
c. rear wheel means attached to the lower surface of the chassis at the rear portion thereof;
d. brake means for controlling the speed of at least one of said wheel means; and e. means for engaging said brake means when said central portion of the chassis is in an unloaded state and for disengaging said brake means when said central portion of the chassis is in a loaded state.
18. A skateboard comprising:
a. a generally planar, flexible and resilient, longitudinal chassis having upper and lower surfaces, a front portion, a central portion and a rear portion;
b. front wheel means attached to the lower surface of the chassis at the front portion thereof;
c. rear wheel means attached to the lower surface of the chassis at the rear portion thereof;
d. utilization means operable by the upward flexing of the central portions of said chassis; and e. means responsive to the upward flexing of the central portion of said chassis for operating said utilization means.
a. a generally planar, flexible and resilient, longitudinal chassis having upper and lower surfaces, a front portion, a central portion and a rear portion;
b. front wheel means attached to the lower surface of the chassis at the front portion thereof;
c. rear wheel means attached to the lower surface of the chassis at the rear portion thereof;
d. utilization means operable by the upward flexing of the central portions of said chassis; and e. means responsive to the upward flexing of the central portion of said chassis for operating said utilization means.
19. A skateboard comprising:
a. a generally planar, flexible and resilient longitudinal chassis having upper and lower surfaces, a front portion, a central portion and a rear portion;
b. front wheel means comprising a truck assembly attached to the lower surface of the chassis at the front portion thereof and at least one wheel rotat-ably mounted on said truck assembly;
c. rear wheel means comprising a truck assembly attached to the lower surface of the chassis at the rear portion thereof and at least one wheel rotat-ably mounted on said truck assembly;
d. utilization means operable by a change in the angular relationship of said front and rear wheel means truck assemblies with respect to a reference plane as a result of the upward flexing of the central portion of the chassis; and, e. means responsive to the angular relationship of said front and rear wheel means truck assemblies with respect to a reference plane for operat-ing said utilization means.
a. a generally planar, flexible and resilient longitudinal chassis having upper and lower surfaces, a front portion, a central portion and a rear portion;
b. front wheel means comprising a truck assembly attached to the lower surface of the chassis at the front portion thereof and at least one wheel rotat-ably mounted on said truck assembly;
c. rear wheel means comprising a truck assembly attached to the lower surface of the chassis at the rear portion thereof and at least one wheel rotat-ably mounted on said truck assembly;
d. utilization means operable by a change in the angular relationship of said front and rear wheel means truck assemblies with respect to a reference plane as a result of the upward flexing of the central portion of the chassis; and, e. means responsive to the angular relationship of said front and rear wheel means truck assemblies with respect to a reference plane for operat-ing said utilization means.
20. A skateboard comprising:
a. a generally planar, flexible and resilient longitudinal chassis having upper and lower surfaces, a front portion, a central portion and a rear portion;
b. front wheel means attached to the lower surface of the chassis at the front portion thereof;
c. rear wheel means attached to the lower surface of the chassis at the rear portion thereof;
d. utilization means operable by a change in distance between said front and rear wheel means as a result of the upward flexing of the central portion of the chassis; and, e. means responsive to a change in distance between said front and rear wheels for operating said utilization means.
a. a generally planar, flexible and resilient longitudinal chassis having upper and lower surfaces, a front portion, a central portion and a rear portion;
b. front wheel means attached to the lower surface of the chassis at the front portion thereof;
c. rear wheel means attached to the lower surface of the chassis at the rear portion thereof;
d. utilization means operable by a change in distance between said front and rear wheel means as a result of the upward flexing of the central portion of the chassis; and, e. means responsive to a change in distance between said front and rear wheels for operating said utilization means.
21. A skateboard comprising:
a. a generally planar, flexible and resilient longitudinal chassis having upper and lower surfaces, a front portion, a central portion and a rear portion;
b. front wheel means comprising a truck assembly attached to the lower surface of the chassis at the front portion thereof and at least one wheel rotatably mounted on said truck assembly;
c. rear wheel means comprising a truck assembly attached to the lower surface of the chassis at the rear portion thereof and at least one wheel rotat-ably mounted on said truck assembly;
d. utilization means operable by a change in the angular relationship between said front and rear wheel means truck assemblies as a result of the upward flexing of the central portion of the chassis; and, e. means responsive to a change in the angular relationship between said front and rear wheel means truck assemblies for operating said utilization means.
a. a generally planar, flexible and resilient longitudinal chassis having upper and lower surfaces, a front portion, a central portion and a rear portion;
b. front wheel means comprising a truck assembly attached to the lower surface of the chassis at the front portion thereof and at least one wheel rotatably mounted on said truck assembly;
c. rear wheel means comprising a truck assembly attached to the lower surface of the chassis at the rear portion thereof and at least one wheel rotat-ably mounted on said truck assembly;
d. utilization means operable by a change in the angular relationship between said front and rear wheel means truck assemblies as a result of the upward flexing of the central portion of the chassis; and, e. means responsive to a change in the angular relationship between said front and rear wheel means truck assemblies for operating said utilization means.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA303,183A CA1092620A (en) | 1978-05-12 | 1978-05-12 | Skateboard having a flexible and resilient chassis with speed control means |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA303,183A CA1092620A (en) | 1978-05-12 | 1978-05-12 | Skateboard having a flexible and resilient chassis with speed control means |
Publications (1)
Publication Number | Publication Date |
---|---|
CA1092620A true CA1092620A (en) | 1980-12-30 |
Family
ID=4111460
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA303,183A Expired CA1092620A (en) | 1978-05-12 | 1978-05-12 | Skateboard having a flexible and resilient chassis with speed control means |
Country Status (1)
Country | Link |
---|---|
CA (1) | CA1092620A (en) |
-
1978
- 1978-05-12 CA CA303,183A patent/CA1092620A/en not_active Expired
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4092033A (en) | Skateboard having a flexible and resilient chassis with speed control means | |
US4234204A (en) | Skateboard | |
US4043566A (en) | Skateboard | |
US4133546A (en) | Vehicle | |
US5984328A (en) | Two-wheeled skateboard | |
US7213823B1 (en) | Two-wheeled riding-board apparatus | |
EP0500991B1 (en) | Rollerboard for road-skiing | |
US20090066150A1 (en) | Cam Action Caster Assembly for Ride-On Devices | |
US4168076A (en) | Skateboard with tail brake | |
US4805936A (en) | Wheeled ski | |
US4460187A (en) | Roller ski having a bridle | |
US8708354B2 (en) | Caster skateboard | |
US5833252A (en) | Lateral sliding roller board | |
US4795181A (en) | Skateboard | |
US5655783A (en) | Roller skate braking device | |
US6123348A (en) | Brake system for downhill wheeled board | |
US20090295111A1 (en) | Bi-directional propulsion caster | |
US5397138A (en) | Braking mechanism for in-line skate | |
KR20110039211A (en) | Transportation device with pivoting axle | |
US4094524A (en) | Skate board braking and steering system | |
EP0607817B1 (en) | Braking device for skates with aligned wheels | |
US7172205B1 (en) | Two-wheeled riding-board apparatus | |
US6279922B1 (en) | In-line skate wheel disabling apparatus | |
CA1092620A (en) | Skateboard having a flexible and resilient chassis with speed control means | |
US20060049588A1 (en) | Articulated steering sled |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MKEX | Expiry |