CA1088399A - Adjustable check valve - Google Patents
Adjustable check valveInfo
- Publication number
- CA1088399A CA1088399A CA309,593A CA309593A CA1088399A CA 1088399 A CA1088399 A CA 1088399A CA 309593 A CA309593 A CA 309593A CA 1088399 A CA1088399 A CA 1088399A
- Authority
- CA
- Canada
- Prior art keywords
- piston
- valve
- housing
- ball
- stem
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Check Valves (AREA)
Abstract
ABSTRACT OF THE DISCLOSURE
A smoothly acting adjustable fluid flow check valve comprises an adjustably spring biased ball valve member, a piston upstream of the ball valve member and having a stem acting as an actuator for the ball valve member and as a further valving member actually controlling the volume of fluid passing through the check valve, the piston and ball valve member moving under the influence of a dashpot disposed so as to damp their movement. The valve may be incorporated into a convention faucet structure.
A smoothly acting adjustable fluid flow check valve comprises an adjustably spring biased ball valve member, a piston upstream of the ball valve member and having a stem acting as an actuator for the ball valve member and as a further valving member actually controlling the volume of fluid passing through the check valve, the piston and ball valve member moving under the influence of a dashpot disposed so as to damp their movement. The valve may be incorporated into a convention faucet structure.
Description
FIELD OF TEE INVENTIO~
This invention relates to adjustable check valve for use in fluid supply systems. Whilst particularly useful for mixing water from hot and cold water supply systems, the valve of the invention is by no means confined to that appli-cation and may be used to control the flow of both liquids and gasses.
BACKGROUl~D OF THE I~ TIO~
In united States Patent No. 2,830,612 there is described an anticondensation device for a flush tank in which hot water is injected into a cold water supply to the tank through a check valve and a restrictor orifice. I have experimented with this device and have found that whilst preventing condensation it leaves several problems unsolved.
The form of checX valve employed is very prone to chatter, re-sulting in a noise problem, and there is nothing to prevent hot water from entering the cold water supply in the event of a pressure drop in the latter. Furthermore, the device is not adjustable.
-}- ,,~;
,~;
.
, .
, - . ~ , . . . .
.: , .
:.
' . ' ' ' ' .'~ ' ' ' ' ' ' ' ' .
I am aware of the check valve structure disclosed in Patent No. 2,044,629 to Parker in which two valve members are arranged in series, one of the valve members being movable relative to the other within a chamber forming part o the fluid path from inlet to outlet of the valve structure so as to provide a dashpot effect on opening or closing of the valve.
I am also aware of Patent No. 2,682,890 to May for a safety valve in where a piston operated by the pressure of fluid up- ~ -stream of the valve acts as a lifter for the valve, and Patent ~0 ~o. 2,646,066 to Nemetz for a check valve for lubricatio~
system~ in which a first valve member in the form of a piston ~ -acts as a lifter for a second ball-type valve. However, none of these valve~ operates or is constructed in the same manner as that now to be described, nor do they have the same purpose, which is here to provide a simple yet smoothly and silently operating adjustable check valve.
SHORT DESCRIPTIO~ OF THE ~NVENTIO~
According to the present invention, a check valve comprises a valve housing having an inlet and an outlet, a valve seating in the housing defining a passage between inlet and outlet chambers defined in said housing, a ball valve seatable on the seating on the outlet side thereof, a compres-sion spring urging the ball onto the seat, a spring abutment adjustably mounted in the housing, the spring acting between the ball and the abutment to apply an adjustable bias to said ball tending to retain it on said valve seat, a first piston having a path of movement in the passage defined by the valve seating, passageway means defined by the piston and extending rom an inlet in the one end of the piston nearest the inlet ..
. , . . .': . ' : ' ~., , `
8~399 to at least one outlet in the side of the piston so positioned that at one end of the path of movement of the piston the outlet is within the passage in the valve seating and at the other end of the travel of the piston is on the outlet side of the valve seat, the other end of the piston being engage-able with the ball valve member, and dashpot means comprising a second piston, constrained to move conjointly with said ball and said firs~ piston, and cylinder means receiving said sec-ond piston for movement relative to said housing, a leakage path being defined communicating said cylinder to control the rate of displacement of said piston in said cylinder. With this arrangement, although the primary closure of the valve -is by the ball valve member, the principal fluid flow through the valve is through the passageway in the stem and the side outlet or outlets in the latter. The rate of flow through the valve i8 thus regulated by the piston, whose movements are damped to an extent determined by the magnitude of th~ leakage path past the dashpot piston, thus enabling any necessary degree of damping required to prevent chatter and erratic operation to be applied without restricting flow through the valve. The pressure drop occurring across the valve may be ~-adjusted by moving the ad3ustable abutment, which may be the valve stem of a conventional faucet structure.
The valves may be used in pairs, for example in hot and cold water supplies to a flush tank or a sink, in which case they will act both accurately to proportion the hot and cold water supplied to the tank or sink and to prevent any communication between the hot and cold water systems.
SHORT DESCRIPTION OF THE DRAWI~GS
A preferred embodiment of the invention is æhown in 1~81B399 the accompanying drawing, in which:
Figure 1 shows a first embodiment of check valve in section, and Figure 2 is a diagram illustrating a use of the valves in accordance with the invention, Fi~ure 3 shows a modified form of check valve in - -section, and Figure 4 shows a ~alve according to the invention incorporated in a mixer tap for a sink.
DESCRIPTIO~ OF THE PREFERRED EMBODIMENTS
The valve shown in Figure 1 comprises a body 2, which may be formed of metal, or of a high strength moulded plastics material such as a glass loaded acetal resin such as is available under the ~rade mark DELRIN from DuPont. The body is formed with a bore rom one end forming an inlet chamber 4 and a bore from the other end forming an outlet ;~
chamber 6, both bores having threaded portions 8, 10 respec-tively at their outer ends. The bores are connected by a further bore 12 forming a passage between the chambers 4 and 6 through a valve seat 14. A tapped side outlet 16 in the ., - .
housing into the chamber 6 receives an outlet pipe ~not shown) from the valve, whilst an inlet pipe (not shown) engages the threaded portion 8. An additional side orifice 17 may be provided for purposes to be discussed below. The threaded portion 8 also receives a retainer ring 18 which renders a - -piston assembly captive within a cylinder ormed by the cham- -ber 4, a second piston 20 supporting a first piston 22 which extend~ into and substantially closes the passage 12. The outer end of the piston 22 is recessed tD engage a ball valve '~ , '.
835~9 member 24 normally held in fluid tight engagement with the valve seat 14 by a spring 26 acting between a cup 28 resting on the ball and an abutment in the form of a cup 30 on the end of a stem 32.
The stem 32 has a screw threa~ed portion 42 engaging an internal thread 40 on a plug 34 which has an external thread engaging the thread 10. ~ gla~d nut 36 retains liquid tight packing around the stem 32, which has an operating knob 38 at its outer end. By means of the knob 38, the position of the cup 30 may be adjusted, thus altering the pressure applied to the ball 24 tending to keep it seated. A locking device as shown at 37, or of any other suitable alternative design may be used to retain a desired setting. The piston assembly has a passageway 48 extending from the side of the assembly near-est the inlet end of the valve through the first piston 22 to an outlet 44 in the side of the piston 22. Preferably there are two diametrically opposite outlets, which are normally ~ --masked by the seat 14. Small drillings 46 in the second piston 20 provide a leakage path between its opposite sides:
they may be replaced by notches in the edge of the second pis-ton 20 or by slightly reducing the diameter of the second pis-ton so as to provide the desired leakage path. Interchange-able piston assemblies with calibrated drillings may be selec-ted so as to provide desired forward flow characteristics. A
spring 50 surrounds the stem 22 and is dimensioned so as to arrest the piston assembly at the end of its upward stroke.
Otber alternative means of cushioning the upward end of the piston stroke could be employed.
When a pressure differential is applied across the valve from inlet to outlet, sufficient for the differential 1(~813399 , :
fluid pressure applied directly or indirectly to the ball 24 to overcome the pressure applied thereto by the spring 26, the ball will rise until the spring is compressed so that the '~
pressures applied to the ball are again balanced. I this results in the par~s of the outlets 44 rising ab~ve the seat :~ :
14, fluid will pass from the inlet chamber to the outlet cham-ber through the passageway 48 at a rate determined both by how far the piston 22 can rise against the increasing pressure ~;
of the spring 26 and by how much the pre~sure drop acro3s the valve falls: unless the spring pressure is low and the back '~
pre~sure at the outlet 16 is low, the first piston asoumes . ~-some intermediate position with the outlets 44 partly uncover-ed. Sudden movements or oscillations of the piston 22 are heavily damped by the dashpot formed by piston 20 and cylinder 4 since any such movements or oscillations reguire the dis- ::
placement or induction of fluid from or into the portion of the cylinder.~~rmed.by chamber 4 above the second piston 20 ~ .:
through the'leakage path means 46 and any other leakage paths around the second piston 20 and the first piston 22.. Since the flow through the valve is controlled by the interaction of the openingæ 44 and the seat 14,there is no sudden cut-off or commencement of flow as the ball 24 seats or unseats, and thus a further source of noisy operation is avoided, w,hilst additional damping at the fully open position of the valve .
is provided by the spring 50.
Referring to Figure 2, the valve of the invention will frequently be used as one of a pair of valves 52, 54 up-stream of some further valve 56, in order to feed controlled preset amounts of hot and cold water from separate hot and cold supplies 58, 60 to an outlet controlled by the single -6- .
1~15 8399 valve 56~ one example already mentioned is the float con-trolled valve of a flush toilet, whilst other examples are spray nozzles for watering indoor plants where it is desired to avoid the shock of applying very cold water during winter, and shower heads where it is desired to avoid having to set up a predetermined water mix to provide a desired temperature each time the shower is used. In all of these cases, single valve control of the mixed water involves the danger of water from one of the hot and cold systems entering the other unles~ check valves are provided. The adjustable check valve of the invention enable both the check valve and tempera~ure control ~unctions to be carried out simultaneously in valves which are simple to construct yet stable and quiet in opera- ~
tion. The valves 52 and 54 may have a common housing 62. - -The orifice 17 may be used to accommodate a connec-tion to a device 18, which may be a pressure gauge, a pressure switch, or means for introducing additives into fluids leaving the valve. Normally speaking, the valve of the invention will be used in series with and upstream of some further valve, such as the float valve of a flush tank or the control valve of a watering or dispensing valve. The pressure in the out-let chamber 6 will alter according to whether this downstream valve is open or closed, and the pressure gauge or ~witch will respond to such changes to provide indication or control function, If a dispensing device for additives i5 used, this may also be pressure controlled so as only to release addi-tives when the pressure in the chamber 6 falls, thus indica-ting that the downstream valve is open. Such a dispensing device could be another valve in accordance with the invention.
883~9 Whilst in the embodiment described above, the valve body is of moulded plastics and the remaining parts are prefer-ably of stainless steel, the simple construction of the valve means that it can readily be constructed from alternative mat-erials having appropriate anticorrosive or heat resisting properties if corrosive or very hot fluids are to be handled.
Subject to suitable calibration of the leakage path past the second piston, the valve works equally as well with ga~e~ as with liquids, and will work in any attitude.
Referring now to Figure 3, a modified version of the valve of Figure 1 is shown, in which the same reference numer-als indicate similar parts where applicable. As compared with the embodiment of Figure 1 the piston 20 is omitted, together with the associated cylinder portion of chamber 4 and the sprin~ -50. The abutment 18 is formed integrally with the body and acts directly of the piston 20. The spring 26 is located by a sec-ond piston 100 which extends from a spring abutment forme* by the cup 28 into a cylinder 102 formed within the threaded por-tion 42 of the stem 32. The fit between the second piston 100 and the cylinder 102 is such that a leakage path exists between the cylinder and the remainder of the housing such as to permit damped movement of the piston in and out of the cylinder, thus providing a dashpot assembly. The second piston acts through- .
the cup 28 on the ball 24 and thence on the first pi~ton 20 so as to damp the movements of these latter parts in the same manner as the piston 20 in the previous embodiment. However, manufacture of the valve is simplified since the abutment 18 is now integral with the body, and all of the parts may be assembled into or removed from the housing from one end and .
.. . . . . . . . ..
1.C~88399 :
without the necessity for disconnecting the valve from any associated pipework connected at threaded apertures 16, 17 and 4.
Figure 4 shows a further modification of the valve incorporated into the body of conventional tap or faucet, the whole of the original structure of the latter being retained except for the seating, the washer and the washer carrier. The same reference numerals are utilized in Figure 4 as in Figures l,a~d 3, wherever applicable. The stem 32 and threaded portion 42 a~ well as the plug 34, the gland 36, the knob 38, the body
This invention relates to adjustable check valve for use in fluid supply systems. Whilst particularly useful for mixing water from hot and cold water supply systems, the valve of the invention is by no means confined to that appli-cation and may be used to control the flow of both liquids and gasses.
BACKGROUl~D OF THE I~ TIO~
In united States Patent No. 2,830,612 there is described an anticondensation device for a flush tank in which hot water is injected into a cold water supply to the tank through a check valve and a restrictor orifice. I have experimented with this device and have found that whilst preventing condensation it leaves several problems unsolved.
The form of checX valve employed is very prone to chatter, re-sulting in a noise problem, and there is nothing to prevent hot water from entering the cold water supply in the event of a pressure drop in the latter. Furthermore, the device is not adjustable.
-}- ,,~;
,~;
.
, .
, - . ~ , . . . .
.: , .
:.
' . ' ' ' ' .'~ ' ' ' ' ' ' ' ' .
I am aware of the check valve structure disclosed in Patent No. 2,044,629 to Parker in which two valve members are arranged in series, one of the valve members being movable relative to the other within a chamber forming part o the fluid path from inlet to outlet of the valve structure so as to provide a dashpot effect on opening or closing of the valve.
I am also aware of Patent No. 2,682,890 to May for a safety valve in where a piston operated by the pressure of fluid up- ~ -stream of the valve acts as a lifter for the valve, and Patent ~0 ~o. 2,646,066 to Nemetz for a check valve for lubricatio~
system~ in which a first valve member in the form of a piston ~ -acts as a lifter for a second ball-type valve. However, none of these valve~ operates or is constructed in the same manner as that now to be described, nor do they have the same purpose, which is here to provide a simple yet smoothly and silently operating adjustable check valve.
SHORT DESCRIPTIO~ OF THE ~NVENTIO~
According to the present invention, a check valve comprises a valve housing having an inlet and an outlet, a valve seating in the housing defining a passage between inlet and outlet chambers defined in said housing, a ball valve seatable on the seating on the outlet side thereof, a compres-sion spring urging the ball onto the seat, a spring abutment adjustably mounted in the housing, the spring acting between the ball and the abutment to apply an adjustable bias to said ball tending to retain it on said valve seat, a first piston having a path of movement in the passage defined by the valve seating, passageway means defined by the piston and extending rom an inlet in the one end of the piston nearest the inlet ..
. , . . .': . ' : ' ~., , `
8~399 to at least one outlet in the side of the piston so positioned that at one end of the path of movement of the piston the outlet is within the passage in the valve seating and at the other end of the travel of the piston is on the outlet side of the valve seat, the other end of the piston being engage-able with the ball valve member, and dashpot means comprising a second piston, constrained to move conjointly with said ball and said firs~ piston, and cylinder means receiving said sec-ond piston for movement relative to said housing, a leakage path being defined communicating said cylinder to control the rate of displacement of said piston in said cylinder. With this arrangement, although the primary closure of the valve -is by the ball valve member, the principal fluid flow through the valve is through the passageway in the stem and the side outlet or outlets in the latter. The rate of flow through the valve i8 thus regulated by the piston, whose movements are damped to an extent determined by the magnitude of th~ leakage path past the dashpot piston, thus enabling any necessary degree of damping required to prevent chatter and erratic operation to be applied without restricting flow through the valve. The pressure drop occurring across the valve may be ~-adjusted by moving the ad3ustable abutment, which may be the valve stem of a conventional faucet structure.
The valves may be used in pairs, for example in hot and cold water supplies to a flush tank or a sink, in which case they will act both accurately to proportion the hot and cold water supplied to the tank or sink and to prevent any communication between the hot and cold water systems.
SHORT DESCRIPTION OF THE DRAWI~GS
A preferred embodiment of the invention is æhown in 1~81B399 the accompanying drawing, in which:
Figure 1 shows a first embodiment of check valve in section, and Figure 2 is a diagram illustrating a use of the valves in accordance with the invention, Fi~ure 3 shows a modified form of check valve in - -section, and Figure 4 shows a ~alve according to the invention incorporated in a mixer tap for a sink.
DESCRIPTIO~ OF THE PREFERRED EMBODIMENTS
The valve shown in Figure 1 comprises a body 2, which may be formed of metal, or of a high strength moulded plastics material such as a glass loaded acetal resin such as is available under the ~rade mark DELRIN from DuPont. The body is formed with a bore rom one end forming an inlet chamber 4 and a bore from the other end forming an outlet ;~
chamber 6, both bores having threaded portions 8, 10 respec-tively at their outer ends. The bores are connected by a further bore 12 forming a passage between the chambers 4 and 6 through a valve seat 14. A tapped side outlet 16 in the ., - .
housing into the chamber 6 receives an outlet pipe ~not shown) from the valve, whilst an inlet pipe (not shown) engages the threaded portion 8. An additional side orifice 17 may be provided for purposes to be discussed below. The threaded portion 8 also receives a retainer ring 18 which renders a - -piston assembly captive within a cylinder ormed by the cham- -ber 4, a second piston 20 supporting a first piston 22 which extend~ into and substantially closes the passage 12. The outer end of the piston 22 is recessed tD engage a ball valve '~ , '.
835~9 member 24 normally held in fluid tight engagement with the valve seat 14 by a spring 26 acting between a cup 28 resting on the ball and an abutment in the form of a cup 30 on the end of a stem 32.
The stem 32 has a screw threa~ed portion 42 engaging an internal thread 40 on a plug 34 which has an external thread engaging the thread 10. ~ gla~d nut 36 retains liquid tight packing around the stem 32, which has an operating knob 38 at its outer end. By means of the knob 38, the position of the cup 30 may be adjusted, thus altering the pressure applied to the ball 24 tending to keep it seated. A locking device as shown at 37, or of any other suitable alternative design may be used to retain a desired setting. The piston assembly has a passageway 48 extending from the side of the assembly near-est the inlet end of the valve through the first piston 22 to an outlet 44 in the side of the piston 22. Preferably there are two diametrically opposite outlets, which are normally ~ --masked by the seat 14. Small drillings 46 in the second piston 20 provide a leakage path between its opposite sides:
they may be replaced by notches in the edge of the second pis-ton 20 or by slightly reducing the diameter of the second pis-ton so as to provide the desired leakage path. Interchange-able piston assemblies with calibrated drillings may be selec-ted so as to provide desired forward flow characteristics. A
spring 50 surrounds the stem 22 and is dimensioned so as to arrest the piston assembly at the end of its upward stroke.
Otber alternative means of cushioning the upward end of the piston stroke could be employed.
When a pressure differential is applied across the valve from inlet to outlet, sufficient for the differential 1(~813399 , :
fluid pressure applied directly or indirectly to the ball 24 to overcome the pressure applied thereto by the spring 26, the ball will rise until the spring is compressed so that the '~
pressures applied to the ball are again balanced. I this results in the par~s of the outlets 44 rising ab~ve the seat :~ :
14, fluid will pass from the inlet chamber to the outlet cham-ber through the passageway 48 at a rate determined both by how far the piston 22 can rise against the increasing pressure ~;
of the spring 26 and by how much the pre~sure drop acro3s the valve falls: unless the spring pressure is low and the back '~
pre~sure at the outlet 16 is low, the first piston asoumes . ~-some intermediate position with the outlets 44 partly uncover-ed. Sudden movements or oscillations of the piston 22 are heavily damped by the dashpot formed by piston 20 and cylinder 4 since any such movements or oscillations reguire the dis- ::
placement or induction of fluid from or into the portion of the cylinder.~~rmed.by chamber 4 above the second piston 20 ~ .:
through the'leakage path means 46 and any other leakage paths around the second piston 20 and the first piston 22.. Since the flow through the valve is controlled by the interaction of the openingæ 44 and the seat 14,there is no sudden cut-off or commencement of flow as the ball 24 seats or unseats, and thus a further source of noisy operation is avoided, w,hilst additional damping at the fully open position of the valve .
is provided by the spring 50.
Referring to Figure 2, the valve of the invention will frequently be used as one of a pair of valves 52, 54 up-stream of some further valve 56, in order to feed controlled preset amounts of hot and cold water from separate hot and cold supplies 58, 60 to an outlet controlled by the single -6- .
1~15 8399 valve 56~ one example already mentioned is the float con-trolled valve of a flush toilet, whilst other examples are spray nozzles for watering indoor plants where it is desired to avoid the shock of applying very cold water during winter, and shower heads where it is desired to avoid having to set up a predetermined water mix to provide a desired temperature each time the shower is used. In all of these cases, single valve control of the mixed water involves the danger of water from one of the hot and cold systems entering the other unles~ check valves are provided. The adjustable check valve of the invention enable both the check valve and tempera~ure control ~unctions to be carried out simultaneously in valves which are simple to construct yet stable and quiet in opera- ~
tion. The valves 52 and 54 may have a common housing 62. - -The orifice 17 may be used to accommodate a connec-tion to a device 18, which may be a pressure gauge, a pressure switch, or means for introducing additives into fluids leaving the valve. Normally speaking, the valve of the invention will be used in series with and upstream of some further valve, such as the float valve of a flush tank or the control valve of a watering or dispensing valve. The pressure in the out-let chamber 6 will alter according to whether this downstream valve is open or closed, and the pressure gauge or ~witch will respond to such changes to provide indication or control function, If a dispensing device for additives i5 used, this may also be pressure controlled so as only to release addi-tives when the pressure in the chamber 6 falls, thus indica-ting that the downstream valve is open. Such a dispensing device could be another valve in accordance with the invention.
883~9 Whilst in the embodiment described above, the valve body is of moulded plastics and the remaining parts are prefer-ably of stainless steel, the simple construction of the valve means that it can readily be constructed from alternative mat-erials having appropriate anticorrosive or heat resisting properties if corrosive or very hot fluids are to be handled.
Subject to suitable calibration of the leakage path past the second piston, the valve works equally as well with ga~e~ as with liquids, and will work in any attitude.
Referring now to Figure 3, a modified version of the valve of Figure 1 is shown, in which the same reference numer-als indicate similar parts where applicable. As compared with the embodiment of Figure 1 the piston 20 is omitted, together with the associated cylinder portion of chamber 4 and the sprin~ -50. The abutment 18 is formed integrally with the body and acts directly of the piston 20. The spring 26 is located by a sec-ond piston 100 which extends from a spring abutment forme* by the cup 28 into a cylinder 102 formed within the threaded por-tion 42 of the stem 32. The fit between the second piston 100 and the cylinder 102 is such that a leakage path exists between the cylinder and the remainder of the housing such as to permit damped movement of the piston in and out of the cylinder, thus providing a dashpot assembly. The second piston acts through- .
the cup 28 on the ball 24 and thence on the first pi~ton 20 so as to damp the movements of these latter parts in the same manner as the piston 20 in the previous embodiment. However, manufacture of the valve is simplified since the abutment 18 is now integral with the body, and all of the parts may be assembled into or removed from the housing from one end and .
.. . . . . . . . ..
1.C~88399 :
without the necessity for disconnecting the valve from any associated pipework connected at threaded apertures 16, 17 and 4.
Figure 4 shows a further modification of the valve incorporated into the body of conventional tap or faucet, the whole of the original structure of the latter being retained except for the seating, the washer and the washer carrier. The same reference numerals are utilized in Figure 4 as in Figures l,a~d 3, wherever applicable. The stem 32 and threaded portion 42 a~ well as the plug 34, the gland 36, the knob 38, the body
2 and the outlet 16 are formed by parts of a conventional fau-cet structure, which itself may form part of a convent~al mixer tap together with a further faucet structure (not shown), con-nection piece~ 104 and a swivel outlet 106. The seat 14, the abutment 18 and the bore 12 are defined in a screw-in insert 108 which replaces a conventionalscrew-in seat, and the conven-tional washer and carrier is replaced by the piston 22, the ball 24, the spring 26, the cup 28, and the piston 100, the cylinder 102 for the piston being formed by the existing bore for receiving the stem of the washer carrier. operation is the same as in the previous embodiment. As compared to a conven-tional faucet structure, the troublesome washer is eliminated, a check valve action is provided which positively prevents any mixing of water rom the hot and cold supplies, and the dashpot action provided by the piston and cylinder 100 and 102 prevents ` hammer or chatter. Since the ball 24 is free to rotate, and ;~ will constantly reform the seat 14 when pressed down onto the latter as the stem 32 is screwed down to close the valve, ~ leakage problems should be substantially eliminated. Moreover, .~ _g_ .
.
, :
1~8~3399 a wide range o existing faucet structures can readily be converted to the structure of the invention merely by replace-ment of those parts which are usually in any event subject to replacement during the life of a faucet.
.
, :
1~8~3399 a wide range o existing faucet structures can readily be converted to the structure of the invention merely by replace-ment of those parts which are usually in any event subject to replacement during the life of a faucet.
Claims (7)
PROPERTY OR PRIVILEGE IS CLAIMED ARE DEFINED AS FOLLOWS:
1. A check valve comprising a valve housing having an inlet and an outlet, a valve seating in the housing defi-ning a passage between inlet and outlet chambers defined in said housing, a ball valve seatable on the seating on the outlet side thereof, a compression spring urging the ball onto the seat, a movable abutment mounted in the housing and comprising a stem having a threaded portion rotatable in a thread defining means in the body and extending out of the body through a gland attached to the latter, the spring acting between the ball and the abutment to apply an adjustable bias to said ball tending to retain it on said valve seat, a first piston having a path of movement in the passage defined by the valve seating, passageway means defined by the piston and extending from an inlet in the one end of the piston nearest the inlet to at least one outlet in the side of the piston and so positioned that at one end of the path of movement of the piston the outlet is wholly within the passage in the valve seating and obturated by the latter and at the other end of the travel of the piston is on the outlet side of the valve seat, the other end of the piston being engageable with the ball valve member, and dashpot means comprising a second piston, constrained to move conjointly with said ball and said first piston, and cylinder means receiving said second piston for movement relative to said housing, a leakage path being defined communicating with said cylinder to control the rate of displacement of said piston in said cylinder.
2. A check valve according to Claim 1, wherein the first and second pistons are integral and said cylinder is formed in the housing on the inlet side of the valve seat.
3. A check valve according to Claim 1, wherein the first and second pistons are separate, and the second piston acts on the ball in opposition to the first piston, said spring acting between said stem and an abutment on said second piston.
4. A check valve according to Claim 3, wherein the cylinder is formed in the threaded portion of the stem.
5. A check valve according to Claim 1, 3 or 4, incorporated in an assembly with a similar check valve and a further valve, the inlets of the check valves being connected to hot and cold water supply lines respectively, and their outlets both being connected to the inlet of said further valve.
6. A check valve according to Claim 3, wherein the check valve is a faucet, the valve seating is removable, and the valve housing, the stem forming the movable abutment, the thread defining means and the gland are part suited for a faucet of the kind in which the stem would normally be used to force a washer on a carrier entering a bore in the stem onto a removeable valve seating in the housing.
7. A repair kit for a faucet of the kind in which a stem having a threaded portion rotatable in a thread de-fining means in a housing and extending out of the housing through a gland attached to the latter is normally used to force a washer on a carrier entering a bore in the stem onto a removeable valve seating in the housing, said kit compri-sing a valve seating for insertion in the housing, a ball valve seatable on the seating on an outlet side thereof, a first piston for movement in a passage defined by the valve seating, passageway means being defined by the piston and extending from an inlet in the one end of the piston to at least one outlet in the side of the piston so positioned that at one end of the path of movement of the piston within the passage the outlet is wholly within the passage within the valve seating and obturated by the latter and at the other end of the travel of the piston in the passage is on the outlet side of the valve seat, the other end of the piston being engageable with the ball valve member, dashpot means comprising a second piston separate from the first piston and engageable with the ball valve in opposition to the first pis-ton, and a compression spring engageable between said stem of the faucet and an abutment on said second piston, said first and second pistons, the ball and the spring being configured to replace the washer and carrier normally employed in a fau-cet for which the kit is intended.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA309,593A CA1088399A (en) | 1978-08-17 | 1978-08-17 | Adjustable check valve |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA309,593A CA1088399A (en) | 1978-08-17 | 1978-08-17 | Adjustable check valve |
Publications (1)
Publication Number | Publication Date |
---|---|
CA1088399A true CA1088399A (en) | 1980-10-28 |
Family
ID=4112148
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA309,593A Expired CA1088399A (en) | 1978-08-17 | 1978-08-17 | Adjustable check valve |
Country Status (1)
Country | Link |
---|---|
CA (1) | CA1088399A (en) |
-
1978
- 1978-08-17 CA CA309,593A patent/CA1088399A/en not_active Expired
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4217931A (en) | Adjustable check valve | |
US5642752A (en) | Controllable constant flow regulating lift valve | |
US6827100B1 (en) | Pressure independent control valve | |
US6386509B1 (en) | Back pressure control valve | |
US6263905B1 (en) | Automatic regulating valve apparatus | |
US5647531A (en) | Thermostatic control valve system for use in emergency shower and eyewash systems | |
US7163157B2 (en) | Automatic compensating valve for individual shower and tub/shower combination fixtures | |
AU768719B2 (en) | Pressure independent control valve | |
US4112959A (en) | Adjustable check valve | |
US6135142A (en) | Control valve device | |
US20030192596A1 (en) | Electrically operable valve assembly having an integral pressure regulator | |
US7175100B2 (en) | Fail-safe proportional mixing valve | |
US4617959A (en) | Check valve assembly for pipeline system | |
EP0348035B1 (en) | High temperature safety relief system | |
US4019527A (en) | Modulating flow control valve | |
JP2004528520A (en) | Control valve | |
KR20090013239A (en) | Fluid pressure regulator | |
US4314582A (en) | Combined pressure-regulator and manual shut-off valve | |
US20050211941A1 (en) | Inline control valve with rack and pinion movement | |
USRE32981E (en) | Anti-siphon and anti-knock diverter valve | |
US5301713A (en) | Flow control valve having adjustable piston for varying flow rate | |
US3896844A (en) | Fluid flow regulating apparatus | |
US3807442A (en) | Excess flow check valve with variable closing flow rate | |
US3451431A (en) | Liquid flow regulator | |
US4865074A (en) | High temperature safety relief system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MKEX | Expiry |