CA1079874A - Surface aeration impeller - Google Patents

Surface aeration impeller

Info

Publication number
CA1079874A
CA1079874A CA278,373A CA278373A CA1079874A CA 1079874 A CA1079874 A CA 1079874A CA 278373 A CA278373 A CA 278373A CA 1079874 A CA1079874 A CA 1079874A
Authority
CA
Canada
Prior art keywords
impeller
support disk
blades
disk
impeller blades
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
CA278,373A
Other languages
French (fr)
Inventor
Michael B. Lakin
James R. Lindsay
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SPX Corp
Original Assignee
General Signal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US05/697,519 external-priority patent/US4066383A/en
Priority claimed from US05/697,520 external-priority patent/US4066382A/en
Application filed by General Signal Corp filed Critical General Signal Corp
Application granted granted Critical
Publication of CA1079874A publication Critical patent/CA1079874A/en
Expired legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/18Rotors
    • F04D29/22Rotors specially for centrifugal pumps
    • F04D29/2205Conventional flow pattern
    • F04D29/2222Construction and assembly
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/18Rotors
    • F04D29/22Rotors specially for centrifugal pumps
    • F04D29/2261Rotors specially for centrifugal pumps with special measures

Abstract

Abstract of the Disclosure An impeller which is adapted to be affixed to a rota-ting shaft is provided for aerating a liquid and includes a sup-port disk having a circular outer edge. The support disk is affixed to the rotating shaft in such a manner that it is main-tained in a substantially perpendicular relationship with the shaft. A plurality of impeller blades are affixed to the sup-port disk in such a manner as to be spaced from the shaft and extend above the upper surface of the support disk and below the lower surface of the support disk. The impeller blades further extend radially outwardly from the circular outer edge and have an upper edge which lies in a plane substantially parallel to the support disk and a lower edge which is tapered causing the blades to be widest at the portion closest to the rotating shaft and progressively more narrow as the blades extend radially Outwardly from the support disk. Additionally each of the impeller blades includes a flow inducing fin along the lower edge of the blade, which fins are tapered so as to be widest at the portion closest to the rotating shaft and progressively more narrow as the blade extends radially outwardly from the support disk. A cover means is affixed to the impeller blades and spaced from the upper sur-face of the support disk for creating an air intake opening above the upper surface of the support disk and for reducing the amount of splashing caused by the rotation of the impeller near the sur-face of the liquid. In one embodiment the impeller includes means for adjustably securing the impeller blades to the support disk so that the degree of radial extension is adjustable and further includes means for adjustably securing the cover means to the upper edges of the impeller blades.

Description

-` 107~ 7~

SURFACE ~ERATION IMæELLER
1. Background of the Invention The present invention relates generally to rotating impellers and more particularly to an impeller designed to rotate near the surface of a liquid to aerate the liquid.
In recent years aerating impellers have been used quite extensively on the surface of liquid sewage for aerating the sewage. Typical of such aeration impellers are those shown in U.S. Patent NosO 3,479,017 to Thikotter; 3,576,316 and 3,610,590 to Kaelin; and 3,741,682 to Robertson. Although such 10. devices have functioned in a generally satisfactory manner, problems ha~e been experienced with excessive splashing and misting, insufficient pumping and circulation, and clogging of the impellers during operation. Additionally, these prior art impellers have been of a fixed diameter, and thus if a larger or smaller impeller were needed, an entire unit would have to be substituted in the field.
Summary of the Invention Accordingly, the present invention provides an impeller for aerating a liquid which is adapted to be affixed 20. to a rotating shaft and includes a support disk having a cir-cular outer edge. The support disk is affixed to the rotating shaft in such a manner that it is maintained in a substantially perpendicular relationship with the shaft. A plurality of impeller blades are affixed to the support disk in such a manner as to be spaced from the shaft and extend above the upper surface of the support disk and below the lower surface of the support disk. The impeller blades further extend radially outwardly from the circular outer edge and have an upper edge which lies in a plane substantially parallel to the i~
30. support dis~ and a lower edge which is tapered causing the `~ blades to be widest at the portion closest to the rotating .

.; .. - . . . - - ~: ~ ~

-` ~079874 1. shaft and progressively more narrow as the blades extend radially outwardly from the support disk. Additionally, each of the impeller blades includes a flow inducing fin along the lower edge of a blade which fins are tapered so as to be widest at the portion closest to the rotating shaft and progressively more narrow as the blade extends radially outwardly from the support disk. A cover means is affixed to the impeller blades and spaced from the upper surface of the support disk for creat-ing an air intake opening above the upper surface of the support 10. disk and for reducing the amount of splashing caused by the rotation of the impeller near the surface of the liquid. In one embodiment the impeller includes means for adjustably securing the impeller blades to the support disk so that the degree of radial extension is adjustable and further includes means for adjustably securing the cover means to the upper edges of the impeller blades.
Objects of the Present Invention Thus, an object of the present invention is the provision of an impeller for aerating a liquid which will 20. produce a relatively low spray profile to thereby avoid excessive splashing and misting of the liquid.
Another object of the present invention is the provision of an impeller for aerating a liquid which will significantly increase the pumping and circulation of the ~-liquid with respect to impellers heretofore available.
A further object of the present invention is the provision of an impeller for aerating a liquid which will operate in a relatively clog-free manner and permit easy access to the impeller interior.
30. Another object of the present invention is the provision of an impeller for aerating a liquid having circulation and aeration characteristics which are very sensitive to the 107~8~

1. level of the liquid.
Still another object of the present invention is the provision of an impeller for aerating a liquid which has a pro-vision for permitting the diameter of the impeller to be varied.
A still further object of the present inven~ion is the provision of an impeller for aerating a liquid which is relatively simple in construction and there~ore easy and inexpensive to manufacture.
Other objects, advantages, and novel features of the 10. present invention will become apparent from the following detailed description of the invention when considered in conjunction with the accompanying drawings.
Brief Description of the Drawings Figure 1 shows a perspective view of the surface aeration impeller of the present invention.
Figure 2 shows a bottom plan view of the impeller shown in Figure 1.
Figure 3 shows a partial cross-sectional schematic view of the impeller shown in Figure 1.
20~ Figure 4 shows a cross-sectional view of a second embodiment of the impeller shown in Figure 1.
Figure 5 shows an end view of the embodiment shown in Figure 4.
Description of the Preferred Embodiments The surface aeration impeller of the present invention will now be described in detail with reference to Figures 1 through 5 of the drawings. A surface aeration impeller 10 for aerating a liquid is adapted to be affixed to a rotating shaft 12. The shaft 12 may be connected to any suitable prime mover 30. (not shown). The impeller 10 includes a support disk 1~ having a circular outer edge 16 and upper and lower surfaces 18 and 20, respectively. The surfaces 18 and 20 are preferably planar, .. . . . . . .
. . ; . . . . .

1~7~8'7q~

1. although beveled surfaces would clearly fall within the scope of the present invention. Means are provided for affixing the support disk to the rotating shaft 12 so that the support disk 14 is maintained in a substantially perpendicular relationship with the shaft 12. This affixing means is preferably a hub 22 which may be affixed to the shaft 12 by means of a set screw.
A plurality of impeller blades 24 are affixed to the support disk 14 in such a manner as to be spaced from the shaft 12. The impeller blades 24 extend radially outwardly from the 10. circular outer edge 16 and also extend above the upper disk surface 18 and below the lower disk surface 20. Additionally, each of the impeller blades 24 has an upper edge 26 which lies in a plane substantially parallel to the support disk 14. Each of the blades 24 also has a lower edge 28 which is tapered in such a manner as to cause the blades 24 to be widest at that portion 30 which is closest to tha rotating shaft 12 and become progressively more narrow as the blade 24 extends radially out-wardly from the support disk 14. The impeller blades 24 are preferably curved along their entire length in the radial 20. direction. Although from a theoretical standpoint many types of curved configurations might prove suitable, from an ease of manufacture standpoint it has proved preferable to make this curvature be of a fixed radius. It should be understood that the use of planar blades also falls within the scope of the present invention. As is most clearly shown in Figure 3, the impeller blades 24 may include a notch 32 along the inner edge 30 which is adapted to receive the circular outer edge 16 of ! the support disk 14, so that the blades 24 may be securely fastened to the support disk 14 in a dovetail fashion. Thus, 30. the blades 24 may be permanently affixed to the support disk 14. If for example, the blades 24 and the support disk 14 are made of steel, then the blades 24 may be welded to the support ': . , ' .

~7~374 1. disk 14 along the notched portion 32.
Each of the impeller blades 24 includes a flow induc-ing fin 34 along the lower edge 28 of the blade 24. The fins 34 are also tapered so as to be widest at the portion 36 which is closest to the rotating shaft 12 and so as to become pro-gressively more narrow as the blade 24 extends radially outwardly from the impeller. The fins 36 are also preferably curved to correspond to the shaft of the blade 24.
The fins 36 and the blades 24 may be made of steel, 10. in which case the fins may be welded to the blades 24 along the lower edge 28. In the alternative, the fins 36 and the blades 24 may be made of cast aluminum and thus be a unitary structure.
A cover means in the form of a covering disk 38 is affixed to the impeller blades 24 and spaced from the upper disk surface 18, for creating an air intake opening above the upper disk surface 18 and for reducing the amount of sp]ashing caused by the rotation of the impeller near the surface of the liquid. The disk 38 preferably includes a circular outer edge 40 and a circular inner edge 42, which defines an aperture at 20. the center of the disk. this aperture defines the air intake opening and permits the covering disk 38 to surround the ro-tating shaft 12. Due to manufacturing considerations, both upper and lower surfaces of the covering disk 38 are preferably -~
planar. In the embodiment shown in Figure 3, the covering disk 38 is permanently affixed to the top edges 26 of the blades 24, preferably by welding.
¦ Referring to Figures 4 and 5, a second embodiment of the surface aeration impeller of the present invention will now be described in detail. In connection with this description , 30. like numerals will be utili~ed to identify like components.
This second embodiment is identical to the first embodiment described above with the exception that in the second embodiment : :, . . . . - ~, . :

`` ~07~74 1. means are provided for adjustably securing the impeller blades 24 to the support disk 14 so that the degree of radial extension of the blades 24 with respect to the disk 14 is adjustable. Additionally, means are provided for adjustably securing the covering disk 38 to the upper edges 26 of the impeller blades 24 so that the degree of radial extension of the blades 24 remains adjustable. For simplicity of illustra- -tion only, a planar blade has been shown in the embodiment shown in Figures 4 and 5. To achieve this adjustability, the impeller 10. blades 24 include a pair of flanges 44 and 46 along a stepped top edge of the impeller blades 24. It should be understood that the flanges 44 may also be utilized with blades having a curved configuration and that the flanges 44 may be positioned on either side of the blade. When planar blades are used, gussets are preferably placed on the top surface of the blade opposite the flange, to provide added stability for the blade.
The means for adjustably securing the impeller blades to the support disk 14 includes three radially aligned mounting holes 48 in the support disk 14 for each of the blades 24. It should 20. be understood that if a further degree of adjustability is desired, additional holes may be added and the spacing between the holes may be changed. Additionally, the same result could be achieved by placing plural mounting holes in the flange 44.
However, if the plural mounting holes are contained in the disk 14 then only a single mounting hole 50 need be contained in the flange 44. A suitable fastener 52, such as a nut and a bolt, ~ may be inserted through the desired mounting holes to properly ;I position the blade 24 with respect to the support disk 14. In a like manner, two sets of radially aligned mounting holes 52 30. are contained in the covering disk 38, and a pair of mounting holes 54 are contained in the flange 46 to thereby adjustably secure the covering disk 38 to the upper edges of the impeller ;: ' , , , ' .

-- ~0~7~3874 1. blades. Once again, it should be understood that the numker of mounting holes 52 and the spacing between the mounting holes could be altered to correspond to the desired degree of adjust-ability. Also, the plural mounting holes could be contained in the flange 46 instead of the disk 38. Yet another possible alternative would be to replace all but one set of the adjustable mounting holes 52 and 48 with slots to provide radial adjust-ability. In this embodiment the blades 24 are preferably made of cast aluminum so that the flanges 44 and 46 and the blade 10. portion 24 comprise a unitary structure.
In the operation of the surface aeration impeller of the present invention, the impeller 10 is positioned near the surface of the liquid to be aerated. Since the impeller 10 will normally not be lowered to such an extent as to submerge the support disk 14 during rotation, input air enters the impel-ler through the aperture in the covering disk 38 defined by the edge 42 and may pass through the space between the disk 38 and the disk 14. Since the blades 24 are provided with a tapered lower edge 28 and since the fins 36 are also tapered, as 20. discussed above, and assuming that the prime mover for the shaft 12 provides a fixed degree of rotational input speed, the mixing power level and therefore the circulation and aeration character-istics of the impeller 10 may be adjusted rather easily by rais- -ing and lowering the impeller with respect to the surface of the liquid. The use of the covering disk 38 in combination with the flow inducing fins 36 creates a relatively low spray profile to thereby avoid excessive splashing and misting of the liquid being -~
aerated. Furthermore, the shape of the blades 24 and the flow inducing fins 36 significantly increase the pumping and circula-30. tion action of the impeller 10 with respect to impellers which were heretofore available. Since the impeller 10 is of a rela-tively open construction which is most apparent from the bottom - :. . . . .. . ..

~L079874 1. view shown in Figure 2, the impeller operates in a relatively clog-free manner and permits easy access for servicing to the interior of the impeller. Should one desire to change the -diameter of the impeller, it is merely necessary to reposition the fasteners 52 within the desired set of mounting holes.
Thus, the diameter of the impeller may be easily adjusted after installation.
While there have been described what are at present considered to be *he preferred embodiments of the present 10. invention, it will be obvious to those skilled in the art that various changes and modifications may be made therein, without departing from the invention, and it is, therefore, aimed in the appended claims to cover all such changes and modifications as fall within the true spirit and scope of the invention.

20.

.j .

~ 30.

':

.~ .

: . : , :: -.

Claims (31)

The embodiments of the invention in which an exclusive property or privilege is claimed are defined as follows:-
1. An impeller for aerating a liquid and adapted to be affixed to a rotating shaft, comprising:
a) a support disk having a circular outer edge and upper and lower surfaces;
b) means for affixing said support disk to said rotating shaft so that said support disk is maintained in a substantially perpendicular relationship with said shaft;
c) a plurality of impeller blades affixed to said support disk in such a manner as to be spaced from said shaft when said support disk is affixed to said shaft, said impeller blades extending radially outwardly from said circular outer edge, and extending above said upper disk surface and below said lower disk surface; and d) cover means, affixed to said impeller blades and spaced from said upper disk surface, for creating an air intake opening above said upper disk surface and for reducing the amount of splashing caused by the rotation of said impeller near the surface of said liquid.
2. An impeller as set forth in Claim 1, wherein said cover means comprises a covering disk which is affixed to the top edges of said impeller blades.
3. An impeller as set forth in Claim 2, wherein said covering disk includes an aperture at the center thereof which defines said air intake opening and which permits said covering disk to surround said rotating shaft.
4. An impeller as set forth in Claim 2, wherein said covering disk is permanently affixed to the top edges of said impeller blades.
5. An impeller as set forth in Claim 1, wherein each of said impeller blades has an upper edge which lies in a plane substantially parallel to said support disk and a lower edge which is tapered causing said blades to be widest at the portion closest to said rotating shaft and progressively more narrow as said blade extends radially outwardly from said support disk.
6. An impeller as set forth in Claim 5, wherein each of said impeller blades is curved along its entire length in the radial direction.
7. An impeller as set forth in Claim 5, wherein each of said impeller blades includes a notch in the inner edge thereof which is adapted to receive the circular outer edge of said support disk so that said blades may be securely fastened to said support disk in a dovetail fashion.
8. An impeller as set forth in Claim 7, wherein said blades are permanently affixed to said support disk.
9. An impeller as set forth in Claim 1, wherein each of said impeller blades includes a flow inducing fin along the lower edge of the blade, said fins being tapered so as to be widest at the portion closest to said rotating shaft and pro-gressively more narrow as said blade extends radially outwardly from said support disk.
10. An impeller for aerating a liquid and adapted to be affixed to a rotating shaft, comprising:
a) a support disk;
b) means for affixing said support disk to said rotating shaft so that said support disk is maintained in a substantially perpendicular relationship with said shaft; and c) a plurality of impeller blades affixed to said support disk and extending radially outwardly therefrom, each of said impeller blades having an upper edge which lies in a plane substantially parallel to said support disk, and having a lower edge which is tapered causing said blades to be widest at the portion closest to said rotating shaft and progressively more narrow as said blade extends radially outwardly from said support disk.
11. An impeller as set forth in Claim 10, wherein each of said impeller blades is curved along its entire length in the radial direction.
12. An impeller as set forth in Claim 10, wherein each of said impeller blades includes a notch in the inner edge thereof which is adapted to receive the circular outer edge of said support disk so that said blades may be securely fastened to said support disk in a dovetail fashion.
13. An impeller as set forth in Claim 12, wherein said blades are permanently affixed to said support disk.
14. An impeller as set forth in Claim 10, wherein each of said impeller blades includes a flow inducing fin along the lower edge of the blade, said fins being tapered so as to be widest at the portion closest to said rotating shaft and progressively more narrow as said blade extends radially outwardly from said support disk.
15. An impeller for aerating a liquid and adapted to be affixed to a rotating shaft, comprising:
a) a plurality of impeller blades extending radially outwardly from said impeller;
b) means for mounting said blades on said rotating shaft, and c) wherein each of said impeller blades includes a flow inducing fin along the lower edge of the blade, said fins being tapered so as to be widest at the portion closest to said rotating shaft and progressively more narrow as said blade extends raidally outwardly from said impeller.
16. An impeller as set forth in Claim 15, wherein each of said impeller blades is curved along its entire length in the radial direction and wherein each of said flow inducing fins is correspondingly curved.
17. An impeller for aerating a liquid and adapted to be affixed to a rotating shaft, comprising:
a) a support disk having a circular outer edge and upper and lower surfaces;
b) means for affixing said support disk to said rotating shaft so that said support disk is maintained in a substantially perpendicular relationship with said shaft;
c) a plurality of impeller blades affixed to said support disk in such a manner as to be spaced from said shaft when said support disk is affixed to said shaft, said impeller blades extending radially outwardly from said circular outer edge, and extending above said upper disk surface and below said lower disk surface, wherein each of said impeller blades has an upper edge which lies in a plane substantially parallel to said support disk and a lower edge which is tapered causing said blades to be widest at the portion closest to said rota-ting shaft and progressively more narrow as said blade extends radially outwardly from said support disk, and wherein each of said impeller blades includes a flow inducing fin along the lower edge of the blade, said fins being tapered so as to be widest at the portion closest to said rotating shaft and pro-gressively more narrow as said blade extends radially outwardly from said support disk; and d) cover means, affixed to said impeller blades and spaced from said upper disk surface, for creating an air intake opening above said upper disk surface and for reducing the amount of splashing caused by the rotation of said impeller near the surface of said liquid.
18. An impeller for aerating a liquid and adapted to be affixed to a rotating shaft, comprising:
a) a support member;
b) means for affixing said support member to said rotating shaft;
c) a plurality of impeller blades; and d) means for adjustably securing said impeller blades to said support member so that said blades extend radially out-wardly from said support member and so that the degree of radial extension is adjustable, wherein each of said impeller blades includes a flange portion along the upper edge thereof and wherein said means for adjustably securing said impeller blades to said support member includes a plurality of radially aligned mounting holes in one of said support member and said flange portions and fastener means adapted to be inserted into one of said mounting holes to thereby adjustably secure said impeller blades to said support member.
19. An impeller as set forth in Claim 18, wherein each of said impeller blades has an upper edge which lies in a plane substantially parallel to said support disk and a lower edge which is tapered causing said blades to be widest at the portion closest to said rotating shaft and progressively more narrow as said blade extends radially outwardly from said support disk.
20. An impeller as set forth in Claim 19, wherein each of said impeller blades is curved along its entire length in the radial direction.
21. An impeller as set forth in Claim 18, wherein each of said impeller blades includes a flow inducing fin along the lower edge of the blade, said fins being tapered so as to be widest at the portion closest to said rotating shaft and pro-gressively more narrow as said blade extends radially outwardly from said support disk.
22. An impeller for aerating a liquid and adapted to be affixed to a rotating shaft, comprising:
a) a support disk having a circular outer edge and upper and lower surfaces;
b) means for affixing said support disk to said rotating shaft so that said support disk is maintained in a substantially perpendicular relationship with said shaft;
c) a plurality of impeller blades;
d) cover means for creating an air intake opening above said upper disk surface and for reducing the amount of splashing caused by the rotation of said impeller near the surface of said liquid;
e) means for adjustably securing said impeller blades to said support disk so that said impeller blades extend radially outwardly from said circular outer edge, extend above said upper disk surface and below said lower disk surface, and so that the degree of radial extension is adjustable; and f) means for adjustably securing said cover means to the upper edges of said impeller blades so that said cover means is spaced from said upper disk surface and so that the degree of radial extension of said blades remains adjustable.
23. An impeller as set forth in Claim 22, wherein each of said impeller blades includes a flange portion along the upper edge thereof and wherein said means for adjustably securing said impeller blades to said support disk includes a plurality of first radially aligned mounting holes in one of said support disk and said flange portions and fastener means adapted to be inserted into one of said mounting holes to thereby adjustably secure said impeller blades to said support disk.
24. An impeller as set forth in Claim 23, wherein said means for adjustably securing said cover means to the upper edges of said impeller blades includes a plurality of second radially alinged mounting holes in one of said cover means and said flange portions and fastener means adapted to be inserted into one of said second mounting holes to thereby adjustably secure said cover means to the upper edges of said impeller blades.
25. An impeller as set forth in Claim 22, wherein each of said impeller blades includes a flange portion along the upper edge thereof and wherein said means for adjustably securing said cover means to the upper edges of said impeller blades includes a plurality of radially aligned mounting holes in one of said cover means and said flange portions and fastener means adapted to be inserted into one of said mounting holes to thereby adjustably secure said cover means to the upper edges of said impeller blades.
26. An impeller as set forth in Claim 22, wherein said cover means comprises a covering disk.
27. An impeller as set forth in Claim 26, wherein said covering disk includes an aperture at the center thereof which defines said air intake opening and which permits said covering disk to surround said rotating shaft.
28. An impeller as set forth in Claim 22, wherein each of said impeller blades has an upper edge which lies in a plane substantially parallel to said support disk and a lower edge which is tapered causing said blades to be widest at the portion closest to said rotating shaft and progressively more narrow as said blade extends radially outwardly from said support disk.
29. An impeller as set forth in Claim 28, wherein each of said impeller blades is curved along its entire length in the radial direction.
30. An impeller as set forth in Claim 22, wherein each of said impeller blades includes a flow inducing fin along the lower edge of the blade, said fins being tapered so as to be widest at the portion closest to said rotating shaft and progressively more narrow as said blade extends radially out-wardly from said support disk.
31. An impeller for aerating a liquid and adapted to be affixed to a rotating shaft, comprising:
a) a support disk having a circular outer edge and upper and lower surfaces;
b) means for affixing said support disk to said rotating shaft so that said support disk is maintained in a substantially perpendicular relationship with said shaft;
c) a plurality of impeller blades;

d) cover means for creating an air intake opening above said upper disk surface and for reducing the amount of splashing caused by the rotation of said impeller near the surface of said liquid;
e) means for adjustably securing said impeller blades to said support disk so that said impeller blades extend radially outwardly from said circular outer edge, extend above said upper disk surface and below said lower disk surface, and so that the degree of radial extension is adjustable, wherein each of said impeller blades has an upper edge which lies in a plane sub-stantially parallel to said support disk and a lower edge which is tapered causing said blades to be widest at the portion closest to said rotating shaft and progressively more narrow as said blade extends radially outwardly from said support disk, and wherein each of said impeller blades includes a flow induc-ing fin along the lower edge of the blade, said fins being tapered so as to be widest at the portion closest to said rotating shaft and progressively more narrow as said blade extends radially outwardly from said support disk; and f) means for adjustably securing said cover means to the upper edges of said impeller blades so that said cover means is spaced from said upper disk surface and so that the degree of radial extension of said blades remains adjustable.
CA278,373A 1976-06-18 1977-05-13 Surface aeration impeller Expired CA1079874A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US05/697,519 US4066383A (en) 1976-06-18 1976-06-18 Surface aeration impeller
US05/697,520 US4066382A (en) 1976-06-18 1976-06-18 Surface aeration impeller

Publications (1)

Publication Number Publication Date
CA1079874A true CA1079874A (en) 1980-06-17

Family

ID=27106033

Family Applications (1)

Application Number Title Priority Date Filing Date
CA278,373A Expired CA1079874A (en) 1976-06-18 1977-05-13 Surface aeration impeller

Country Status (7)

Country Link
JP (1) JPS52156409A (en)
AU (1) AU510239B2 (en)
CA (1) CA1079874A (en)
DE (1) DE2727224C2 (en)
FR (1) FR2355182A1 (en)
GB (1) GB1587564A (en)
SE (1) SE441088B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2784311B1 (en) * 1998-10-09 2000-12-08 Air Liquide DEVICE FOR AGITATING A LIQUID IN A REACTOR AND FOR INJECTING A GAS IN THIS LIQUID
JP2010042411A (en) * 2009-09-25 2010-02-25 Penn State Research Foundation Surface aeration blade wheel
JP6509970B2 (en) * 2017-08-08 2019-05-08 住友重機械エンバイロメント株式会社 Vertical axis aeration stirring device for biological water treatment and method of replacing aeration stirring device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1919970A (en) * 1933-02-07 1933-07-25 Gen Electric Impeller
US3341450A (en) * 1965-10-24 1967-09-12 Yeomans Brothers Co Gasification apparatus and method
FR2036475A5 (en) * 1969-03-14 1970-12-24 Kyowa Hakko Kogyo Kk Agitator for gas-liquid reactions or submerge- - ed culturing of aerobic microorganisms
BE743950A (en) * 1969-12-31 1970-05-28
DE7026001U (en) * 1970-07-10 1974-07-11 Horst Schade DEVICE FOR CIRCULATING AND VENTILATING LIQUIDS
BE791664A (en) * 1971-11-22 1973-03-16 Kaelin J R SURFACE AERATION CENTRIFUGE FOR WASTEWATER CLARIFICATION PLANT

Also Published As

Publication number Publication date
JPS6130840B2 (en) 1986-07-16
SE441088B (en) 1985-09-09
DE2727224C2 (en) 1985-02-28
DE2727224A1 (en) 1977-12-29
AU2393577A (en) 1978-10-12
SE7706994L (en) 1977-12-19
GB1587564A (en) 1981-04-08
FR2355182A1 (en) 1978-01-13
JPS52156409A (en) 1977-12-26
FR2355182B1 (en) 1983-12-09
AU510239B2 (en) 1980-06-19

Similar Documents

Publication Publication Date Title
US4066383A (en) Surface aeration impeller
US7063507B2 (en) Balance adjusted fan
US5320493A (en) Ultra-thin low noise axial flow fan for office automation machines
KR100457494B1 (en) Blower wheel with axial inlet for ventilation
CA2210236C (en) Ceiling fan motors
US4518314A (en) Decorative fan motor cover and mounting structure therefor
MXPA97005853A (en) Motors for te fans
JP5044105B2 (en) Centrifugal pump impeller and centrifugal pump equipped with the impeller
US5489191A (en) Motor cover for ceiling fan for mounting fan blades
US4066382A (en) Surface aeration impeller
US4657478A (en) Low profile shrouded fan system
CA1079874A (en) Surface aeration impeller
US3464622A (en) Blower fan
JP3511044B2 (en) Drain drain pump
US6499948B1 (en) Shroud and axial fan therefor
JPS61229989A (en) Centrifugal pump
JPH10153194A (en) Centrifugal fan
JPH0124557B2 (en)
US4886989A (en) Motor mounting method and means
US3029744A (en) Impeller housing
JPH064399U (en) Axial fan
KR900000932Y1 (en) Device for distributing of water cooling tower
JP3317808B2 (en) Drainage pump
JPH0336822Y2 (en)
JP2005030261A (en) Drain pump

Legal Events

Date Code Title Description
MKEX Expiry