CA1074598A - Braiding machine - Google Patents

Braiding machine

Info

Publication number
CA1074598A
CA1074598A CA330,247A CA330247A CA1074598A CA 1074598 A CA1074598 A CA 1074598A CA 330247 A CA330247 A CA 330247A CA 1074598 A CA1074598 A CA 1074598A
Authority
CA
Canada
Prior art keywords
strand
arm
supply bobbins
bobbins
strand supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
CA330,247A
Other languages
French (fr)
Inventor
Vincent A. Iannucci
Ronald S. Schartel
Rudolf H. Haehnel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Boeing North American Inc
Original Assignee
Rockwell International Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US05/727,092 external-priority patent/US4034642A/en
Application filed by Rockwell International Corp filed Critical Rockwell International Corp
Priority to CA330,247A priority Critical patent/CA1074598A/en
Application granted granted Critical
Publication of CA1074598A publication Critical patent/CA1074598A/en
Expired legal-status Critical Current

Links

Landscapes

  • Braiding, Manufacturing Of Bobbin-Net Or Lace, And Manufacturing Of Nets By Knotting (AREA)

Abstract

ABSTRACT OF THE DISCLOSURE

A braiding machine for braiding a plurality of strands includes a tubular member which has a first rotatable table, a stationary sun gear and a second rotatable table mounted thereon. The first table is rotated in a first direction and includes a circular array of rotatable shafts mounted thereon. Each of the shafts is parallel with the tubular member and has a planetary gear mounted on an intermediate portion thereof which is aligned with and engages the sun gear to cause rotation of the shaft as the first table rotates. A drive gear is fixedly mounted on a first end of each shaft in engagement with an encircled gear on the second table to cause the second table to rotate about the tubular member in an opposite direction from the first direction. The first table includes a circular array of outer strand supply bobbins corresponding with the array of shafts.
A circular track is mounted on the first table between the circular array of outer strand supply bobbins and the area of braiding and is segmented by there being included a slot at each of the outer strand supply bobbins.
Each slot enables an aligned strand guide arm which is pivotally mounted on the first table and connected by a crank and linkage arrangement to a second end of its corresponding shaft to be oscillated thereby to direct the outer strand inwardly and outwardly of the circular track. Each of a plurality of inner strand supply bobbins is mounted on the circular track for movement therealong in the opposite direction by an associated pair of alternating drive dogs mounted on the second table and adapted to prevent contact with the outer strands when they are inwardly of the cir-cular track and corresponding inner strand supply bobbin.

Description

~o7~598 This invention relates to a braiding machine and, more specifically, to such a machine which includes a circular array of outer strand supply bobbins which move in one direction, a circular array of inner strand supply bobbins which move in the opposite direction and an oscillating device for directing the outer strand inwardly and outwardly of the inner strand supply bobbins to form a completed braided product or to provide a braided jacket for a core member being drawn through the machine.
There have heretofore been provided a number of braiding machines which are employed to braid a plurality of strands into a combined work product.
Some of these machines include mechanisms for directing a plurality of strand supply bobbins inwardly and outwardly of each other through elaborate gear-ing and camming means. The gearing and camming means are quite complicated to manufacture and maintain and tend to limit the speed at which braiding can be accomplished. There are, however, other commonly used types of braiders which include a plurality of inner bobbins and a plurality of outer bobbins which are caused to rotate in opposite directions while the strand from the outer bobbin is directed inwardly and outwardly of the array of inner bobbins to produce the braiding. It is these latter types of mach-ines to which the present invention is directed.
To direct the outer strands inwardly and outwardly of the inner strand bobbin a number of machines, such as those disclosed in United States Patent Numbers 647,410, 814,711 and 1,660,049 and British Patent Numbers 13,560 and 109,180, have used an oscillating strand guide of one form or another. United States Patent Number 647,410 and British Patent Number 13,560 employ a cam track and United States Patent Number 814,711 employs a rotating cam to produce the desired movement of the guide. Although a camming means can be effectively utilized to control the guiding path of the strand inwardly and outwardly of the bobbins, they tend to be more susceptible to wear and are .
-: : :. .

: - : - .
: : ,.
, ': ' : ~, ' ,:

1q;)7~598 often more complicated to lubricate. British Patent Number 109,108, on the other hand, employs a simple crank linkage on a large gear member to produce a simple sinusoidal guiding path. The larger gear mounting and driving structure appears to significantly add to the overall weight and size of the machine and to generally prevent horizontal orientation of the machine's axis.
The oscillating guide means of United States Patent Number 1,660,049 is driven by an air actuated means complicating the machine's support require-ments.
Accordingly, another form of braiding machine was alternatively em-ployed in an effort to eliminate some of these problems and was of the type generally disclosed in United States Patent Numbers 958,512; 1,059,523;
1,888,477, 1,955,206 and 1,981,377. Like the machines of the patents cited hereinabove, each of these machines must include structure and means for mounting an array of outer strand supply bobbins and an array of inner strand supply bobbins and for causing relative opposite circular movement thereof.
The means for driving each of the inner strand supply bobbins must be of a form which will allow the outer strand to be directed inwardly and outwardly of the array of inner strand supply bobbins in a manner which will produce braiding. In this latter group of machines a pair of rotating dogs are em-ployed for this driving means and are adapted to ensure that at least oneof the dogs will be engaged with its respective inner strand supply bobbin to provide driving force thereto as the other dog is sufficiently displaced therefrom to allow passage of the outer strand inwardly of the bobbin. How-ever, to ensure that the outer strand will be directed inwardly and outwardly of the inner strand supply bobbins, these prior art devices include a camming surface fixedly mounted relative to each inner bobbin for predetermined de-flection of the outer strand inwardly and outwardly thereof. The utilization of a camming means of this type has generally limited the speed at which ,. , . . ~ .
-;. . , ,............ ::
:; -: : . ; ;

, ' `', ~
: -107459~

these braiding machines can be operated. The resulting transverse friction-al force which the camming surfaces produce on the strand as the speed of the braiding machine increases tends to wear out the strand and cause it to break or produce a drag on the strand which will cause it to become fouled in other regions of the machine. Nevertheless, although there is no detailed disclosure of the strand guiding system, it appears that some machines, such as the one disclosed in United States Patent Number 3,756,117 are still being introduced which rely on this limited method of strand guiding.
It can generally be said of the prior art machines described hereinabove that they each rely upon one or more features which tend to limit the speed at which the machine can be operated, increase the overall size and weight of the machine, decrease the number of strands that can be braided or limit the size of strand supply bobbins which can be utilized.
According to the present invention there is provided a strand guide de-vice for a braiding machine for braiding a plurality of strands which machine is of the type which includes a circular array of outer strand supply bobbins mounted on a rotatable table for movement in a first direction, a circular array of inner strand supply bobbins mounted relative to said outer strand supply bobbins for relative movement in an opposite direction from said first direction, and means for producing said movement of said inner strand supply bobbins while allowing said strands from said outer strand supply bobbins to pass inwardly and outwardly of said inner strand supply bobbins to produce said braiding, said strand guide device comprising: a guide arm adjacent each of said outer strand supply bobbins and pivotally mounted at a pivot point to said table, said guide arm having a guide means on an extended end thereof for passage therethrough of said strand from said outer strand supply bobbins to said braiding; a crank shaft mounted on said table and including means for rotating a crank thereof and in predetermined response to rotation of said -.:: . . . .
--: ,.: :::
: : :

: :: ,; , ~ :-:

: .
, ~:

table; a rod joined by a first end thereof to said crank and extending to-ward said guide arm for general reciprocating movement of an opposite end of said rod in response to rotation of said crank; and means for coupling said opposite end of said rod to said guide arm to cause said guide arm to oscillate about said pivot point for predetermined guiding of said strands from said outer strand supply bobbins inwardly and outwardly of said inner strand supply bobbins.
In the accompanying drawings which illustrate an e~emplary embodiment of the present invention:
Figure 1 is a fragmentary, sectional side view of a braiding machine;
Figure 2 is a schematic view of the braiding machine shown in Figure 1 showing the relative positions of the various strand bobbins mounted thereon;
Figure 3 is a schematic view of the guide paths of the strands of the braiding machine shown in Figure 1 which produces the braiding;
Figure 4 is a fragmentary view of the surface of a braided product produced by the machine of Figure l; and Figure 5 is a fragmentary view, partially in section, of an alternative feature of the machine shown in Figure 1.
As seen in Figure 1, a braiding machine 10 includes a tubular member 12 through which a hose or similar work product 14 ~Figure 2) is drawn by associ-ated machinery at a predetermined rate during braiding. In the preferred braiding machine 10 the tubular member 12 is stationary and includes a sta-tionary sun gear 16 mounted at an intermediate portion thereof. A first ro-tatable table 18 is mounted to one side of the sun gear 16 and a second rotatable table 20 is mounted to the other side of the sun gear 16 on the tubular member 12.
As best seen schematically in Figure 2, the preferred braiding machine 10 includes a circular array 22 of inner strand supply bobbins Il - I18 and , t ~ ~ r ~074598 a concentric circular array 24 of outer strand supply bobbins l ~ 18 The relative dimensions shown in Figure 2 are generally those which would be found in the preferred embodiment of the invention and provide some indi-cation of the relative close spacing of the bobbins which the present in-vention affords. The strand supply bobbins Il - I18 and l ~ 18 and associ-ated strand control mechanisms relating thereto are generally of the type disclosed in United States Patent 4,003,290, "Strand Carrier For A Strand Fabricating Machine," issued on January 18, 1977 to R. H. Haehnel and B. L.
Graeff. This type of mounted and strand controlled mechanism allows the strand to be drawn from its respective bobbin under tension and restricts rotation of the bobbin accordingly. A motor 26 and associated drive shaft 28 are shown in Figure 2 for mating alignment with a gear 30 on the first rotatable table 18 to impart rotation thereto. The general configuration is shown simply by way of example since there are many methods well known in the art which may be employed for basic powered rotation of the table 18.
As will be explained hereinbelow, the motor 26 will cause the outer array of bobbins 24 to rotate in a clockwise direction as indicated by the arrow A
and will result in the inner array of bobbins 22 being rotated in the counter-clockwise direction as indicated by the arrow B.
Although the basic bobbins are designated Il, I2, etc. in Figure 2, the same designator will be utilized elsewhere to indicate the strand itself which is supplied by that bobbin. The same designation has been used since it is felt that a better understanding of the finished product and the guided paths of the strands which produce the braiding is possible if the bobbins from which they originate are used as a basic reference. Additionally, it will be noted in Figure 2 that the line 1-1 is included to provide a ger.eral understanding of the view in Figure 1 which includes the inner strand supply bobbin Il and the outer strand supply bobbin 04 in phantom. Although the - .: _5_ ,' ' ' ' . ` ' ' ' ` ' ' " '." ~ ', ' ~, ' "" , .
'' ' ' ' .

1~745~38 preferred braiding machine 10 is generally shown in Figure 2 to have the tub-ular member 12 oriented horizontally, there is nothing which prevents it from being oriented vertically as generally shown in Figure 1.
Returning to Figure 1, it should be understood by one skilled in the art that various elements of the machine which will be described are associ-ated with each of the bobbins in the preferred braiding machine 10. Therefore, although only one element might be shown, a corresponding number of such ele ments would be found in the machine. The first rotatable table 18 is, as ex-plained above, caused to rotate in a clockwise direction when viewed from above as indicated by the arrow A. For each outer strand supply bobbin l ~
18 which is rigidly supported on a support bracket 32 of the first table 18 there is a rotatably mounted shaft 34 extending through the table 18. The shafts 34 are parallel with the tubular members 12 and are dispersed in a concentric circular array thereabout. A planetary gear 36 intermediately disposed on the shaft 34 is aligned with and engages the stationary sun gear 16. Rotation of the first table 18 in the direction A causes the planetary gear 36 to act upon the stationary sun gear 16 to produce rotation of the shaft 34 in a direction A'. A larger gear 38 is rigidly mounted at an up-ward end 40 of the shaft 34 and is aligned with and engages a circular drive gear 42 of the second table 20. Although each shaft 34 will tend to move clockwise about the tubular member 12, the rotation imparted to the larger gear 38 will act on the second table 20 to cause it to rotate counterclock-wise as indicated by arrow B and as discussed above.
To produce the basic relative movement between the bobbins required for braiding, it is essential for the outer bobbins to move circumferentially relative to the inner bobbins. The outer bobbins are rigidly mounted to the first table 18 by the support structure 32 while the inner bobbins are sup-ported by the first table 18 but are capable of revolving thereon about the , .:; .

' 1~74598 tubular member 12 relative to the outer bobbins. Accordingly, the first table 18 includes a circular track element 44 near its outer periphery. The track element 44 includes a pair of tracks 46 and 48 which are adapted to receive an inner strand supply bobbin carrier 50 therebetween. The carrier 50 employs two sets of wheels 52 and 54 which sets (only one of each set of two or more wheels is shown in Figure 1) are respectively received within the tracks 46 and 48. Accordingly, each inner strand supply bobbin which is secured to its respective inner strand supply bobbin carrier is mounted on the table 18 but is free to move relative thereto along the track ele-ment 44.
It is desirable for the movement of the second table 20 to be imparted to each carrier S0 and its associated inner strand supply bobbin to produce the relative movement between the bobbins which braiding requires. For this purpose a pair of rotating drive dogs 56 are provided for each carrier 50.
The pair of drive dogs 56 are mounted for rotation on a shaft 58 on the sec-ond table 20 and are longitudinally spaced one from the other on the shaft 58. The pair of drive dogs 56 are caused to rotate during operation of the braiding machine 10 for a purpose which will be explained hereinbelow. Speci-ifically, a drive belt 60 is adapted to mate with and act on a pulley 62 fixedly mounted at one end of the shaft 58. The belt 60 is driven by a pulley 64 of a shaft 66 which is also mounted for rotation on the second table 20.
A shaft 66 is provided for each inner strand supply bobbin and is combined with other such shafts 66 to be arranged in a circular array on the table 20 around Ihe tubular member 12. Each shaft 66 includes a gear 68 mounted thereon which is aligned with a circular drive gear 70 of the first table 18.
Relative rotation between the tables 18 and 20 causes the shaft 66 to be ro-tated in a direction indicated by the arrow C which, in turn, causes the belt 60 to be moved in a direction indicated by the arrow D. As a result, ' ' .: . , :: :, . . . :: -: ~ : . , : : : . :
,: , .-: : : :: . . ::: :
: : :
- ::. ::: , :

: :. :; : : ': ...
.:

107~5~8 during operati.on of the braiding machine 10 the pair of dogs 56 will rotate as shown by the arrow E.
To complete the contact between the bobbin carrier 50 and the second table 20, a pair of grooves 72 are formed in the bobbin carrier 50 and are separated one from the other so that each will be aligned with a respective one of the pair of dogs 56. The dogs 56 are angularly displaced one from the other so that during rotation thereof at least one of the dogs 56 will be received by and in contact with its respective groove 72. Accordingly, rotation of the second table 20 in the direction indicated by the arrow B
will be imparted to each carrier 50 and its associated inner strand supply bobbin by the corresponding pair of drive dogs 56 mounted on the second table 20. However, the drive imparted thereto is of a general type which is dis-closed in several of the prior art patents cited above and allows the strand from the outer strand supply bobbin to freely pass inwardly of an inner strand supply bobbin as is required in one form or another in any braiding operation.
Accordingly, the basic braiding configuration of the present invention requires the strands from the inner strand supply bobbins to be generally drawn directly therefrom toward the area of braiding on the work product 14, as shown by strand Il in Figure 1. However, the strands originating from the outer strand supply bobbins must be disposed inwardly and outwardly of the inner strand supply bobbins in one pattern or another during relative movement therebetween to produce a type of braiding. To accomplish this basic movement of the outer strands inwardly and outwardly of the array 22 of inner strand supply bobbins, a strand guide device 74 of the preferred machine 10 is provided. The strand guide device 74 includes a support bracket 76 extending radially from the first table 18 and has a pivoting device 78 at its extended end for receipt therein of a strand guide arm 80. ;.

:, --.,: : : . :

, ', " ` ~
:

~;)745~8 The strand guide arm 80 is thereby capable of being oscillated from an in-ward position as shown in Figure 1 to an outward pOsitiOIl as indicated in phantom in Figure 1. One or more guide eyes 79 are mounted on the strand guide arm 80 to guide the strand ~in Figure 1, strand 04) from the outer strand supply bobbin to the area of braiding on the work product 14.
A radial slot 81 in the first table 18 is provided for each outer strand supply bobbin to allow movement of the arm 80, and the strand ex-tending therefrom, inwardly and outwardly of the inner strand supply bobbins as needed for the particular type of braiding desired. The slot 81 must ex-tend through the track element 44 and each track 46, 48 thereof causing the circular track element 44 to be segmented into separate sections which are circumferentially aligned one with the other. Each carrier 50 is capable of freely and smoothly passing from one section of the track element 44 to the next since at least one of each opposed sets of wheels 52 and 54 remains en-gaged with the tracks 46 and 48 at all times. Inward movement of the strand is limited by a strand limiting guide 83 as seen at 85 for strand 04. The strand limiting guide 83 is secured to the first table 18 at the inward end of the slot 81 and is located adjacent the dogs 56 and the grooves 72 of carrier 50 to ensure alignment of the strand therebetween as the inner strand supply bobbin moves outwardly thereby. The strand limiting guide 83 does not "cam" the strand in the manner found in some of the prior art devices cited above. Since there is no relative circular movement between the strand and its associated strand limiting guide 83 ~both are moving circumferentially with the first table 18), no transverse frictional forces are applied to the strand so that no wear or drag problems will be encountered which might other-wise reduce the braiding speed of the machine 10.
To accomplish the desired oscillation of the arm 80 a lever device 82 is pivotally mounted at 84 on the support bracket 76. One location on the , _9 _ .. ~ . - .

. -. . :-::: :. : . . : ::, :

. : . ~ . .
, ~, ; .
.: . . : .. , 1~7~5~8 lever 82 includes a pivotal fitting 86 which is joined to the arm 80 at an intermediate location thereon. A second location on the lever 82 includes a pivotal fitting 88 which is coupled to a linkage 90 which extends inwardly towa-rd the center of the table 18 and generally toward the shaft 34. The inward end 92 of the linkage 90 is received on a crank pin 94 of a crank 96 which is rigidly fixed to the lower end 98 of the shaft 34 for rotation therewith. The linkage 90 includes appropriate fittings at both ends thereof for unrestricted transfer of the rotational movement of the crank 96 into arcuate movement of the lever 82. Consequently, as the shaft 34 rotates, the crank 96 through its pin 94 moves the linkage 90 longitudinally in re-sponse thereto. The resulting inward and outward movement at the fitting 88 causes the lever 82 to swing about its pivotal fitting 84 through a limited sector of movement for each rotation of the crank 96. The resulting pre-determined arcuate path of the fitting 86 on the lever 82 causes, for each revolution of the crank 96, the arm 80 to be pivoted about the pivoting de-vice 78 from the position shown in Figure 1 to the position shown in phantom and back to its original position. The pivoting device 78 includes opposed pairs of rollers 100 which retain the arm 80 therebetween but allow longi-tudinal movement of the arm 80 therethrough. Accordingly, as the fitting 86 of lever 82 begins its arcuate path the arm 80 is forced to move longitudin-ally relative to the rollers 100 to decrease the distance between the fitting 86 and the pivoting device 78. After the arm 80 has passed through in inter-mediate position ~not shown) the distance therebetween will begin to increase again as the arm 80 moves longitudinally in the other direction.
As thus provided in the preferred embodiment, the planetary gear 36 for the shaft 34 and the crank 96 are dimensioned for a predetermined rate of revolutions corresponding to the relative movement between the tables 18 and 20. As a result of this dimensioning, the guide arm 80 will be generally ,~

1~)74598 inwardly of the track element 44 as two inner strand supply bobbins are re-latively moved thereby and is located generally outwardly of the track ele-ment 44 as the next two inner strand supply bobbins move thereby.
For a better understanding of the actual paths of the strands being supplied by the outer strand supply bobbins relative to the inner strand supply bobbins, a schematic representation is shown in Figure 3. The view in Figure 3 is that which would be seen from a fixed location on the second table 20. From this location one would tend to see only the ends of bobbins Il, I2, I3, and I4 and they would be stationary. The horizontal distance between the inner strand supply bobbins is consistent with that shown in Figure 2 when it is realized that the view of Figure 3 is of a curved sur-face which has been flattened to show the paths of the outer strands as they intersect a plane generally defined by line 3-3 of Figure l. The arrows shown in Figure 3 at the center of each of these bobbins serve only as a re-minder of the relative rotation of the inner strand supply bobbins with re-spect to the outer strand supply bobbins and do not represent any actual movement as shown in Figure 3.
The vertical line at the left of Figure 3 is labeled "Radial Displace-ment" and has upper and lower limits defined by the extremes of the paths of the strands from the outer strand supply bobbins as they intersect the plane 3-3 which paths are created by movement of the associated guide arm 80 for each outer strand supply bobbin during braiding. The scale provided horizontally at the bottom of Figure 3 is labeled "Relative Circumferential Displacement" and ranges from "0" to "l", where 32 units would represent one complete revolution of a crank 96. Accordingly, at the left hand side the "0" position is the position shown in Figure 1 where the pin 94 of the crank 96 for its associated outer strand supply bobbin 04 is in an inward position, closest to the tubular member 12. With the various angular :::
: :. :: . . : :
. .. : ; '' , - ' ~: :. ' ' ~

:: i- :':, , .. ' ' ~

1~74598 positions of the p;n 94 during one rotation being divided into thirty-two equal positions, it can be seen that the pin 94 would be at position "16"
when it is farthest from the tubular member 12 and thus causes the guide arm 80 associated with the outer strand supply bobbin 04 to be at the location shown in phantom in Figure 1. Continuing through a complete rotation of the crank 96 in the direction indicated by the arrow A' in Figure 1 would bring the pin 94 back to A position which would be identica] with the "0" position, whereupon a new revolution would begin. Therefore, the strand 04 in Figure 3 is in a position corresponding to that which is shown in Figure 1.
Following the arrow from strand 04 to the right enables one to see the relative path imparted to the strand as it moves inwardly and outwardly of the inner strand supply bobbins. For an understanding of the general path which would be produced if the strand limiting device 83 were not employed, an unrestricted position of the strand is designated 04'. Similarly, the unrestricted path of the strand 04' is shown by an associated arrow to in-dicate the path the strand would assume without the use of the strand limit-ing guide 83.
Also included in Figure 3 are the relative locations of the strands 03, 02and l when the strand 04 is at the "0" position. It is possible from an understanding of Figure 3 to determine the relative positions of the strands from the outer strand supply bobbins if the position of any one strand is known. For example, when strand 04 is inwardly of bobbins I18 (not shown) and Il and relatively therebetween, strand 03 is outwardly of bobbins I
and I2 and relatively therebetween. Accordingly, the initial position of the pins 94 of the cranks 96 are preselected to locate the guide arm 80 for each outer strand supply bobbin at the desired position relative to the other bobbins. Therefore, the "Relative Circumferential Displacement" and the scale shown correspond with the position of the crank 96 associated with - ~ ~ '. ,.
.
. ... ~ . : - :.
,.
.~ ...
. . .: .. ..

1~374598 the outer strand supply bobbin 04. When it is at the "0" position, as shown in Figure 3, the crank 96 associated with the outer strand supply bobbin 03 would be at a "16" position.
Braiding is therefore accomplished by strand 04 passing inwardly of strand Il and then outwardly between strands Il and strands I2. At the same time strand 03 passes outwardly of strand I2 and then inwardly between strands I2 and I3. Also, at the same time, strand 2 would be passing in-wardly of strand I3 and then passing outwardly between strand I3 and I4. The result is that each strand from an outer strand supply bobbin passes outward-ly of two inner strand supply ~obbins and the associated strands therefrom and then moves inwardly to pass inwardly of the next two inner strand sup-ply bobbins and the strands associated therewith.
The resulting braid is shown in Figure 4 as it would appear from the left of Figure 1 looking back toward the work product 14 which would be lo-cated toward the right of Figure 1. The same designations for the strands are employed in Figure 4 for a full understanding of the braiding which will be produced by the machine 10 as discussed hereinabove.
As explained thus far, the various elements and configurations described and shown for the preferred braiding machine 10 provide an effective means for providing the preferred braiding patter. However, there are specific features employed which make the preferred braiding machine 10 particularly attractive and specifically adapted to satisfy the objectives of the in-vention. The large number of bobbins and the relatively close spacing therebetween as evidence in Figure 2 are made possible by the manner in which guide arm 80 is caused to oscillate.
With a more direct coupling of the crank 96 to the arm 80, the path of the strands from the outer strand supply bobbins relative to the inner s-trand supply bobbins would generally be sinusoidal as shown by the dotted line X

~ ' ' . ;: ' :

.

1~)74598 for strand 04 on Figure 3. If a strand were to follow a sinusoidal path X
having the same "Radial Displacement" as provided by the present invention, it would not be able to freely pass outwardly of the bobbins (Contact would be made with bobbins I2 and I3 as indicated at llO and 112 respectively).
Although not as clearly demonstrated by Figure 3, it has additionally been found that interfering contact would also exist when the strands were in-wardly of the bobbins, as at 114. A strand following the sinusoidal path X
would not be held against the strand limiting guide 83 for enough time to ensure that the carrier 50 and dogs 56 would pass clearly thereby. The in-terfering contact which would result from a strand on path X becomes even more obvious when one recognizes that the representation of the inner bobbins in Figure 3 are simplified and do not include the carrier 50 or associated strand control mechanism which extends beyond the edges of the bobbins as shown.
The desired strand path is obtained by varying the rate of movement of the guide arm 8G during oscillation. Clearance between the strand and the bobbins is maintained by more rapid movement of the strand when it is being transferred from an inward to an outward location relative the inner strand supply bobbin and vice versa. The slope of the curved path is greater and thus the rate of change in the "Radial Displacement" is greater during trans- ;
fer for the present invention than can be obtained with a sinusoidal path X.
The faster transfer with a longer delay time in the inward and out-ward locations is accomplished by the type of coupling between the crank 96 and the arm 80. While the fitting 86 on the lever 82 would appear to follow a sinusoidal path relative the inner strand supply bobbins, its action on the arm 80 converts the strand path which the arm 80 produces to that path which has been described above. As the pivotal fitting 86 acts on the arm 80, the moment arm Y (established by the distance between the pivotal fitting 86 : .

~74sg8 and the pivoting device 78), which causes angular displacement of the arm 80, varies during rotation of the crank 96 and is the shortest when transferring the strand between the bobbins. The shorter moment arm during transfer in-creases the rate of "Radial Displacement" when it is most needed. Further, as the guide arm 80 is positioned at the inward and outward extremes, as gen-erally shown in Figure 1, the lever 82 has a decreasing effect on the angular movement of the arm 80 since the movement of the fitting 86 is largely trans-lated to the arm 80 to cause longitudinal movement thereto relative the piv-oting device 78, rather than simply angular movement. As a result, the delay time for the arm 80 at the inward and outward locations is relatively longer than it would be if it were oscillating in a manner which would produce a sinusoidal path X.
The significance of this configuration can best be seen when one ex-amines the alternatives required for designing the braiding machine if the desired strand path were not produced. By increasing the effective diameter of the track element 44, the space between adjacent inner strand supply bob-bins might be increased sufficiently to allow the strand to pass clearly therebetween. This, however, would significantly increase the size and weight of the braiding machine required to accommodate the same number of bobbins presently employed in the preferred machine 10. The same rate of transfer between the bobbins might be obtained even with a sinusoidal path for the strands (where the path has the same slope as the preferred curved path) by significantly enlarging the "Radial Displacement". However, this too would require a larger arm 80, lever 82 and/or crank 96 which would add to the overall weight and size of the machine. Either alternative might adversely affect the speed at which braiding could be reliably accomplished.
It should be pointed out that while the preferred machine 10 is ar-ranged to produce a braiding pattern where each strand passes over two and . :. -,::

. , . ~

~:

~6~'7~598 then under two strands, the same strand guiding concept might be employed on a machine with a more simple pattern. Accordingly, the same general strand paths made possible by the present invention might be employed in an alter-native machine configuration with perhaps fewer but larger bobbins as the outer strand is guided inwardly and outwardly of each successive inner bobbin.
In any desired braiding configuration, the preferred strand path would tend to decrease the expected size and weight of the machine as compared with what would be required if a normal sinusoidal strand guide path were to be utilized.
Although the preferred strand guide device is shown in Figure 1, an al*ernative strand guide device 120 is shown by way of example in Figure 5 as another means for obtaining the strand path as is generally shown in Figure 3. While the view shown in Figure 5 does include a number of elements which are identical to those shown in Figure 1, a track element 44, a radial slot 81, a strand limiting guide 83 and a linkage 90 have been included. A
support bracket 122 again extends from the first table and includes a pivot 124 at its extended end for a strand guide arm 126. The arm 126 is shorter than the arm 80 and is joined to the pivot 124 in a manner which prevents any longitudinal movement of the arm 126 relative to the pivot 124.
A lever device 128 is pivotally mounted at 130 to the bracket 122 and is coupled to the linkage 90 at a fitting 132. The end of lever 128, how-ever, is joined to arm 126 by a pivoting element 134. The element 134 in-cludes opposed pairs of rollers 136 which retain the arm 126 therebetween but allow movement of the element 134 longitudinally along the arm 126 as the lever device 128 swings in response to rotation of crank 96. Since the moment arm Z acting on the arm 126 would again vary during each swing of the lever device 128, the desired strand path would again be produced. As the lever device 128 is in an intermediate position with the element 134 nearest the pivot 12~ (when the varying distance Z is relatively short), the rate of movement of the guide arm 126 would be the greatest for rapid passage of the outer strand between adjacent inner strand supply bobbins. The present in-vention, therefore, provides proper guides for the strands from the outer strand supply bobbins without transverse camming of the strands or use of a large cam track arrangement which can complicate lubrication and/or reduce the maximum speed at which braiding could be accomplished.
It should be clear from the disclosure hereinabove that these and other embodiments of the invention could be provided by one skilled in the art without departing from the invention as claimed.

. . .
,, : :
. . . :: .- ; ,.,, : . ,. . :. , . .

Claims (6)

THE EMBODIMENTS OF THE INVENTION IN WHICH AN EXCLUSIVE
PROPERTY OR PRIVILEGE IS CLAIMED ARE DEFINED AS FOLLOWS:
1. A strand guide device for a braiding machine for braiding a plurality of strands which machine is of the type which includes a circular array of outer strand supply bobbins mounted on a rotatable table for movement in a first direction, a circular array of inner strand supply bobbins mounted relative to said outer strand supply bobbins for relative movement in an opposite direction from said first direction, and means for producing said movement of said inner strand supply bobbins while allowing said strands from said outer strand supply bobbins to pass inwardly and outwardly of said inner strand supply bobbins to produce said braiding, said strand guide device comprising; a guide arm adjacent each of said outer strand supply bobbins and pivotally mounted at a pivot point to said table, said guide arm having a guide means on an extended end thereof for passage therethrough of said strand from said outer strand supply bobbins to said braiding; a crank shaft mounted on said table and including means for rotating a crank thereof and in predetermined response to rotation of said table; a rod joined by a first end thereof to said crank and extending toward said guide arm for gen-eral reciprocating movement of an opposite end of said rod in response to rotation of said crank; and means for coupling said opposite end of said rod to said guide arm to cause said guide arm to oscillate about said pivot point for predetermined guiding of said strands from said outer strand supply bob-bins inwardly and outwardly of said inner strand supply bobbins.
2. A strand guide device as set forth in claim 1, wherein said opposite end of said rod tends to follow a natural sinusoidal path relative said inner strand supply bobbins and said means for coupling said opposite end of said rod to said guide arm causes said predetermined guiding of said strand to be along a path having a greater maximum slope than said natural sinusoidal path as said strand is maintained at an inward and outward location re-lative to said inner strand supply bobbins for a longer time than would occur with said natural sinusoidal path.
3. A strand guide device as set forth in claim 1, wherein said means for coupling includes a lever pivotally mounted to said table at a second point a fixed distance from said pivot point, said lever having a first and a second moment arm, said opposite end of said rod being joined to said lever to act on first moment arm thereof, and said guide arm being joined to said second moment arm of said lever to cause said guide arm to respond to said general reciprocal movement as said lever acts on said guide arm through a third moment arm thereof which said third moment arm has a predetermined varying length from said pivot point.
4. A strand guide device as set forth in claim 3, wherein said second moment arm of said lever and said third moment arm of said guide arm being generally aligned between said second point and said pivot point causes said third moment arm to be relatively short to thereby increase the rate of transfer of said strand between said inner strand supply bobbins during said guiding inwardly and outwardly of said inner strand supply bobbins.
5. A strand guide device as set forth in claim 3, wherein said pivot point includes means for allowing longitudinal movement of said guide arm relative thereto during said predetermined varying of said length of said third moment arm.
6. A strand guide device as set forth in claim 3, further including means at the coupling of said guide arm to said lever at said second moment arm for allowing longitudinal movement of said second moment arm relative to said guide arm during said predetermined varying of said length of said moment arm.
CA330,247A 1976-09-27 1979-06-21 Braiding machine Expired CA1074598A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA330,247A CA1074598A (en) 1976-09-27 1979-06-21 Braiding machine

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US05/727,092 US4034642A (en) 1976-09-27 1976-09-27 Braiding machine
CA284,454A CA1070995A (en) 1976-09-27 1977-08-10 Braiding machine
CA330,247A CA1074598A (en) 1976-09-27 1979-06-21 Braiding machine

Publications (1)

Publication Number Publication Date
CA1074598A true CA1074598A (en) 1980-04-01

Family

ID=27165226

Family Applications (1)

Application Number Title Priority Date Filing Date
CA330,247A Expired CA1074598A (en) 1976-09-27 1979-06-21 Braiding machine

Country Status (1)

Country Link
CA (1) CA1074598A (en)

Similar Documents

Publication Publication Date Title
US4034642A (en) Braiding machine
CA1061145A (en) Bobbin drive mechanism for a rotary braider
US7444916B2 (en) Braiding unit moving type braiding apparatus
US3892161A (en) Braiding machine wire control
EP2894247A1 (en) Differential feeding device of sewing machine
US5749280A (en) Circular braiding machine with inner and outer spools arranged on circular track
CA1074598A (en) Braiding machine
US5775195A (en) Rotary braider machine
US5787784A (en) Circular braiding machine
US4013028A (en) Imparting oscillating motion
US1358173A (en) Braiding-machine
CN107313170A (en) Adjustable life gram cover
US4535675A (en) Apparatus for rotating a set of carriers for a strand supply bobbin relative to moving strands from a set of contra-rotating carriers for a strand supply bobbin
US2696836A (en) Circular loom
US2222287A (en) Apparatus for handling strands
CN100447324C (en) Braiding machine
CN108252655A (en) A kind of well-digging mechanism of the screw blade variable pitch based on swing rod
CN219010624U (en) Concentric paying-off type high-speed braiding machine
US2042065A (en) Braiding machine
GB2238798A (en) Strand braiding apparatus
US2287859A (en) Ball winding machine
GB2226575A (en) Braiding machine
JPH11181647A (en) Selvedge device
JP2683449B2 (en) Braiding equipment
US1568019A (en) Braiding machine

Legal Events

Date Code Title Description
MKEX Expiry