CA1070511A - Liquid level sensor - Google Patents

Liquid level sensor

Info

Publication number
CA1070511A
CA1070511A CA269,502A CA269502A CA1070511A CA 1070511 A CA1070511 A CA 1070511A CA 269502 A CA269502 A CA 269502A CA 1070511 A CA1070511 A CA 1070511A
Authority
CA
Canada
Prior art keywords
float
switch
guide tube
invention defined
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
CA269,502A
Other languages
French (fr)
Inventor
Edgar A. Bongort
William T. Cruickshank
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
B/W CONTROLS Inc
Original Assignee
B/W CONTROLS Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by B/W CONTROLS Inc filed Critical B/W CONTROLS Inc
Priority to CA269,502A priority Critical patent/CA1070511A/en
Priority to CA329,171A priority patent/CA1075929A/en
Application granted granted Critical
Publication of CA1070511A publication Critical patent/CA1070511A/en
Expired legal-status Critical Current

Links

Landscapes

  • Level Indicators Using A Float (AREA)
  • Switches Operated By Changes In Physical Conditions (AREA)

Abstract

LIQUID LEVEL SENSOR

Abstract A liquid level sensor having a vertical guide tube with one or more magnetically operated switches therein at vertically spaced locations and a free float thereon which rises and falls with the liquid level and as it passes each switch magnetically latches it in one condition until the float returns in the opposite direction and unlatches it. The switches may be normally open, normally closed, or any combination, so that movement of the float past the switches may provide any desired circuit sequence.

Description

1~70511 Field of the Invention This invention relates to position sensing apparatus, in particular liquid level sensing devices of the type having a ver-tical guide tube containing magnetic proximity switches and a free float slidable on the tube and buoyant in the liquid to rise and fall with its level, and in passing the switches actuating them.
Background of the Invention It is known in the art to provide a liquid level sensor comprising a non-magnetic guide tube vertically arranged in the llquid whose level is to be sensed, with a plurality of reed switches disposed spaced apart in the tube to be actuated by a magnet carried by a float guided on the tube and rising and fall-ing with the liquid level. The reed switches are connected in electric circuits to signal the liquid level, and may serve to cause energization of pumps~ alarms, indicators and the like.
The following United States patents are representative of such teach~ng:
3,200,645 3,646,293 3,788,340 3,678,750 3,685,357 A problem common to each of these is that while the reed switch is closed as the float magnet passes, as for example dur-ing a rise of the float, it then opens as soon as the float magnet passes above the switch. Consequently, the only time a circuit is completed through the reed switch is when the 1Oat magnet field is sweeping it, and in order to ~e useful the reed switch must therefor be electrically eonnected to a system which ~s undisturbed by the switch opening as the float continues to rise.

ph~

~0705~

Such a system may utilize a latching relay as in U.S. Patent 3,685!357 which will maintain a circuit energized even though the reed switch opens. Redundancy problems are raised by such arrange-ments to insure that when the reed switch opens it is not because the float has reversed direction but is actually still rising. In addition, should a float be rising and before reaching a reed switch there be an electric power failure during the time the float passes the switch, the circuit will not indicate the in-creased liquid level when the power returns.
To avoid redundancy problems, power failure problems, latching relays and the like, efforts have been directed to de-vising means for maintaining the reed switch closed when the float magnet reaches it and despite the liquid level continuing to rise.
One co Y rcially available solution, and another shown in U.S.
Patent 3,826,139, involves the use of a guide tube having a plural-ity of floats, one for each reed switch, and stops on the guide tube which limit the rise of each f~oat so that its ascent is arrested when its magnet has closed the reed switch. The float then remains in this po~ition as the liquid continues to rise thu~ holdlng the reed switch closed. ~he switch is opened when the liquid level falls sufficiently to allow the float to drop a-away from the stop and carry its magnet sufficiently below the reed switch 50 it can open. In addition to the necesRity of using a number of floats, which increases the cost of the system, the only way the sensing levels can be changed i8 by physically shift-ing the float stops on the guide tube and this entails gaining physical access to the outside of the guide tube which is sometimes difficult or inconvenient.

ph;S' If ,, .

~:, .:- . :....... : , :
:: . .~ ., . :

~070sl~

Another solution is proposed by U.S. Patent No. 3,437,771 where a two-part float is shown, one part carrying a magnet is in-tended to lock onto a bias magnet at the switch and open the switch and remain at the switch until the other float part drops suffi-ciently to carry the inner float down away from the switch and allow the switch to re-close. This teaching also uses a stop to limit rise of the float, and would require multiple floats and stops if more than two switches tlevels) were involved. In addition, the switch is normally closed ~y the bias magnet and is opened by the float magnet, and the teaching would appear to be limited to this mode of operati~on.
According to the present invention there is provided a liquid level sensor including a guide tube for vertically positioning in the liquid whose level is to be sensed and a float externally surrounding the guide tube for free rotatable and longitudinal movement thereon to rise and fall with the liquid level. A reed switch is located in the guide tube and has its reeds extending substantially parallel to the axis of the guide tube, and means are provided for establishing a magnetic bias field across the reeds lnsufficient to close them but sufficiently to hold them closed.
Means are provided on the float for establishing symmetrical toroidal magnetic field about the guide tube having leading and trailing field portions of opposite directions for sweeping the switch reeds and augmenting the bias field to close the reeds as the float passes, the switch moving in one direction sweeping and overcoming the bias field opening the switch reed as the float passes the switch moving in the opposite direction at substantially the same point where the reeds were c~osed.
Applicant has overcome the above-described ob}ections ph~
.

"

: ~ . . .. " , - , , .

~0705~1 to the prior art and in addition has obtained other positive advan- -tages by providing a liquid level sensor in which, when the float passes a switch in the guide tube, the switch is magnetically actu-ated to a different contact condition which is then maintained de-spite on going movement of the float completely past the switch, until the float returns and passes the switch in t~e opposite direction whereupon it will magnetically actuate the switch to return the contacts to their initial condition. As a result of this it is possible to provide a guide tube with a plurality of switches arran-ged at various levels, and a single free float which rises and falls with the liquid level, and which will successively actuate and latch each switch it passes as it rises, for example, and then success-ively unlatch each switch it passes as it falls. Thus, the need for latching relays in the switch circuits is elimi~ated. Actuation and latching of the switches is accomplished utilizing permanent magnets and i~ only dependent upon movement of the float in a given direc-tion past a switch. Accordingly, temporary power failures during movement of the float past a switch will not affect the logic of our system, and it will not lose step or phase with the liquid level.
Our sensor may also be constructed to provide switches of different operating modes at various levels within the same guide tube, viz., one switch may be normally open and another normally closed and as the float travels in one direction along the tube each will have its contacts shifted to the opposite condition.
The switches may be supported in the guide tube for re-positioning from an end of the tube, and in view of the freedom of the float to traverse the tube and latch each switch as it passes, such re-positioning of the switches allows for a simple adJustment of the liquid level sensing height without the necessity of gaining ph;~"t access to the float. In other words it is not necessary to re-position stops on the outside of the guide tu~e to limit movement of the float.
In carrying out the invention, magnetic proximity swit-ches such as of the reed type are suspended in the guide tube for actuation and response to the sweep of a magnetic field as the float rises and falls with the liquid level past the switches.
Unlike the prior art liquid level sensors utilizing reed switches, the reed switches of this invention are latched open or closed, as desired. We have shown various ways of accomplishing this;
each requiring a certain combination and arrangement of switch and float structures.
According to one approach, a conventional reed switch having normally open contacts, is provided with a small bias mag-net of a strength insufficient alone to close the contacts, but once closed sufficient to hold them closed. Magnet means carried by the float are so arranged as to provide leading and trailing magnetic fields of opposite direction viz., leading and trailing in relation to float movement along the guide tube, and ~opposi~e direction" having reference to the direction of the magnetic lines of flux. When the direction of the trailing field of the float magnet sweeping the reed switch augments or compliments the polar-ity of the bias magnet, the reed switch is thereupon closed and remains closed under the influence of the bias magnet though the float moves on away. ~he switch will remain closed until the float magnet again approaches from the opposite direction and the direc-tion of its trailing field opposes the polarity of the bias magnet, whereupon the switch wil} open and remain open though the float continues on past the switch and moves away. We have shown two ph:~ ~

,- : , :. : .
: . .: ,. : ~; '",' :: '' ' :

10705~1 approaches to obtaining leading and trailing fieids of opposite direction. According to one approach the float magnet means is arranged to have one pole facing radially inwardly toward the guide tube and the opposite pole facing radially outwardly. According to another approach the float magnet means comprises a pair of magnet arrays with each array comprising a plurality of magnets arranged circumaxially around the guide tube with the axes of the magnets extending along the guide tube and with the arrays arranged -~
longitudinally along the float in adjacent relation and with common magnet poles in confronting relation.
In another e~bodiment of the invention reed switches having reeds of a material capable of having a high residual mag-netism thereinafter referred to as "self-latching reed switches") are used in the guide tube. Float magnet means are provided which create leading and trailing fields of opposite directions and different strengths which sweep the guide tube and switches as the float rises and falls. When the stronger field is the trailing field as the float passes over a switch it will close it and the residual magnetlsm induced in the switch will hold it closed.
When the float movement reverses and the trailing field is now the weaker field and of opposite direction, when such field sweeps the switch the contacts will open and remain open. Two approaches are shown to obtain magnetic fields of opposite direction and different strengths .
Also shown is an arrangement utilizing a self-latching reed switch wherein the float magnet is similar to that first described, viz., creates leading and trailinq fields of equal but opposite direction.
A novel arrangement for suspending and encapsulatinq the ph:~f~

, .

:: . . - : .
,.,: , .: .: : ', . ::
,': ~;- . . : ;: - . , . ,: ' :
. . .

1C~705'11 reed switch assemblies is also disclosed which permits ready ad-justment of the liquid level sensing points.
A number of advantages are obtainable from a liquid level sensor of the kind herein disclosed namely: ' 1. The sensor utilizes only one float to operate any number of switches instead of one float for each switch.
2. The sensor uses only one float stop and such is lo-cated at the bottom end of the tube.
3. Because the switch action is not dependent upon float stop locations, operating levels are easily adjusted by merely moving the switch locations up or down in the guide tube as desired.
4. The vertical distance between switches is not restric-ted because one float is used to operate all switches.
5. The switches can be made all normally open, all nor-mally closed or any desired combination of normally open and nor-mally closed.
6. The sensor can be used in any liquid, conductive or non-conductive.
7. We have found that the guide tube may be as small as one-half inch OD or as large as two inches OD and the float can be as small as two inches OD or as large as fourteen inches OD and guide tubes and floats of both greater or smaller dimensions are feasible. Small floats are more suitable for clean low viscosity liquids and large floats for use with high viscosity li~uids or heavy sludges.
8. The sensor is suitable for pressurized applications as well as non-pressurized environments.

ph~

.

.: ; . -:

- i ~0705~1 Brief Description of the Drawings Fig. 1 is a fragmentary side elevation, in cross section, through a tank or other vessel showing a liquid sensor embodying the invention;
Fig. 2 is a fragmentary cross-sectional view of the guide tube and float of Fig. 1 showing the parts in greater detail;
Figs. 2A, 2B, 2C and 2D schematically illustrate the magnetic fields and their co-action and effect on a reed switch of Fig. 2 during a rise and a fall of the float past the switch;
Fig. 3 is similar to Fig. 2 but wherein the bias magnets are reversed to give the opposite switch action during the same travel of the float;
Figs. 3A, 3B, 3C and 3D are similar to Figs. 2A-2D
except they illustrate the action on a reed switch of Fig. 3;
Fig. 4 shows a modified form of magnetic proximity switch and float magnet means;
Figs. 4A, 4B, 4C, 4D and 4E schematically show the force fields of the float magnet and the effect on the reed switch of Fig. 4 during a rise and a fall of the float past the switch;
Fig. S is a fragmentary cross-sectional view through another form of proximity switch in the guide tube with a float similar to Figs. 1-3;
Figs. 5A, SB, SC and SD illustrate schematically the force fields of the float magnet and their effect ph~

., :. ' ' ~ . ., ~. "` , ' :' - ~ ' `: . .: ' ` ' ' , ' 10705~1 .
on a reed switch of Fig. 5 as the float rises and falls past the switch;
Fig. 6 is a fragmentary cross-sectional view through a guide tube and float showing a further modification of the invention;
Fig. 7 is a fragmentary cross-sectional view through a guide tube and float embodying a further modi-fication of the invention;
Fig. 8 is a cross-sectional view through a guide tube and float of another arrangement, Figs. 9 and 10 are respectively side and front views showing a preferred arrangement for connecting, protecting and suspending a proximity switch for insertion in the guide tube;
Fig. 11, which appears on the same sheet of drawings . . ~
as Fig. 1, shows an embodiment of the float magnet means, portions of the float being removed for clarity, and Fig. 12, which appears on the same sheet of drawings as Fig. 1, is a cross-sectional view taken on the line 12-12 of Fig. 2.
Brief Description of Preferred Embodiments In Fig. 1 an installation for a liquid level sensor has been depicted as comprising a tank or other vessel 20 having top, side and bottom walls 22, 24 and 26 with a liquid 28 therein whose level 30 is to be sensed. A guide tube 32 is shown arranged vertically within the tank 20 with a free float 34 mounted on the tube for guided movement therealong as the li~uid level 30 rises and falls. ~he buoyancy of the .
~ _ 9 _ B sb~

- - :-- .;:

float 34 is such that it will be supported by the liquid with approximately fifty percent of the float submerged and its "water line" or liquid line at the liquid surface 30 encircling the float substantially midway between its upper and lower ends.

- 9a -sb/ .
~' - ~ ; , , ,: `, , :
` ' -': ,. ':. : : ., ~ : . ' float 34 is such that it will be supported by the liquid with approxi-mately fifty percent of the float submerged and its "water line" or liquid line at the liquid surface 30 encircling the float substanti-ally midway between its upper and lower ends.
While the guide tube may be supported in the tank in various ways, in the embodiment shown in Fig. 1, which is intended to be illustrative only, the top wall 22 of the tank contains a pipe threaded opening 36 into which is screw threaded a junction box 38 provided with a transverse web 40 within which is threadedly sealed a tube fitting 42 telescopingly receiving the guide tube 32 in a slip fit. The upper end of the tube fitting 42 is provided with an internal chamfer and a ferrule 44 has a lower end received in the chamfer and the other end trapped within the lip of a nut 46 threaded on the upper end of the tube fitting, such that as the nut is tightened down the ferrule is squeezed against the tube to grip the guide tube and hold it securely in the tube fitting and seal it therein.
The guide tube 32 should be formed of a non-magnetic material. Austenitic stainless steel would often be quite suit-able, but the material of the guide tube is dictated by the li-quid within which it will be disposed. The diameter of the guide tube will also be dependent upon the environment for the sensor, the length of the tube sensor, etc. Except as hereinafter mentioned, the guide tube may be of any suitable diameter such as from one-half inch to two inches OD. For applications having a considerable vertical extent, or turbulent liquid movement, larger diameters would be preferred over smaller diameters.
The inside of the guide tuSe is sealed from the liquid 28.
One arrangement for accomplishing this purpose is shown in Fig. 1.

P~

.

::, , :

The lower end of the tube is sealed by the use of a neoprene or other suitable elastomeric plug 48 having a stem portion telescoped inside the lower end of the tube and a flange portion overlying and abutting the lower edge of the tube. A bolt or the like 50 having a head 52 overlying the inner end of the plug and a shank extend-ing do~ardly through and beyond the lower end of the plug and through a disc or the like 54 and threaded into a nut 56, is utili-zed to squeeze the plug axially and thereby expand it radially to tightly grip the inner wall surface of the guide tube and the surface 10 of the bolt to seal thereagainst and lock the plug in the tube.
The portion sa of the flange of the plug which extends be-yond the outside diameter of the guide tube serves as a stop sur-face for supporting the lower edge of the float 34 when the float drops to the lower end of the tube.
m e junction box 38 may be closed at the top by a suitable cover 60 and the circuit wires from the switches supported in the guide tube may be led out of the junction box through a side opening aperture 62 and thence to the devices to be actuated which may com-prise vlsual or audio alarms, or relays suitable for operation of motor gtarters or solenoid valves. In Fig. 1 the various circuit lines from the proximity switches are shown as being gathered into a cable 64 leading to two pump control relays which control pump starterg namely, pump 1 and pump 2 motor starters as shown on the drawing. Pumps (not shown) may be connected to the vessel or tank 20 containing its liguid 28 and their function may be to pump liguid out of the tank, or into the tank, as a result of the liquid level 30 rising or ~alling. Three proximity switches 66, 68 and 7~ are shown suspended in the guide tube. These switches are connected typically such that when the contacts of all switches are open, the pumps are inoperative.

-- 11 -- . .
ph/ ~

:. : ,. . .. , ". . .

In the Fig. 1 embodiment as a switch is closed, a signal is energized or a pump motor starter is energized to start the pump motor, perhaps to pu~p liquid out of the tank. If, for example, liquid can enter the tank 20 and the function of the sensor is to prevent it from exceeding the height of switch 70, when the float reaches switch 68 such will close the contacts of switch 68 and start pump number 1. If the liquid continues to rise and the float reaches switch 70, it closes the contacts thereof and starts motor number 2. According to the invention, switches 66 and 68 remain closed as the rising float passes above them. Assuming that with both pumps in operation the liquid level within the tank is being reduced, and as the float descends and reaches each of the switches 70, 68 and 66 the contacts thereof will be opened. During descent of the float and opening of switches 70 and 68 the pumps may continue operative through the provision of the relays LH until switch 66 is opened whereupon both pumps will be stopped. In any event, it will be understood that the proximity switches 66, 6B and 70 are nor- -mally open switches ~they are closed as the float rises)and as the float reaches each switch it closes its normally open contacts and latches the~ closed as the float continues to rise beyond the switch. Such contacts remain latched closed until the float de-scends reaching and passing each switch whereupon the contacts are unlatched and are opened and remain open until the float again re-ascends to effect a closing thereof.
The float 34 may be formed of any suitable non-magnetic material. Any suitable plastic or austenitic stainless steel may be used. The float should be hermetically sealed. If desired, it may be filled with a closed cell foam, so that in the event the Sloat is punctured it witl nevertheless retain its buoyancy. In ph~

107051~

the preferred form the float comprises a structure symmetrical along both longitudinal and transverse axes and is generally egg shaped having a greater axial than transverse dimension. The float has an outer wall 72 secured to and sealed at upper and lower edges 74 and 76 to a central float tube 78. The float tube 78 is sized to be a free sliding fit about the guide tube. Inside the float and secured to the float tube 78 substantially midway of its length viz., radially opposite its liquid line, is float magnet means 80. Such float magnet means may comprise, as shown in Figs. 2 and 12, a plurality of small bar magnets 81 arranged around and extending radially with respect to the guide tube axis and float tube axis, which are essentially coincident. The axes of such magnets also lie essentially perpendicular to the axes of the float tube and guide tube or in a plane 98 disposed perpendicular thereto as shown in Figs. 2A-2D. It will be observed from Figs. 2 and 12 that the magnet means 80 has north poles facing radially inwardly and south poles facing radially outwardly.

~h~

,:

The magnet means 80 may take various forms. For example, the magnet means may comprise a plurality of small bar magnets 81, as previously mentioned, arranged in radial array with north poles facing radially inwardly and south poles outwardly. Such small bar magnets 81 may be potted in a suitable potting material 83 such as an epoxy resin, melamine resin, urethanes, etc. shaped in the form of an annulus and secured to the tube 78 in any suitable fashion. Alternatively, and preferably, the magnet means 80 may comprise a strip of rubber-bonded barium ferrlte composite material sold under the trademark PLASTIFORM by 3M Company. This is a flex-ible magnet containing magnetic particles whose p~les are arranged in uniform directions to create a north pole on one side of the strip and a south pole on the other side of the strip. A length of such strip is shown at 82 in Fig. 11 wrapped around the float tube 78 with the ends cut to match as at 84. A suitable adhesive may be utilized to adhere the strip to the float tube. If desired, a suitable non-magnetic contractive band (not shown) may be affixed around the strlp 82 to grip it to the float tube and insure against displacement.
Thus, with the embodiment shown in Figs. 1 and 2 the north poles of the float magnet means face radially inwardly while the south poles face radially outwardly, and this creates a symmetrical toroidal magnetic field about the guide tube having leading and trailing field portions of opposite directions and equal strength for sweeping the switches, ln addition, it will be noted that by positioning the magnet means 80 midway of the vertical length of the float, and with the float buoyancy such that the liquid level 3~ is substantially midway of the vertical dimension of the float, the magnet means and liquid level will be substantially horizontally coincident. Accordingly, the dav/ db '' ` ,.
-- ' ~ .

position of the magnet means 80 corresponds quite accurately with the liquid level.
In the embodiment shown in Figs. 1 and 2 the proximity switches 66, 68 and 70 each comprises a conventional reed switch having a glass envelope 87 (see Fig. 9) within which are positioned a pair of flexible magnetic reeds or contacts of low magnetic per-manence with one reed extending from each end of the envelope and with the reeds having overlapping contact faces substantially mid-way of the length of the envelope. These reed switches are readily available from a number of sources. They are arranged in the guide tube to have their axes extend longitudinally thereof. When a magnetic field of sufficient strength is impressed across the con-tacts, it will cause them to close and when the magnetic field is removed the contacts will open. The contacts are physically spring biased by virtue of their construction so that they are nor-mally open and are closed when exposed to a magnetic field of sufficient strength and proper direction. Accordingly, the reed switches for use in the embodiment of Figs, 1 and 2 will close when sub~ected to a magnetic field of sufficient strength and will open upon removal of such field. Accordingly, they do not by themselves have any magnetic latching capability.
We have associated with each of these reed switches as shown in Figs. 1 and 2 small bias or latching magnets 86, 88 and 90, each of which has its poles or magnetic axis arranged parallel to the axis of the reed switch, namely, vertically. These three bias magnets may be formed of any suitable magnet material but prefer-ably are formed utilizing a material similar to the above mentioned nagnetic strip but o~ a greater thickness, such as }/4~. A small piece of such material may be cut out and a hole pierced there-ph'r~

~ .

;, : , , ,. : ' : `~, : '~

~07051~

through and the small piece then slipped over the upwardly project-ing terminal 92 with the terminal extending through the hole.
Similar small pieces of such magnet material may be associated with the upwardly extending terminal 94 and 96 at the upper end of each of the switches 68 and 70 respectively. Each bias magnet is sized and positioned so that its field strength is insufficient alone to close the normally open contacts of its associated reed switch but is of sufficient strength to hold the contacts closed once they have been closed.
In Figs. 1, 2 and 3 the bias magnets are shown in a position that is considered to be most desirable. However, the bias magnets may take on different arrangements to achieve the same results.
For example, the bias magnet may be placed at the end of the switch with its pole pointed radially upward, or in the middle of the switch with poles pointed up and down, parallel to the axis of the switch.
The effect of the bias magnets and the float magnet on the operation of the reed switches i9 best understood by reference to Pigs. 2A, 2~, 2C and 2D. In these Figs. the magnetic fields of the magnets are schematically represented by dashed lines. In Fig.
2A ~he float is assumed to be rising and its magnet means 80 creates a toroidal field about the guide tube having leading field portion 83 extending upwardly and a trailing field portion 85 extending downwardly and in the area where such field portions sweep the reed switch 68 they are of opposite direction. The polarity of the lead-ing field portion of Fig. 2A results in the reed or contact 100 having a north polarity at its contact face. At the same time reed or contact 102 will have a north polarity at its contact face as a re~ult of the polarity of the bias magnet 88. With like polarities at the contact faces of reeds 100 and 102 the contacts are phz~ ~

~ . .

repelled and remain open as the float magnet 80 approaches the reed switch.
However, when the float magnet is radially opposite the contact faces of reeds lO0 and 102, as shown in Fig. 2B, the contacts are closed. This results from the trailing field portion 85 of the float magnet having a direction complimenting or augmenting the polarity of the bias magnet creating a north-south polarity across the contacts to close them. As the float rises above and carries its magnet means 80 above the Fig. 2B position, the magnetic field of the bias magnet will continue to hold the reed switch contacts in the closed position shown in Fig. 2B and also as shown in Fig. 2C.
In Fig. 2C the float is descending such that the leading field portion is now field 85 below the float magnet and the trail-ing field portion 83 is above it. As the leading field portion reaches the reed switch it will at first augment or compliment the bias magnet polarity across the reed switch maintaining the contacts closed, and such is shown in Fig. 2C. However, when the float has descended slightly more, its trailing field portion, which is up-wardly directed will produce a north polarity at the contact of reed 100 which will thereupon be repelled from the north polarity of reed 102 as imposed by the bias magnet 88 and the switch will open and remain open as the float descends below the switch.
Consequently it can be seen from Figs. 2A, 2B, 2C and 2D
that by providing leading and trailing field portions in the guide tube of opposite direction above and below the transverse axis of the float and by providing a bias magnet in association with the reed switch of sufficient strength to hold the contacts closed but of insufficient strength to close them and wherein the strength of the float magnet and the bias magnet are sufficient to close the Ph:C~

.
: :: :. , :
:. :,:, :, ~ : ' : .: -contacts, the proximity switches in the guide tube can be made to function as latching reed switches.
It will also be observed that means are thus provided which will close each switch when the float passes by it moving up-wardly and open each switch when the float passes by it moving downwardly. Means are also provided for holding the switch closed independently of the distance the float moves above the switch.
Further it will be noted that like poles of the bias magnets of Figs. 1-3 point in the same direction longitudinally of the guide tube and the downwardly facing poles of the bias magnets correspond in polarity to radially inwardly facing poles of the float magnet. r This produces switches which are normally open when the float is at the bottom of the guide tube and close as the float ascends.
In Fig. 3 there is shown a modification of the embodi-ment of Figs. 1 and 2 wherein the polarity of the bias magnets has been reversed from that shown in Figs. 1 and 2. corresponding re-ference numerals have been used in Fig. 3 to indicate like parts.
The bias magnets 86', 88' and 90', have their north poles facing upwardly and their south poles downwardly. The effect of this is to change each of the proximity switches from normally open to normally closed. Thu9 switch 66' which is normally closed, is opened and remains open as the float reaches and passes above it. Switch 68' is shown in its normally closed position just prior to being opened and switch 7~' is shown in its normally closed condition.
In other words the switch remains closed as long as the float mag-net is below the switch and the switch will open and remain open as long as the float magnet is above the switch. Switch operation may also be reversed by reversing the poles of the float magnet.
In other words, the switches of Fig. 2 may be made normally closed ph:~

!
. ' , ', ` . ' , ' ' by providinq the float magnet with the south poles pointing radially inwardly,and the north poles outwardly.
A substantial advantage arising from the constructions shown in Figs. 1-3 is that they permit the reed switches in a guide,tube to be of different operating modes, viz., some of the switches may be normally open as in Fig. 2 and some of them may be normally close~ as in Fig. 3; the mode of operation being obtained simply by the polarity orientation of the bias magnet associated with each switch. Another advantage of the embodiment of Figs.
1-3 is that the float can be placed on the guide tube with either end up because the magnetic field created by the float magnets is symmetrical.
Figs. 3A, 3B, 3C and 3~ illustrate functioning of the normally closed reed switch of Fig. 3 as the float and its magnet means approaches and passes the switch; Figs. 3A and 3B showing the float as it is rising while Figs. 3C and 3D as it is falling.
In Fig. 3A the float magnet leading field reinforces the bias mag-net field and the contacts 100' 102' remain closed. As the float magnet reache~ a position substantially midway of the length of tho reed switch, the polarity of contact 100' will reverse so that it corresponds to the polarity of 102' and the contacts will open.
Having once opened, the strength of the bias magnet field is in-sufficient alone to close the contacts, and they remain open as the float magnet passes above the switch. In Fig. 3C the float is shown descending and the leading field which was the trailing field as the float ascended will, as before, tend to maintain the contacts in the opened condition until the float magnet has reached a point approximately midway of the length of the reed switch, at which time the polarity of the lower contact 100' is opposite the polarity ph ~

... .

, .. . . . . . ..

-10705~1 of upper contact 102 and the contacts will close with the field for-ces being substantially as represented in Fig. 3D.
With the construction shown in Figs. 1 and 2 or that shown in Fig. 3 the bias magnet 88 or 88' can be located either above or below its switch. In either case switch operation is de-termined by the direction that the north and south poles point (up or down). Assuming that the float magnets have their north poles pointed radially inward, a bias magnet with its north pole pointed downward will cause the switch to be closed when the float is above the switch and open when the float is below the switch.
If the north pole of the bias magnet is made to point upward the switch operation is reversed.
We have found that a sensor constructed as disclosed here-inabove has a fairly close sensitivlty, viz., quite small verti-cal movements of the float will serve to close or open the switch.
Thus by accurately positioning the switches in the gside tube, a sensor having considerable accuracy is attained.
Flgs. 4 and 4A-4E show a somewhat different form of reed switch and float magnet combination in order to effect a latching ~0 operation. In this arrangement each of the reed switches has contacts made of a material capable of having a high residual magnetism.
Such a reed switch, referred to herein as a self-latching reed switch, has recently become commercially available on the market, one being sold under the name *MEMOREED FDR-8 manufactured by Fujitsu Limited of Japan. This type reed switch can be latched closed by a strong magnetic field and unlatched and opened by a weaker magnetic field of reversed palarity. In Fig. 4 there are shown three such switches 89, 91 and 93 arranged in the guide tube with the flaat magnet ~eans being arranged to provide a symmetrical toroidal field about the * - Trade Mark ph: ~ J' ~
.

.` . ~ ~ , . .

guide having two field portions of opposite direction and different strengths for sweeping the guide tube.
As shown in Fig. 4 the float magnet comprises a plurality of magnets 110 arranged so that the north poles point radially in-wardly and their south poles radially outwardly but with the axis of the magnets arranged in a conical configuration around the float tube 78' with the angle of the conical surface with respect to the vertical axis of the float tube preferably being at about 30.
However, this angle may range from 15 to 60. The float magnet means may be formed by a plurality of individual bar magnets potted or encapsulated in the aforesaid conical arrangement within an annu-lus of any ph~

,.:, -suitable potting or encapsulating material 112 which is thereafter slipped over the float tube 78' and adhesively secured thereto prior to final assembly of the float. Alternatively, the bar magnets may be potted in the potting material 112 as an integral part of the float manufacture; the particular manner of fabrication being for routine skill in the art.
According to another possible construction, the magnets 110 may be formed by arranging the elastomeric magnetic tape 82 in a conical fashion rather than a cylindrical fashion as shown in Fig. 11 and securing the same to an annulus having a conical face.
In either event, the magnetic field created by the conical arrange-ment of the float magnets should correspond to that schematically illustrated in Fig 4~ where the angle 0 is equal to approximately 30 and represents the inclination of the axis of the magnets to the axis of the float tube or guide tube. It will be observed from Fig. 4~ that there is a strong magnetic field portion 110' directed upwardly and sweeping the axis of the guide tube, such axis being indicated by the letter B and a weaker magnetic field portion 111' of opposite direction extending downwardly and sweeping the axis B.
The stronger upwardly directed field portion becomes the leading field when the float is rising and the trailing field when the float is falling and is the field existing within the cone defined by the magnets 110.
In operation, assuming the float to be rising, reference to Fig. 4B shows the contacts 114 and 116 in the closed condition with the strong magnetic leading field portion 110' vf the magnets 110 serving to maintain the contacts in the closed condition. As the float rises and carries the magnets 110 past the contacts 114 and 116, the weaker trailing field portion 111' will neutralize the residual magnetism in the contacts causing the contacts to spring open. The contacts will remain in this condition as the float continues to rise and will not close until it descends as shown in Fig. 4D, As the float descends, a point is reached when the float magnets are substantially radially oppositethe contact faces, as in Fig. 4E, where the strongtrailing field portion 110' causes the contacts to close and they will remain closed as the float continues to descend below the reed switch.
Reverse operation of the reed switches may be obtained by reversing the float end-for-end on the guide tube such that the stronger field portion now points downwardly and the weaker field portion points upwardly. It will also be noted that all of the reed switches in the Fig: 4 embodiment will have the same mode of operation. In other words, this embodiment does not afford the capability of ha~ing some switches normally open and other normally closed as with the embodiments of Figs. 1-3. An advantage of the embodiment of Fig. 4 is that because bias magnets are not used in association with the reed switches, it is possible to place the reed switches cloffer together vertically within the guide tube and therefor obtain more control functions in a given height.
~ eferring now to Fig. 6, a further modifiGation is shown which corresponds closely to the Fig. 4 embodiment in that each of the reed switches is of the self-latching dav/ db , :, ., - , . ' ., ' ,~' :

1070 51~ r type, namely, having contacts formed of a material capable of relatively high residual magnetism. As these switches correspond to those of Fig. 4 they are correspondingly numbered. The float magnet means of the Fig. 6 embodiment differs substantially from that of Fig. 4 but the effect is to create a symmetrical toroidal magnetic field about the guide tube having oppositely directed magnetic fields of differing strengths similar to the fields created by the conical magnet arrangement of Fig. 4. In accomplishing this, a radially extending arrangement 120 of magnets having inwardly facing north pole~ and outwardly facing south poles are disposed just above a radially extending array of magnets 122 having radially inwardly facing south poles and outwardly facing north poles. The magnet array 120 has larger and stronger magnets than the array 122 and consequently fields of different strengths above and below the magnet assembly are formed. An alternate but similar arrange-ment may utilize a washer of magnetic material such as mild steel to replace magnet array 122. Such magnet means may be formed by potting or encapsulating small bar magnets whose polarity is arranged as ~hown, or by utilizing the rubber-like magnetic material mentionsd in connection with the Figs. 1-3 embodiments.
It will be apparent that with a stronger magnetic field extending upwardly and a weaker magnetic field of reverse direction oxtending downwardly, the effect on the reed switches will be similar to that explained in connection with Pigs. 4B-4E, namely, the reed switches are normally closed and are opened and remain open as the float rises and are closed and remain closed as the float falls.

ph:~m ,: - .' :- . .

Referring now to Fig. 5, a further embodiment of the invention is shown utilizing self-latching reed switches of the kind shown in Figs. 4 and 6 and a float of the kind shown in Figs. 1-3. In order to provide a worka~le arrangement in the Fig. 5 embodiment utilizing this type of self-latching reed switch and float magnet means, each of the r~ed switches is provided at one end with a magnetic shield 136 of low residual magnetism as shown in Figs. SA through 5D. The shield is cylindrical to conform to the outside surface of the reed switch envelope and extends over approximately forty percent of the length of the envelope substantially as shown in Figs. 5A-5D.
As a result, the switch is opened and remains open when the float passes over the switch in a direction that carries the float magnet over the shielded end last.
Referring to Figs. 5A through 5D, the magnetic shield covers the lower end of the switch. With the float magnet 80 slightly above a mid-point of the reed switch, as shown in Fig. 5A, the switch contacts are strongly influenced by the leading field portion 140 and are held closed. When the float descends to the level of the mid-point of the contacts, as shown in Fig. 5B, the upper reed 116 is influenced by the trailing field 142 which develops a south polarity in the upper reed contact and the leading field portion 140 produces a south polarity in the lower reed 114 so that the contacts repel each other to open the switch. This condition is shown in Fig, 5B.
As the float continues to descend the lower reed 114 is shielded from the trailing field 142 so ~h/jvb , . - . .

1070Sll that the switch remains open as in Fig. 5C though the float contin-ues to descend substantially below or beyond the switch. The con-tacts will remain open until the float ascends again such that the field 140, at that time the trailing field, can influence the con-tacts and produce a north and south polarity across them such that they are closed as shown in Fig. 5D. To obtain reverse operation of the switch with this embodiment, the shield 136 instead of being placed at the lower end of the reed switch is placed at the top end thereof.
An advantage of the embodiment shown in Figs. 5, 5A-5D is that the float can be placed on the guide tube with either end up and the reed switches within the guide tube may have different operating modes, i.e. some of the switches may be normally opened and the others normally closed. In addition, it is possible to place the reed switches in closer vertical proximity in view of the fact that a bias magnet is not utilized.
In Fig. 7 a further embodiment is shown. Here the float magnet means creates oppositely directed field which extend upward-ly and downwardly in the guide tube 32 to create leading and trail-~ng fields of opposite direction, but instead of arranging magnetswith common poles facing radially inwardly and the opposite poles facing radially outwardly, the poles are arranged to face parallel to the axis of the guide tube.
As shown, small bar magnets 85 are arranged ph~

-0~0511 circumaxially of the float tube in a first array. Four such magnets may be provided at equal angular positions. Their north poles may face downward. Beneath and adjacent them is a second array of four more small magnets 87 of equal size with their north poles facing upward. As shown by the flux lines in Fig. 7, this arrangement creates oppositely directed force fields within the guide tube for sweeping the reed switches, and with reed switches of the kind and arrangement of Fig. 2, will result in the same action as described in connection with Fig. 2. By making the magnets 87 of the lower array smaller, such as half the size of magnets 85, a less intense downwardly directed field is created and when associated with self-latching reed switches as shown in the Fig. 4 embodiment, will function to operate such switches similar to the Fig. 4 arrangement.
Fig. 8 is a modification which is also disclosed and is claimed in applicant's copending divisional application 329,171 , filed on June 6, 1979. In this modification the constructions is similar to that of Figs. 1 and 2 except as mentioned. The float 34' has a float tube 78' formed of magnetic material having the capability of little or no residual magnetism. This magnetic float tube acts as a field conductor for the magnetic field created by each of the bias magnets 88. The action is such that as the flow rises it causes the reed switch contacts to open as the lower trailing edge of the float passes the switch. This occurs when the float ~p~ sb/J ~
, ,, " ..
.~ ;... ..

,, : : . :.

~07051~
is rising because when the lower edge of tube 78' just clears the vertical mid-point of the reeds, the tube at that time effectively reduces the magnetic flux through the lower reed such that the magnetic attraction between the reeds cannot overcome their physical tendency to open and accordingly they open. On the other hand as the float descends, though the bias magnet is not of sufficient strength without the presence of the magnetic tube 78', to close the contacts, the conductive magnetic effect of the tube 78', so rein-forces the magnetic flux across the contacts that they close.
While inverting the bias magnets so that their poles point in the opposite direction will not alter the mode of operation, i.e. make the switch normally closed rather than normally open, removing the bias magnet to the opposite end of the reed switch will effect a reversal in mode of operation, namely, to alter the switch from, for example, a normally opened to a normally closed switch.
In Figs. 9 and 10 we have shown a reed switch subassembly and arrangement for suspending it in the guide tube. We have found that the reed switches may be conveniently supported in the guide tube by the conductive wires themselves. A common lead or conductor 200, which may be bare of insulation, extends down through the guide tube past each switch as shown in Fig. 1. Each reed switch, such as reed switch 68 in Fig. 9 has its bias magnet 88 attached to the upper terminal 93 of the switch. An electric conductor in the form of a spring connector 202 is connected to the terminal 93 by a splice 204. The connector 202 is formed of an uninsulated spring wire and its upper end is curled into a pair of loops 206 and 208 which are adapted to be resistingly separated and sprung over to grip opposite sides of the conductor 200, and as the wire 202 is bare, the loops will make an electric contact with conductor 200 as well as serving to suspend the reed ph:

~07051~

switch from the conductor 200.
The lower end of the reed switch has a terminal 210 and a splice 212 serves to connect the terminal to an insulated conductor wire 214 which extends upwardly alongside the reed switch and through the loops 206 and 208 where by a butt splice 216 it i8 connected to a lead wire 218. The reed switch, bias magnet and splices 204 and 212 are received within a protective and in-sulating sleeve of non-electrically conductive, non-magnetic material 220, which is filled with a potting resin such as epoxy resin. Thus a sub-assembly is constructed which may be connected to the conductor 200 at any convenient location thereby facili-tating assembly of the sensors. It is apparent that vertical adjustments between the reed switches may be readily affected by slmply sliding the gripping loops 206 and 208 up and down the conductive wire 200. By having the lead wire 212 pass through the spring connector loops the switch sub-assembly is secured to the conductor 200 so that it will not be unintentionally removed nor can it be shaken or vibrated therefrom, the same acting as a lock.
The conductor 200 is brought out of the upper end of the gulde tube 32 and at that point may be simply folded over such end as at 222 thereby to retain the string of reed switche~
and conductors at any desired level. If desired the conductor 200 may be provided with suitable markings indicating the depth of the reed switches below the upper end of the guide tube.
Switch level, and conseguently level sensing adju~tments, may be made merely by removing the string of switch assemblies from the guide tube and resetting the levels of each switch.
We have found that the bias magnets 86, 88 and gO of ph~

.. . : -:.: ... .
: : - :.. . . . :

Figs. 1 and 2 and corresponding bias magnets of other embodiments, may be turned up to 90 so that their axes extend radially with respect to the reed switch terminal, and the sensor will work satigfactorily. In this case the mode of switch operation will be similar to that previously described provided the radially in-wardly facing pole of the bias magnet corresponds to the downward-ly facing pole. For example, in the case of Fig. 2, if the bias magnet is arranged so that its north pole faces radially inwardly rather than facing downwardly, the switch will function just as ~0 previously described, and the same is true of the other embodi-ments utilizing the bias magnets.

ph:;~.it

Claims (36)

THE EMBODIMENTS OF THE INVENTION IN WHICH AN EXCLUSIVE PROPERTY
OR PRIVILEGE IS CLAIMED ARE DEFINED AS FOLLOWS:
1. A liquid level sensor comprising, in combination:
a guide tube for vertical positioning in the liquid whose level is to be sensed;
a float externally surrounding the guide tube for free rotatable and longitudinal movement thereon to rise and fall with the liquid level;
a reed switch in the guide tube having its reeds extend-ing substantially parallel to the axis of the guide tube;
means for establishing a magnetic bias field across the reeds insufficient to close them but sufficient to hold them closed;
means on the float for establishing symmetrical toroidal magnetic field about the guide tube having leading and trailing field portions of opposite direction for sweeping the switch reeds and augmenting the bias field to close the reeds as the float passes the switch moving in one direction and sweeping and overcoming the -bias field opening the switch reeds as float passes the switch moving in the opposite direction at substantially the same point where the reeds were closed.
2. The invention defined by claim 1 characterized in that said switch reeds are closed as the float rises past the switch and remain closed while the float is above the switch.
3. The invention defined by claim 1 characterized in that said switch reeds are closed as the float falls past the switch and remain closed while the float is below the switch.
4. The invention defined by claim 1 characterized in that said means for establishing a bias magnetic field comprises a bias magnet disposed adjacent the switch.
5. The invention defined by claim 1 characterized in that said means establishing a bias magnetic field comprises switch reeds having a residual magnetism sufficient to hold them closed following impression of a magnetic field sufficient to close them.
6. The invention defined by claim 1 characterized in that said reed switch has reeds of low residual magnetism, and said means for establishing a bias magnetic field comprises a bias magnet in the tube adjacent the switch and having a field strength insuffi-cient alone to close the switch but sufficient to hold it closed.
7. The invention defined by claim 1 characterized in that said means for establishing a magnetic bias field comprises reeds in the reed switch formed of a material having a high residual magnetism, ant said means on the float for establishing a symmetrical toroidal magnetic field is arranged to create leading and trailing force fields of opposite direction and different strengths extending toward opposite ends of the float.
8. The invention defined by claim 7 characterized in that salt means on the float for establishing the magnetic field comprises magnet means arranged in a conical array with one pole extending radially toward the guide tube and the other pole extending radially away from the guide tube.
9. The invention defined by claim 8 characterized in that said conical array intersects the guide tube with an angular relation lying between about 15° and 60°.
10. The invention defined by claim 8 characterized in that said conical array intersects the guide tube with an angular relation of about 30°.
11. The invention defined by claim 7 characterized in that said means on the float comprises a plurality of magnets arranged around the guide tube in radially extending relation therewith. said magnets arranged in adjacent planes disposed substantially perpendic-ular to the guide tube with all the magnets in one plane having their north poles facing the guide tube and all the magnets in the other plane having their south poles facing the guide tube, and with the strength of the field created by the magnets in one of said planes being weaker than the magnetic field created by the magnets in the other plane.
12. The invention defined by claim 1 characterized in that there are a plurality of said reed switches in the guide tube in vertically spaced-apart relation for closing successively as the float rises past each and opening successively as the float falls past each, and the said means for establishing a bias magnetic field is associated with each such switch for holding each of them closed while the float moves above them.
13. The invention defined by claim 1 characterized in that there are a plurality of said reed switches in the guide tube in vertically spaced apart relation for opening successively as the float rises past each and closing successively as the float falls past each, and said means for establishing a bias magnetic field 1 associated with each such switch for holding each of them closed while the float moves below them.
14. The invention defined by claim 1 characterized in that there are a plurality of said reed switches in the guide tube in vertically spaced apart relation with at least one of them closing and at least one of them opening as the float rises past them and conversely opening the closed one of them and closing the open one of them as the float falls past them, and said means for establish-ing a bias magnetic field is associated with each such switch for holding each such switch in its closed position while the float moves away from it continuing in the same direction as that in which it was moving when the switch closed.
15. The invention defined by claim 1 characterized in that said means for establishing a bias magnetic field comprises a permanent magnet in the guide tube adjacent the reed switch having one pole facing downwardly along or radially inwardly of the guide tube and the other pole facing upwardly along or radially outwardly of the guide tube.
16. The invention defined by claim 1 characterized in that said means on the float comprises permanent magnets having, in relation to the guide tube, radially inwardly and outwardly directed magnet poles.
17. The invention defined by claim 1 characterized in that said means on the float comprises at least two magnets arranged end-to-end with like poles in opposition ant extending along the float in the direction of its movement for establishing said magnetic field about the guide tube.
18. The invention defined by claim 16 characterized in that said radially directed poles are arranged substantially perpen-dicular to the guide tube.
19. The invention defined by claim 18 characterized in that there are a plurality of reed switches in the guide tube in vertically spaced apart relation and means for establishing a magnetic bias field across the reeds of each switch comprising a permanent bias magnet in the tube adjacent the reed switch with like poles of each bias magnet facing downwardly or radially inwardly of the guide tube and the corresponding poles of the magnets on the float face radially inwardly.
20. The invention defined by claim 18 characterized in that there are a plurality of reed switches in the quite tube in vertically spaced apart relation and means for establishing a magnetic bias field across the reeds of each switch comprising a permanent bias magnet in the tube adjacent the reed switch with like poles of each bias magnet facing downwardly or radially inwardly of the guide tube and the corresponding poles of the magnet means on the float facing radially outwardly.
21. The invention defined by either claim 19 or 20 characterized in that the downwardly or radially inwardly facing pole of one bias magnet toes not correspond in polarity to the downwardly or radially inwardly facing pole of another bias magnet.
22. The invention defined by claim 1 characterized in that said means on the float is disposed substantially at the liquid line of the float.
23. The invention defined by claim 22 characterized in that said float is provided with an axial bore therethrough which is telescoped over the guide tube, and said means on the float is arranged circumaxially around said axial bore radially opposite the liquid line of the float.
24. The invention defined by claim 5 characterized in that said reed switch has a magnetic shield surrounding one end and shielding one of the reeds, ant said leading and trailing field por-tions are substantially equal.
25. The invention defined by claim 24 characterized In that said magnet means on the float comprises a pair of magnet arrays with each array comprising a plurality of magnets arranged circumax-ially around the guide tube with the axis of the magnets extending parallel to the guide tube and with the arrays arranged longitudinally along the float in adjacent relation and with common magnet poles in confronting relation.
26. The invention as defined in claim 25 characterized in that the magnets in one of said arrays are of less force than the magnets of the other array.
27. The invention defined by claim I wherein there are a plurality of said reed switches in the tube is axially spaced apart relation therealong, an elongated suspending member removably received of the tube, ant means for securing each reed switch to the suspending members for adjustable positioning therealong and suspen-sion within the tube at selected spaced intervals.
28. The invention defined by claim 27 wherein said suspending member is an uninsulated conductor wire, adapted to be connected in an electric circuit to be controlled by the sensor, and said means for connecting each reed switch thereto comprises an electric connector electrically connected to one of the reeds of each reed switch having a wire gripping portion releasably grippingly engaged with the uninsulated conductor wire for resistable slidable displacement therealong.
29. The invention defined by claim 28 wherein said connector comprises a stiffly resilient spring wire configured to provide a pair of adjacent uninsulated loops resistingly separable to receive therebetween and grip the conductor wire.
30. The invention defined by claim 29 wherein there is a conductor wire adapted to be connected in an electrical circuit to be controlled by the sensor which wire is electrically connected to the other reed of each switch with an electrically insulated portion extending through said loops to lock the same or the uninsulated conductor.
31. The invention defined by claim 1 wherein said reed switch is provided with a pair of conductor wires connected to said reeds and said wires and reed switch are encapsulated in a potting resin with the wires extending out of one end of the potting en-closure, one of said wires being insulated and the other uninsulated with the latter being stiffly resilient and configured to provide a pair of juxtaposed loops, an uninsulated suspending and conductor wire removably disposed within the tube and adapted to be suspended from the upper end thereof, said loops being resistingly separable to grip the suspending and conductor wire therebetween to support the reed switch thereon at adjusted intervals, and said insulated wire extending through the loops to lock the same against dislodg-ment from the suspending and conductor wire.
32. The invention defined by claim 1 wherein the float includes a non-magnetic central tube, and said means on the float comprises a plurality of bar magnets arranged around the central tube and extending radially with respect to the central tube.
33. The invention defined by claim 32 wherein the axis of said bar magnets extend substantially perpendicular to the axis of the central tube.
34. The invention defined by claim 32 wherein said bar magnets are potted in a resin body of annular shape secured to the central tube.
35. The invention defined by claim 1 wherein the float includes a non-magnetic central tube ant said means on the float comprises a strip of rubber-bonded barium ferrite composite material affixed to the central tube having common poles facing the central tube and opposite poles facing away from the tube.
36. The invention defined by claim 35 wherein said strip is wound around the central tube and affixed thereto.
CA269,502A 1977-01-11 1977-01-11 Liquid level sensor Expired CA1070511A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CA269,502A CA1070511A (en) 1977-01-11 1977-01-11 Liquid level sensor
CA329,171A CA1075929A (en) 1977-01-11 1979-06-06 Liquid level sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CA269,502A CA1070511A (en) 1977-01-11 1977-01-11 Liquid level sensor

Publications (1)

Publication Number Publication Date
CA1070511A true CA1070511A (en) 1980-01-29

Family

ID=4107710

Family Applications (1)

Application Number Title Priority Date Filing Date
CA269,502A Expired CA1070511A (en) 1977-01-11 1977-01-11 Liquid level sensor

Country Status (1)

Country Link
CA (1) CA1070511A (en)

Similar Documents

Publication Publication Date Title
US4056979A (en) Liquid level sensor
US4165935A (en) Differential float control
US4210888A (en) Magnetically operated proximity switch
US4712094A (en) Self-orienting passive marker structure
US4081639A (en) Liquid-level float switch construction
CA1070511A (en) Liquid level sensor
CA2057361C (en) Recovery system for submerged instrument
EP0354169A1 (en) Float switch
CA1075929A (en) Liquid level sensor
WO2007141824A2 (en) Protective container for a device, intended for an underground installation, or an installation immersed in a liquid, and sensor comprising said container
EP1249714A2 (en) Double-ended geophone
WO1986002444A1 (en) Apparatus for magnetic position determination
SE8903017L (en) The mare SENSOR
US3461722A (en) Electrode assembly for liquid level controllers
US4434650A (en) Hydrocarbon sensor float
AU1826688A (en) A non destructive testing device for an elongate magnetically conductive element
EP0082469A3 (en) Housing for receiving the electrical components required for switching a coil of a magnet of a hydraulic valve or the like
US4611105A (en) Device for the measurement of through-flow with potential-free end contact switch
US4902976A (en) Probe for detecting the presence of magnetic material in a ground hole
JPH05290698A (en) Float switch
GB2086053A (en) Sensing device
CA1182169A (en) Sensing device
JPH0718736B2 (en) Equipment water level sensor
US4265114A (en) Liquid level indicator for a reservoir
JPS57169823A (en) Liquid level controller

Legal Events

Date Code Title Description
MKEX Expiry