CA1069270A - Method of maintaining a liquid storage reservoir - Google Patents
Method of maintaining a liquid storage reservoirInfo
- Publication number
- CA1069270A CA1069270A CA318,986A CA318986A CA1069270A CA 1069270 A CA1069270 A CA 1069270A CA 318986 A CA318986 A CA 318986A CA 1069270 A CA1069270 A CA 1069270A
- Authority
- CA
- Canada
- Prior art keywords
- sheet
- reservoir
- cover
- chamber
- ballast
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Revetment (AREA)
Abstract
ABSTRACT OF THE DISCLOSURE
This invention relates to a method of maintaining a liquid storage reservoir having a floating flexible cover.
A peripheral envelope formed at least adjacent a portion of the peripheral edges of the floatable cover is adapted to be inflated with a compressible fluid, such as air, for proper tensioning of the cover as the level of the stored liquid varies in the reservoir and for preventing wrinkling of the cover. The peripheral envelope is adapted to be filled with a non-compressible fluid for providing a ballast for the cover while the reservoir is emptied during maintenance operations and the cover is inflatably supported for maintenance of the cover and/or reservoir.
This invention relates to a method of maintaining a liquid storage reservoir having a floating flexible cover.
A peripheral envelope formed at least adjacent a portion of the peripheral edges of the floatable cover is adapted to be inflated with a compressible fluid, such as air, for proper tensioning of the cover as the level of the stored liquid varies in the reservoir and for preventing wrinkling of the cover. The peripheral envelope is adapted to be filled with a non-compressible fluid for providing a ballast for the cover while the reservoir is emptied during maintenance operations and the cover is inflatably supported for maintenance of the cover and/or reservoir.
Description
Z7() 1 This application is a divisional of application 284,637 filed August 9, 1977.
Background of the Invention : ' The present invention relates to a method of maintaining a liquid storage reservoir having a floating flexible cover.
Floating covers for contained fluids, generally speaking, are well known in the prior art. Some of this art is directed towards fluids contained within a tank or vessel rather than a fluid to be contained in a reservoir. Numerous pa~ents such as United States Patent Nos. 3,228,702; 1,775,758; 1,712,321;
3,343,708; 3,016,814 are directed towards providing seals for floating coverings that engage the sides of a suitable tank.
Similarly, United States Patent Nos. 3,159,301 and 3,557,994 are directed towards floating diaphragms adapted to be used in various pressure tanks. Other non-floating types of diaphragm covers for tanks are disclosed in United States Patent Nos. 1,917,623 and 3,028,040. However, all of such prior art is directed towards floating structures that are contained within a substantially en-closed housing such as a tank or vessel. Such floating covers are ~0 not exposed to the adverse environmental conditions, such as wind, ice and water accumulations on the sur~aces thereof as well as the problems incumbent in providing floating structures for large expansive reservoirs rather than comparatively small storage tanks.
Floating covers, such as disclosed in United States Patent Nos. 3,462,040; 3,592,009; and, 3,740,902, have long been in use. However, a recurring problem that has plagued reservoir covers of the prior art is how to control the tension of the floating cover on the fluid while accommodating fluid elevational changes in a reservoir having sloping or tapered surfaces adjacent -~
;30 reservoir peripheries. In United States Patent Nos. 2,986,302 and -3,079,030, movable segmented sections are used to support the ' ~ .
. . . ': :
~6gZ70 1 floating cover as the fluid level experiences elevational variations. United States Patent 3,330,118 discloses the use of a plurality of circular floaters for supporting the cover o~
a sunken tank as the fluid varies in elevation while U.S. Patent No. 2,970,716 uses multiple sections in combination with pontoons to support the floating roof for an oil storage reservoir.
United States Patent No. 3,815,367 discloses the use of a complex tensioning line-arrangement for providing for the proper tension of a floating cover assembly for a reservoir to insure biasing thereof. Further, the present inventor disclosed in United States Patent Nos. 3,313,~43 and 3,667,641 floating cover arrangements which provide for a variety of drain configurations to prevent unwanted accumulation of li~uid on the upper surface of such a liquid storage reservoir cover in an effort to prevent damage due to the weight of unwanted liquid on the upper surface of the cover and/or the detrimental environmental effects due to freezing and the like. Further, United States Patent No.
3,736,754 discloses a combination two-cover assembly wherein one cover is used to float on the surface of the stored liquid while another roof is inflated thereover for protection of the floating roof. This dual roof assembly not only is expensive but requires maintenance on both the floating cover as well as the inflatable roof.
Not only is it important that a floatin~ cover have the proper tension thereon to prevent damage thereto as a result of high wind and/or water accumulations thereon, but also it is important to provide for ease in reservoir maintenance thereof without necessitating removal of the cover. Typically, prior art repairs and othler reservoir maintenance was accomplished by divers submerged in thle reservoir fluid below the reservoir cover~
However, no provisions are made in the prior art for providing an -'- . -:-
Background of the Invention : ' The present invention relates to a method of maintaining a liquid storage reservoir having a floating flexible cover.
Floating covers for contained fluids, generally speaking, are well known in the prior art. Some of this art is directed towards fluids contained within a tank or vessel rather than a fluid to be contained in a reservoir. Numerous pa~ents such as United States Patent Nos. 3,228,702; 1,775,758; 1,712,321;
3,343,708; 3,016,814 are directed towards providing seals for floating coverings that engage the sides of a suitable tank.
Similarly, United States Patent Nos. 3,159,301 and 3,557,994 are directed towards floating diaphragms adapted to be used in various pressure tanks. Other non-floating types of diaphragm covers for tanks are disclosed in United States Patent Nos. 1,917,623 and 3,028,040. However, all of such prior art is directed towards floating structures that are contained within a substantially en-closed housing such as a tank or vessel. Such floating covers are ~0 not exposed to the adverse environmental conditions, such as wind, ice and water accumulations on the sur~aces thereof as well as the problems incumbent in providing floating structures for large expansive reservoirs rather than comparatively small storage tanks.
Floating covers, such as disclosed in United States Patent Nos. 3,462,040; 3,592,009; and, 3,740,902, have long been in use. However, a recurring problem that has plagued reservoir covers of the prior art is how to control the tension of the floating cover on the fluid while accommodating fluid elevational changes in a reservoir having sloping or tapered surfaces adjacent -~
;30 reservoir peripheries. In United States Patent Nos. 2,986,302 and -3,079,030, movable segmented sections are used to support the ' ~ .
. . . ': :
~6gZ70 1 floating cover as the fluid level experiences elevational variations. United States Patent 3,330,118 discloses the use of a plurality of circular floaters for supporting the cover o~
a sunken tank as the fluid varies in elevation while U.S. Patent No. 2,970,716 uses multiple sections in combination with pontoons to support the floating roof for an oil storage reservoir.
United States Patent No. 3,815,367 discloses the use of a complex tensioning line-arrangement for providing for the proper tension of a floating cover assembly for a reservoir to insure biasing thereof. Further, the present inventor disclosed in United States Patent Nos. 3,313,~43 and 3,667,641 floating cover arrangements which provide for a variety of drain configurations to prevent unwanted accumulation of li~uid on the upper surface of such a liquid storage reservoir cover in an effort to prevent damage due to the weight of unwanted liquid on the upper surface of the cover and/or the detrimental environmental effects due to freezing and the like. Further, United States Patent No.
3,736,754 discloses a combination two-cover assembly wherein one cover is used to float on the surface of the stored liquid while another roof is inflated thereover for protection of the floating roof. This dual roof assembly not only is expensive but requires maintenance on both the floating cover as well as the inflatable roof.
Not only is it important that a floatin~ cover have the proper tension thereon to prevent damage thereto as a result of high wind and/or water accumulations thereon, but also it is important to provide for ease in reservoir maintenance thereof without necessitating removal of the cover. Typically, prior art repairs and othler reservoir maintenance was accomplished by divers submerged in thle reservoir fluid below the reservoir cover~
However, no provisions are made in the prior art for providing an -'- . -:-
- 2 ~
.. . . .
:- . ~.
~-~(:36~Z70 1 effective system of maintenance and repair of both the floating cover as well as the stoxage reservoir in combination with means for compensating for elevational changes of the fluid within the reservoir while providing the necessary tension on the reservoir cover.
Also, in the prior art, flexible and/or inflatable structures have been used for a wide variety of applications which include use in a variety o~ shelter or building configurations - such as those disclosed in Unitecl States Patent Nos. 3,924,363;
.. . . .
:- . ~.
~-~(:36~Z70 1 effective system of maintenance and repair of both the floating cover as well as the stoxage reservoir in combination with means for compensating for elevational changes of the fluid within the reservoir while providing the necessary tension on the reservoir cover.
Also, in the prior art, flexible and/or inflatable structures have been used for a wide variety of applications which include use in a variety o~ shelter or building configurations - such as those disclosed in Unitecl States Patent Nos. 3,924,363;
3,626,836; and 3,885,360 as well as an inflatable covering for swimming pools as disclosed in United States Patent No.3,918,221 and collapsible dams and damming methods as disclosed in Vnited States Patent No. 3,834,167.
Although these relate generally to inflatable structures, these are of little consequence in considering the requirements that must be met by a reservoir cover that must not only float on the surface of the reservoir fluid having a re~uired tensioning thereof but also have appropriate provisions for ease in reservoir .
or cover malntenance.
Summary of the Invention - : .
In one of its aspects, the present invention ~ .
provides a method for maintaining a liquid storage .-: ., reservoir having a floating flexible cover, comprising the :::
steps of substantially emptying the stored liquid from the reservoir having a floating impervious flexi~le cover thereon for forming a substantially enclosed empty chamber between the storage ~
reservoir and t:he flo~table cover, filling an envelope means .
attached to the marginal edge of said cover with a non-compressible fluid for provi~ding ballast for the floatable flexibl.e cover, and .
.~ 30 inflating the substantially enclosed chamber formed between the :-storage reservoir and the floatable flexible cover with a regulated -- ~.
.
6927(~
1 amount of compressible fluid by use of blower means in communi-cation with the chamber to enable access to the substantially enclosed chamber for inspection and repair of the storage reservoir below the cover.
Brief Description of the Drawings Fig. 1 is an isometric view of the floating cover assembly;
Fig. 2 is an isometric, sec~tional view of the sheet adapted to float on the surface of the stored liquid of the liquid storage reservoir, of the floating cover assembly;
Fig. 3 is a schematic elevational view of the liquid storage reservoir having the floating cover assembly for maintenance of the sheet and/or reservoir;
Fig. 4 is an elevational view of the floating cover assembly showing ballasting of the sheet during maintenance operations;
Fig. 5 is an elevational view of the floating cover assembly, showing tensioning of the sheet to eliminate formation ;;
of wrinkles in the sheet when floating on the surface of the level-varying liquid stored in the reservoir;
Fig. 6 is a sectional side view of the floating cover assembly having a center ballasted pneumatic support column;
Fig. 7 is a view similar to Fig. 6 and illustrating a ;
plurality of ballasted pneumatic support columns; - -Fig. 8 is a sectional side view of the ballasted pneumatic ` support column;
Fig. 9 is an isometric view of the floating cover in the inflated condition;
Fig. 10 is a sectional side view of a drain sump of the floating cover;and , : .:' ' :,
Although these relate generally to inflatable structures, these are of little consequence in considering the requirements that must be met by a reservoir cover that must not only float on the surface of the reservoir fluid having a re~uired tensioning thereof but also have appropriate provisions for ease in reservoir .
or cover malntenance.
Summary of the Invention - : .
In one of its aspects, the present invention ~ .
provides a method for maintaining a liquid storage .-: ., reservoir having a floating flexible cover, comprising the :::
steps of substantially emptying the stored liquid from the reservoir having a floating impervious flexi~le cover thereon for forming a substantially enclosed empty chamber between the storage ~
reservoir and t:he flo~table cover, filling an envelope means .
attached to the marginal edge of said cover with a non-compressible fluid for provi~ding ballast for the floatable flexibl.e cover, and .
.~ 30 inflating the substantially enclosed chamber formed between the :-storage reservoir and the floatable flexible cover with a regulated -- ~.
.
6927(~
1 amount of compressible fluid by use of blower means in communi-cation with the chamber to enable access to the substantially enclosed chamber for inspection and repair of the storage reservoir below the cover.
Brief Description of the Drawings Fig. 1 is an isometric view of the floating cover assembly;
Fig. 2 is an isometric, sec~tional view of the sheet adapted to float on the surface of the stored liquid of the liquid storage reservoir, of the floating cover assembly;
Fig. 3 is a schematic elevational view of the liquid storage reservoir having the floating cover assembly for maintenance of the sheet and/or reservoir;
Fig. 4 is an elevational view of the floating cover assembly showing ballasting of the sheet during maintenance operations;
Fig. 5 is an elevational view of the floating cover assembly, showing tensioning of the sheet to eliminate formation ;;
of wrinkles in the sheet when floating on the surface of the level-varying liquid stored in the reservoir;
Fig. 6 is a sectional side view of the floating cover assembly having a center ballasted pneumatic support column;
Fig. 7 is a view similar to Fig. 6 and illustrating a ;
plurality of ballasted pneumatic support columns; - -Fig. 8 is a sectional side view of the ballasted pneumatic ` support column;
Fig. 9 is an isometric view of the floating cover in the inflated condition;
Fig. 10 is a sectional side view of a drain sump of the floating cover;and , : .:' ' :,
- 4 - ~
.'. .~
` . ' :'.'' , . .: ,..
~69;~7~ ~
1 Fig. 11 is a sectional side view of another form of drain sump.
Description of the Preferred Embodiment Referring to the drawings, the letter C designates the floating cover assembly. The floating cover assembly C includes a sheet S adapted to be secured to a reservoir R by securing means M with the sheet S having envelope means E formed therewith for covering the liquid storage reservoir R.
The floating cover assembly C is adapted to be used in conjunction with a liquid storage reservoir R. Such liquid storage reservoirs R are well known in the art and may be of a variety of sizes and shapes as well as types of construction.
As shown shchematically in Fig. 3, the reservoir R may be formed of an excavated portion of a tract of land such that the reservoir R includes a reservolr floor 10, side walls 12 and berm 14.
Although the side walls 12 are illustrated as being inclined,they -~may be arranged vertically or otherwise formed as desired. The reservoir floor 10, side walls 12 and berm 14 may be formed of -~
; earth as shown in Fig. 3 or may have concrete wrappers lOa, 12a, ~ 14a, respectively (Figs. 4, 5). Alternatively, the wrappers - lOa, 12a, 14a may be of metal or any other suitable material.
The reservoir floor 10 will ordinarily be flat as shown in Fig. 3 and additionally, the inner surface of the reservoir may be lined with suitable fluid-impervious material such as a liner (not shown) formed of a flexible sheet material such as a rubber-coated fabric, multi-ply butyl rubber, nylon, polyvinyl chloride, or the like.
The liquid L to be stored in the liquid storage reservoix R may~ be supplied to and withdrawn from the reservoir R by any suitable or conventional means (not shown) and will normally be maintained at a predetermined level no greater than ~ . .
~6~70 1 the maximum level 16 (Fig. 3). The predetermined level may vary as described more full~ hereinbelow. Such normal level variations will,of course, be determined by the anticipated supply and re-moval of the stored li~uid L for which the reservoir R is pro-vided and may differ in every installation.
The cover assembly C of the present invention includes a sheet S. The sheet S is preferably formed of a flexible material which is impervious to the stored liquid L and will not be attacked by nor deteriorate in the presence of the stored liquid L in the reservoir R. Further, it is desired that the sheet S be adapted to float on the surface of the stored liquid L. Preferably, the sheet S may be formed of a laminated rubber or plastic cover material 18 as shown in Fig. 2. The laminated cover material 18 is preferably formed of an upper layer 18a and a lower layer 18b mounted there-with and which may be formed o~ different rubber or plastic materials. Preferably, the upper layer 18a is adapted to be ex-; posed to the adverse environmental conditions surrounding the reservoir R, such as rain, wind, ice, heat and the like without deterioration thereof. Preferably, the upper layer 18a is formed of a material such as that sold under the trademark "Hypalon",by the Dupont Company, further having a reinforcement filament 18c formed of polyester to add strength to the upper layer 18a.
Preferably, the lower layer 18b is formed of a closed cell ;
polyethylene foam with the lower layer 18b being laminated to ;
upper layer 18a at interface 18d. As such, the lower layer -18~ acts to floatably support itself as well as the upper layer 18a on the stored liquid L within the reservoir R.
. . .
Typically, the stored liquid L is water, however, the reservoir R may contain oil, hydrocarbons or other liquids and consequently, the sheet S must be appropriately formed - 6 -~
.
: .
.. . .
~6927() 1 of a material that is not only impervious to the stored liquid L ~ut also will float on such liquid.
The floating roof material 18 is selected and designed to be inflated as well as to float. The material must also be lightweight to balloon when inflated with a relatively low air pressure in the range of 1-3 lbs. per square foot. The con-tinuous form layer will prevent a section of the roof to sink i~ the material 18 is inadvertently punc~ured and will also serve to insulate the water in the reservoir from undesired extremes io of cold and heat.
The sheet S includes a peripheral edge 20 adapted to be secured to the berm 14 of the reservoir R by securing means M.
The securing means ~ may include an appropriate cleat or fastener 22 which may be embedded in the concrete wrapper 14a of the berm 14 for securing the sheet S thereto adjacent the peripheral edge 20 thereof. The sheet S for the reservoir R should have an area which is greater than the area of the reservoir R where the securing means M for the sheet S are located.
The floatable cover assembly C of the present invention further includes envelope means E formed with the sheet S at least adjacent a portion of the peripheral edge 20 and preferably of~ the cover material 18. The envelope means E includes i envelope 24 formed of an upper portion 24a and a lower portion 24b which preferably is formed of the same material as the laminated cover material 18. The envelope means E is preferably loc~ted adjacent the berm 14 of the reservoir R therebetween the peripheral edge 20 of the sheet S and the interior cover ~` ~ portion 26 at t:he marginal edge 26a thereof. It should be , recognized that: if there should be a portion of the sheet S
not having an envelope means E therewith, then the marginal edge : '~ . ' ' ' :
, . .
......... . .. : . . .. .
~369Z70 1 26a of the sheet S will act as the peripheral edge 20 to be secured to the berm 14 and fasteners 22 therewith. Alternatively, if the envelope means E is in fact therebetween the marginal edge 26a of the interior cover portion 26 and the peripheral eage 20, then the envelope means E will preferably be formed as shown in Figs. 4 and 5 of porti.ons 24a, 24b. The upper portion 24a and lower portion 24b are appropriately a-ffixed or bonded to the marginal edge 26a in fluid-tight engagement adjacent the bonding edge schematically represented at 28 (Figs. 4, 5). Similarly, upper portion 24a and lower portion 24b of envelope 24 are bonded or suitably affixed theretogether in fluid-tight engagement adjacent the peripheral edge 20 at schematic location 30.
The envelope means E is further formed having at least one inlet port 32 and at least one outlet port 34. The ports - 32, 34 are adapted to be opened and closed and in the closed position, provide a fluid-tight seal with the interior portion 36 of the envelope means E. -Valve means V is mounted with envelope means E pre- ~-ferably adjacent inlet port 32 in communication with the interior portion 36 o the envelope means E. The valve means ~ acts to regulate the amount of compressible fluid within the envelope :
means E as discussed more fully hereinbelow.
~ In the use or operation of one form of the cover assembly i C of the present invention, the cover assembly C is to provide for proper tensioning of the floating sheet S wherein the surface level of the stored liquid in the liquid storage reservoir R varies. The sheet S is disposed on the stored liquid L ln the reservoir R with the peripheral edge 20 being secured to the berm 14 of the reservoir R by securing means M and having .
..
.
~ti927~
1 envelope means E therewith at least adjacent a portion of the peripheral edge 20 of the sheet S. The envelope means E is adapted to be filled with a compressible fluid such as air, or any suitable gas, for expanding the envelope means E as shown in Fig. 5. The expansion or balloonin~ action of the envelope --means E contracts the sheet S resulting in tensioning of the interior cover portion 26 to eliminate the formation of wrinkles in the sheet S when floating on the surface of the level-varying liquid stored in the reservoir R. Thus, the envelope means E
is expanded in balloon-like fashion to result in a lateral tensioning force on the sheet S tending to stretch the sheet S
outwardly whereby wrinkles and cavities in the sur~ace of the sheet S will be reduced facilitating flow of rain and water from melting snow off of the sheet S towards an appropriate drain during adverse environmental conditions while also preventing pooling of fluid on the exterior surface thereof. The pre-vention of wrinkles results in facilitating the removal of any accumulation and retained liquid on the surface of the sheet S
which helps facilitate the reduction of stresses and strains on the laminated cover material 18.
The envelope means E is inflated to a desired amount to ensure such proper, lateral tensioning of the sheet ~ to --~
eliminate the ormation of wrinkles in the sheet S when floating on the surface of the stored liquid L in the reservoir R. As the liquid level varies, it may be necessary to add or remove compressible fluid from within the envelope means E. As shown in Fig. 5, the envelope means E is at a high level of stored liquid L as indicated at position 38. Should the stored liquid L level drop to that such as indicated at position 40, additional laterial tension is effectuated upon the sheet S. This increased ':'~ . ' ' .' :
~ ' " ''' ' 1 lateral tension tends to ~latten the envelope means E therefore increasing the pressure of the compressible fluid within the interior portion 36 of the envelope means E. Should this pressure increase overcome a predetermined pressure release setting within the valve means V, the valve means V acts to re-lease the excess pressure in a "pop-off" valve fashion to effectuate release of such excess pressure build-ups within the envelope means E, but only reducing the pressure within the interior portion 36 to.that of the predetermined amount.
Thus, with the envelope means E in a position such as ihat designated at ~2 on stored liquid level indicated at 40, the internal pressure within the interior portion 36 is sub-~; stantially the same as that of the envelope means E as posltioned :
at the high level stored liquid position 3~, while retaining :
substantially the same tensioning on the sheet S. Th.is results in the sheet S being of substantially a uniform tension while . .
the liquid level of the stored liquid in the reservoir R is .
of a changing nature. . . .
Similarly, should the stored liquid L fall to a 20 position indicated at level 44, the tension on the sheet S ~ .. .
` increases, further compressing the interior portion 36 of the envelope means E to such a position as.noted at 46 wherein the valve means V again vents the excess pressure within the interior portion 36 such that the appropriate non-compressible fluid .
pressure within the envelope means E remains substantially the same to insure a proper tensioning of the sheet S as the liquid continues to vary. Should the liquid level rise from that of level 44 to that of level 40, it would be necessary to add or increase the amount of compressible fluid within the envelope means E by supplying such through inlet port 32 in an appropriate . . ' .
.. . : ' - 10 - , ;,,, .~ . ; ' '.
.. .... .. :. -.`:' 69Z7~
1 fashion to thereagain assure proper tensioning of the sheet S.
Further, it should be noted that the sheet S may have plural envelopes E about the peripheral edge thereof, shown schematically in Fig. 6 for sheets S havi.ng extremely large surface areas and where one envelope means E is not sufficient to provide the proper tensioning of such a shee-t S.
The cover assembly C of the present invention may be effectively incorporated for properly maintaining the liquid storage reservoir R and shee-t S for maintenance thereof should the reservoir R and/or sheet S require maintenance thereof.
During such a maintenance operation, it is preferred that the :
reservoir R be drained of stored li~uid L by any appropriate - conventional means (not shown). Thereafter, the envelope means E, as shown in Fig. 4, is appropriately filled through inlet port 32 with any suitable non-compressible fluid 48 such as ~ water, or any other desired fluid resulting in the envelope ~
means E resting upon the concrete wrapping 12a of side walls 12 dueto the weight of the fluid 48 within the envelope means E.
: Thereafter, blower means B, which may be of any suitable high-20 capacity blower 49 or the like, is connected with the sheet S
by port 50 and flexible hose 52 therebetween such port 50 and the blower means B. The blower means B is appropriately en-ergized resulting in the movement of compressible fluid, such - as air, from the blower means B under pressure through the - flexible hose 52 into port 50 and thereinto a cavity 54 formed therebetween the reservoir R and the lower surface of the sheet . S, resulting in inflation of the sheet S which is heretofore : ~ .
: unsupported due to the stored liquid having been drained. The .blower means B results in the sheet S being inflated to permit inspection and repair of the sheet S and cleanout of the storage ~ :
'' -- 11 -- ..
~69270 1 reservoir R. The envelope means E being filled with the non-compressible fluid 48 acts as a ballast about the peripheral edge 20 of the sheet S to prevent the sheet S from flapping in an unwielding fashion which could damage, tear, rupture and/or destroy the sheet S while being in such an inflatably supported position. It is desired that the sheet S be at substantially the same elevation as the berm 14 of the reservoir R to prevent any undue wind damage to the sheet S during such maintenance operations. The reservoir R and the lower surface of the sheet S may be accessed by an appropriate access hatch mounted with the sheet S. Thus, the sheet S and reservoir R may be duly inspected, repairod or otherwise maintained without the neecl of divers or other aquatic gear which has heretofore been the maintenance procedure of the prior art.
Should the sheet S be of a significantly expansive size, it may be necessary to provide one or more intermediate ; ballasts 58 to prevent the sheet S from extending significantly thereabove the berm 14 of the reser~oir R which could caùse wind damage to the sheet S. The intermediate ballast 58 may include one or more ballast arrangements of any suitable size, shape and/or weight in order that the sheet S may be kept substantially the same as that of the elevation of the berm 1~
of the reservoir R. The intermediate ballast 58 is preferably ` of a plastic tube adapted to be filled with fluid such as water so that the ballast may be positioned, then filled with water during maintenance operations, and thereafter be drained to eliminate the need in moving heavy intermediate ballasts 58 .~ , . . .
about the sheet S prior to positioning same for proper maintenance operations.
The envelopes E as filled with fluid 48 help to ' .
~ . .
.
:" ',-" .
1 keep a proper tensioning of the sheet S while bein~ supported by the fluid pressure generated by the blower means B and help to prevent damage to the sheet S in its expanded, inflatably supported configuration. For example, the sheet S as shown in Fig. 4, upon draining of the reservoir R, results in the sheet overlying the concrete wrapping 12a of the sloping sides 12 of the reservoir R whereinafter being inflated, the sheet S
moves to a position such as that indicated by dotted lines at position 60 or in such a configuration as schematically shown in Fig. 3. Thus, the cover assembly C of the present invention provides for a method and apparatus for properly maintaining the reservoir R and sheet S during the maintenance operations thereof. After maintenance operations have been completed, preferably, the blower means B is removed and the non-compressible fluid ~8 is drained from the envelope means E by means of out-let port 34 being released and/or the fluid 48 being pumped outwardly from the interior portion 36 of the envelope means E
through the inlet port 32 and outwardly therefrom. Thereafter, the reservoir R is preferably again filled with liquid to be stored therein and the sheet S is thereafter tensioned by in-flating the envelope means E of the sheet S with a compressible fluid to thereafter tension the sheet S as it floatably over~ies the stored liquid L in accordance with the hereinabove described -procedures to prevent the formation of wrinkles on the sheet S
for protecting the same.
Thus, the cover assembly C of the present invention proYides not only the means and method for appropriately tensioning a sheet S on the stored li~uid L of a storage reservoir R but also provides for ease of access, maintenance and repàir ~-of the sheet S and reservoir R during maintenance operations thereof~
., ~ .'- : ' , .. . . . ...
,9Z70 1 Modified foam cover assembly of the present invention is illustrated as C-l in Fig. 6 and 9 havin~ a single center ballast pneumatic support column, generally designated X
for both supportin~ and ballasting the sheet S when the cover assembly C-l is in the inflated condition as illustrated. Another modified cover assembly C-2 is illustrated in Fig. 7 having a plurality of the ballasted pneumatic support columns X.
As best illustrated in Fig. 8, the ballasted pneumatic support column X is secured to the underside of the sheet at ~ 60. The support column X may be secured by sewing, glueing or the like and as illustrated in Fig. 9 extends substantially across the reservoir R.
The pneumatic support column X includes a lower enclosed ballast chamber 62 and an upper pneumatic chamber 64.
The lower or ballast chamber 62 is formed of a material im-pervious to water and preferably extends beyond the ends of the upper chamber 6~ a short distance for a purpose to be described hereinafter. The upper chamber 64 is also formed of a flexible material and in addition to being secured with the roof S at .
10 is secured on opposite sides of the lower tubular reservoir 62 at 66a and 66b. The flexible material 64 is preferably formed with a foam floa~tion characteristic in order that the sheet 64 will float adjacent the sheet S when the pneumatic support column is in the inoperative condition and the reservoir R is full of water~ Suitable connections 67 are provided for ; communicating with a supply of air to an auxiliary blower AB
as illustrated in Fig. 9. With the ends of the chamber closed pneumatic pressure in the support column X will be greater than that under the roof S and will tend to provide a support column at that point on the sheet S. The water ballast in the - 14 - `
. '' '' ,:
.
, , : : -1~692~
1 lower chamber will of course prevent the lifting oE the sheet S and the pneumatic support column X from the ~loor 10 of the reservoir R.
It will be apparent to those skilled in the art that other means than those illustrated herein may be used to ballast the cover. For instance, the ballast chamber 62 may be att~ched to the cover by flexible lines or a single sheet of material which will enable the cover to inflate sufficiently to provide adequate worker access to the reservoir.
1~ As mentioned previously the enclosed ends of the lower ballast chamber protrude slightly beyond the pneumatic support column chamber 64. This is done to provide access to the -ballast chamber 62 for controlling the filling of the ballast.
When the roof is in the normal operating condition floating on the liquid reservoir the foam cover 64 will pull the opening in the top of the ballast chamber 62 extending beyond the chamber 64 adjacent the sheet S. A zippered opening or access port in the sheet S is provided adjacent this fill point and when it is desired to maintain the reservoir using the pneumatic column X these access ports to be closed to contain the water normally present therein when the reservoir R is drained of the liquid L. When the sheet S is in the floating condition these ports are left open and the water is left free to flow in and ~ -out of the ballast chamber 62.
To prevent an undesired accumulation of rain water and the like on the upper side of the cover apparatus A one or ;
more drain sumps DS may be provided as illustrated in 51. The drain sumps DS provide a gathering spot for the rainwater as well as providing for the elimination of the rainwater from the top of the cover where it could possibly contaminate the liquid L in the reservoir R.
` ~ ' . . " , : ' ;,:
2'7~
1 The drain sump DS as best illustrated in Fig. lO is provided with sides 72 and 7~ made of impervious ~lexible material, The bottom or floor 76 of the drain sump DS is,also made of impervious material and is preferably ballasted to hold the bottom 76 in a position below the sheet S in order that the water will drain into the pocket 78 formed by the drain sump ~S.
To remove the rainwater from the pocket 78 of the drain sump DS a pump 80,may be positioned in the pocket 78 to remove the water preferably a submersible type electrically driven pump is used with electrical connection 82 being connected to a source of electrical power. Also, jet pumps or aductors may be employed as illustrated in Fig. l.
' In Fig. l a source of fluid under pressure is provided , such as by pump 84 is separated into two flowlines 86a and 86b. ~ '' As illustrated in ~ig. ll the conduit 86a extends out-wardly on the cover S until it reaches drain sump DS. An , ' aductor or jet pump is connected into conduit 86a in tne drain , sump DS. The aductor 88 discharge may then be run to the edge of the reservoir to a discharge location or it may be run to 20 another drain sump as illustrated in Fig. l. The aductor 88 ','' ' is provided with a suitable backflow valve 90 in the conduit ,'~
86a and a foot valve 92 on the inlet of the aductor 88 for the '' :.,: :
fluid to be evacuated from the drain sump DS. Such arrangementof using a jet pump is old and well known to those skilled in the art. ~, The foregoing disclosure and description of the ,' invention are illustrative and explanatory thereof, and various , ' ' changes in the size, shape and materials as well as in the details -~, ',' of the illustrated construction may be made without departing ' , ' from the spirit of the invention.
.
' ' ' , . ' :: .
~. . .. .. . ~ . .
.'. .~
` . ' :'.'' , . .: ,..
~69;~7~ ~
1 Fig. 11 is a sectional side view of another form of drain sump.
Description of the Preferred Embodiment Referring to the drawings, the letter C designates the floating cover assembly. The floating cover assembly C includes a sheet S adapted to be secured to a reservoir R by securing means M with the sheet S having envelope means E formed therewith for covering the liquid storage reservoir R.
The floating cover assembly C is adapted to be used in conjunction with a liquid storage reservoir R. Such liquid storage reservoirs R are well known in the art and may be of a variety of sizes and shapes as well as types of construction.
As shown shchematically in Fig. 3, the reservoir R may be formed of an excavated portion of a tract of land such that the reservoir R includes a reservolr floor 10, side walls 12 and berm 14.
Although the side walls 12 are illustrated as being inclined,they -~may be arranged vertically or otherwise formed as desired. The reservoir floor 10, side walls 12 and berm 14 may be formed of -~
; earth as shown in Fig. 3 or may have concrete wrappers lOa, 12a, ~ 14a, respectively (Figs. 4, 5). Alternatively, the wrappers - lOa, 12a, 14a may be of metal or any other suitable material.
The reservoir floor 10 will ordinarily be flat as shown in Fig. 3 and additionally, the inner surface of the reservoir may be lined with suitable fluid-impervious material such as a liner (not shown) formed of a flexible sheet material such as a rubber-coated fabric, multi-ply butyl rubber, nylon, polyvinyl chloride, or the like.
The liquid L to be stored in the liquid storage reservoix R may~ be supplied to and withdrawn from the reservoir R by any suitable or conventional means (not shown) and will normally be maintained at a predetermined level no greater than ~ . .
~6~70 1 the maximum level 16 (Fig. 3). The predetermined level may vary as described more full~ hereinbelow. Such normal level variations will,of course, be determined by the anticipated supply and re-moval of the stored li~uid L for which the reservoir R is pro-vided and may differ in every installation.
The cover assembly C of the present invention includes a sheet S. The sheet S is preferably formed of a flexible material which is impervious to the stored liquid L and will not be attacked by nor deteriorate in the presence of the stored liquid L in the reservoir R. Further, it is desired that the sheet S be adapted to float on the surface of the stored liquid L. Preferably, the sheet S may be formed of a laminated rubber or plastic cover material 18 as shown in Fig. 2. The laminated cover material 18 is preferably formed of an upper layer 18a and a lower layer 18b mounted there-with and which may be formed o~ different rubber or plastic materials. Preferably, the upper layer 18a is adapted to be ex-; posed to the adverse environmental conditions surrounding the reservoir R, such as rain, wind, ice, heat and the like without deterioration thereof. Preferably, the upper layer 18a is formed of a material such as that sold under the trademark "Hypalon",by the Dupont Company, further having a reinforcement filament 18c formed of polyester to add strength to the upper layer 18a.
Preferably, the lower layer 18b is formed of a closed cell ;
polyethylene foam with the lower layer 18b being laminated to ;
upper layer 18a at interface 18d. As such, the lower layer -18~ acts to floatably support itself as well as the upper layer 18a on the stored liquid L within the reservoir R.
. . .
Typically, the stored liquid L is water, however, the reservoir R may contain oil, hydrocarbons or other liquids and consequently, the sheet S must be appropriately formed - 6 -~
.
: .
.. . .
~6927() 1 of a material that is not only impervious to the stored liquid L ~ut also will float on such liquid.
The floating roof material 18 is selected and designed to be inflated as well as to float. The material must also be lightweight to balloon when inflated with a relatively low air pressure in the range of 1-3 lbs. per square foot. The con-tinuous form layer will prevent a section of the roof to sink i~ the material 18 is inadvertently punc~ured and will also serve to insulate the water in the reservoir from undesired extremes io of cold and heat.
The sheet S includes a peripheral edge 20 adapted to be secured to the berm 14 of the reservoir R by securing means M.
The securing means ~ may include an appropriate cleat or fastener 22 which may be embedded in the concrete wrapper 14a of the berm 14 for securing the sheet S thereto adjacent the peripheral edge 20 thereof. The sheet S for the reservoir R should have an area which is greater than the area of the reservoir R where the securing means M for the sheet S are located.
The floatable cover assembly C of the present invention further includes envelope means E formed with the sheet S at least adjacent a portion of the peripheral edge 20 and preferably of~ the cover material 18. The envelope means E includes i envelope 24 formed of an upper portion 24a and a lower portion 24b which preferably is formed of the same material as the laminated cover material 18. The envelope means E is preferably loc~ted adjacent the berm 14 of the reservoir R therebetween the peripheral edge 20 of the sheet S and the interior cover ~` ~ portion 26 at t:he marginal edge 26a thereof. It should be , recognized that: if there should be a portion of the sheet S
not having an envelope means E therewith, then the marginal edge : '~ . ' ' ' :
, . .
......... . .. : . . .. .
~369Z70 1 26a of the sheet S will act as the peripheral edge 20 to be secured to the berm 14 and fasteners 22 therewith. Alternatively, if the envelope means E is in fact therebetween the marginal edge 26a of the interior cover portion 26 and the peripheral eage 20, then the envelope means E will preferably be formed as shown in Figs. 4 and 5 of porti.ons 24a, 24b. The upper portion 24a and lower portion 24b are appropriately a-ffixed or bonded to the marginal edge 26a in fluid-tight engagement adjacent the bonding edge schematically represented at 28 (Figs. 4, 5). Similarly, upper portion 24a and lower portion 24b of envelope 24 are bonded or suitably affixed theretogether in fluid-tight engagement adjacent the peripheral edge 20 at schematic location 30.
The envelope means E is further formed having at least one inlet port 32 and at least one outlet port 34. The ports - 32, 34 are adapted to be opened and closed and in the closed position, provide a fluid-tight seal with the interior portion 36 of the envelope means E. -Valve means V is mounted with envelope means E pre- ~-ferably adjacent inlet port 32 in communication with the interior portion 36 o the envelope means E. The valve means ~ acts to regulate the amount of compressible fluid within the envelope :
means E as discussed more fully hereinbelow.
~ In the use or operation of one form of the cover assembly i C of the present invention, the cover assembly C is to provide for proper tensioning of the floating sheet S wherein the surface level of the stored liquid in the liquid storage reservoir R varies. The sheet S is disposed on the stored liquid L ln the reservoir R with the peripheral edge 20 being secured to the berm 14 of the reservoir R by securing means M and having .
..
.
~ti927~
1 envelope means E therewith at least adjacent a portion of the peripheral edge 20 of the sheet S. The envelope means E is adapted to be filled with a compressible fluid such as air, or any suitable gas, for expanding the envelope means E as shown in Fig. 5. The expansion or balloonin~ action of the envelope --means E contracts the sheet S resulting in tensioning of the interior cover portion 26 to eliminate the formation of wrinkles in the sheet S when floating on the surface of the level-varying liquid stored in the reservoir R. Thus, the envelope means E
is expanded in balloon-like fashion to result in a lateral tensioning force on the sheet S tending to stretch the sheet S
outwardly whereby wrinkles and cavities in the sur~ace of the sheet S will be reduced facilitating flow of rain and water from melting snow off of the sheet S towards an appropriate drain during adverse environmental conditions while also preventing pooling of fluid on the exterior surface thereof. The pre-vention of wrinkles results in facilitating the removal of any accumulation and retained liquid on the surface of the sheet S
which helps facilitate the reduction of stresses and strains on the laminated cover material 18.
The envelope means E is inflated to a desired amount to ensure such proper, lateral tensioning of the sheet ~ to --~
eliminate the ormation of wrinkles in the sheet S when floating on the surface of the stored liquid L in the reservoir R. As the liquid level varies, it may be necessary to add or remove compressible fluid from within the envelope means E. As shown in Fig. 5, the envelope means E is at a high level of stored liquid L as indicated at position 38. Should the stored liquid L level drop to that such as indicated at position 40, additional laterial tension is effectuated upon the sheet S. This increased ':'~ . ' ' .' :
~ ' " ''' ' 1 lateral tension tends to ~latten the envelope means E therefore increasing the pressure of the compressible fluid within the interior portion 36 of the envelope means E. Should this pressure increase overcome a predetermined pressure release setting within the valve means V, the valve means V acts to re-lease the excess pressure in a "pop-off" valve fashion to effectuate release of such excess pressure build-ups within the envelope means E, but only reducing the pressure within the interior portion 36 to.that of the predetermined amount.
Thus, with the envelope means E in a position such as ihat designated at ~2 on stored liquid level indicated at 40, the internal pressure within the interior portion 36 is sub-~; stantially the same as that of the envelope means E as posltioned :
at the high level stored liquid position 3~, while retaining :
substantially the same tensioning on the sheet S. Th.is results in the sheet S being of substantially a uniform tension while . .
the liquid level of the stored liquid in the reservoir R is .
of a changing nature. . . .
Similarly, should the stored liquid L fall to a 20 position indicated at level 44, the tension on the sheet S ~ .. .
` increases, further compressing the interior portion 36 of the envelope means E to such a position as.noted at 46 wherein the valve means V again vents the excess pressure within the interior portion 36 such that the appropriate non-compressible fluid .
pressure within the envelope means E remains substantially the same to insure a proper tensioning of the sheet S as the liquid continues to vary. Should the liquid level rise from that of level 44 to that of level 40, it would be necessary to add or increase the amount of compressible fluid within the envelope means E by supplying such through inlet port 32 in an appropriate . . ' .
.. . : ' - 10 - , ;,,, .~ . ; ' '.
.. .... .. :. -.`:' 69Z7~
1 fashion to thereagain assure proper tensioning of the sheet S.
Further, it should be noted that the sheet S may have plural envelopes E about the peripheral edge thereof, shown schematically in Fig. 6 for sheets S havi.ng extremely large surface areas and where one envelope means E is not sufficient to provide the proper tensioning of such a shee-t S.
The cover assembly C of the present invention may be effectively incorporated for properly maintaining the liquid storage reservoir R and shee-t S for maintenance thereof should the reservoir R and/or sheet S require maintenance thereof.
During such a maintenance operation, it is preferred that the :
reservoir R be drained of stored li~uid L by any appropriate - conventional means (not shown). Thereafter, the envelope means E, as shown in Fig. 4, is appropriately filled through inlet port 32 with any suitable non-compressible fluid 48 such as ~ water, or any other desired fluid resulting in the envelope ~
means E resting upon the concrete wrapping 12a of side walls 12 dueto the weight of the fluid 48 within the envelope means E.
: Thereafter, blower means B, which may be of any suitable high-20 capacity blower 49 or the like, is connected with the sheet S
by port 50 and flexible hose 52 therebetween such port 50 and the blower means B. The blower means B is appropriately en-ergized resulting in the movement of compressible fluid, such - as air, from the blower means B under pressure through the - flexible hose 52 into port 50 and thereinto a cavity 54 formed therebetween the reservoir R and the lower surface of the sheet . S, resulting in inflation of the sheet S which is heretofore : ~ .
: unsupported due to the stored liquid having been drained. The .blower means B results in the sheet S being inflated to permit inspection and repair of the sheet S and cleanout of the storage ~ :
'' -- 11 -- ..
~69270 1 reservoir R. The envelope means E being filled with the non-compressible fluid 48 acts as a ballast about the peripheral edge 20 of the sheet S to prevent the sheet S from flapping in an unwielding fashion which could damage, tear, rupture and/or destroy the sheet S while being in such an inflatably supported position. It is desired that the sheet S be at substantially the same elevation as the berm 14 of the reservoir R to prevent any undue wind damage to the sheet S during such maintenance operations. The reservoir R and the lower surface of the sheet S may be accessed by an appropriate access hatch mounted with the sheet S. Thus, the sheet S and reservoir R may be duly inspected, repairod or otherwise maintained without the neecl of divers or other aquatic gear which has heretofore been the maintenance procedure of the prior art.
Should the sheet S be of a significantly expansive size, it may be necessary to provide one or more intermediate ; ballasts 58 to prevent the sheet S from extending significantly thereabove the berm 14 of the reser~oir R which could caùse wind damage to the sheet S. The intermediate ballast 58 may include one or more ballast arrangements of any suitable size, shape and/or weight in order that the sheet S may be kept substantially the same as that of the elevation of the berm 1~
of the reservoir R. The intermediate ballast 58 is preferably ` of a plastic tube adapted to be filled with fluid such as water so that the ballast may be positioned, then filled with water during maintenance operations, and thereafter be drained to eliminate the need in moving heavy intermediate ballasts 58 .~ , . . .
about the sheet S prior to positioning same for proper maintenance operations.
The envelopes E as filled with fluid 48 help to ' .
~ . .
.
:" ',-" .
1 keep a proper tensioning of the sheet S while bein~ supported by the fluid pressure generated by the blower means B and help to prevent damage to the sheet S in its expanded, inflatably supported configuration. For example, the sheet S as shown in Fig. 4, upon draining of the reservoir R, results in the sheet overlying the concrete wrapping 12a of the sloping sides 12 of the reservoir R whereinafter being inflated, the sheet S
moves to a position such as that indicated by dotted lines at position 60 or in such a configuration as schematically shown in Fig. 3. Thus, the cover assembly C of the present invention provides for a method and apparatus for properly maintaining the reservoir R and sheet S during the maintenance operations thereof. After maintenance operations have been completed, preferably, the blower means B is removed and the non-compressible fluid ~8 is drained from the envelope means E by means of out-let port 34 being released and/or the fluid 48 being pumped outwardly from the interior portion 36 of the envelope means E
through the inlet port 32 and outwardly therefrom. Thereafter, the reservoir R is preferably again filled with liquid to be stored therein and the sheet S is thereafter tensioned by in-flating the envelope means E of the sheet S with a compressible fluid to thereafter tension the sheet S as it floatably over~ies the stored liquid L in accordance with the hereinabove described -procedures to prevent the formation of wrinkles on the sheet S
for protecting the same.
Thus, the cover assembly C of the present invention proYides not only the means and method for appropriately tensioning a sheet S on the stored li~uid L of a storage reservoir R but also provides for ease of access, maintenance and repàir ~-of the sheet S and reservoir R during maintenance operations thereof~
., ~ .'- : ' , .. . . . ...
,9Z70 1 Modified foam cover assembly of the present invention is illustrated as C-l in Fig. 6 and 9 havin~ a single center ballast pneumatic support column, generally designated X
for both supportin~ and ballasting the sheet S when the cover assembly C-l is in the inflated condition as illustrated. Another modified cover assembly C-2 is illustrated in Fig. 7 having a plurality of the ballasted pneumatic support columns X.
As best illustrated in Fig. 8, the ballasted pneumatic support column X is secured to the underside of the sheet at ~ 60. The support column X may be secured by sewing, glueing or the like and as illustrated in Fig. 9 extends substantially across the reservoir R.
The pneumatic support column X includes a lower enclosed ballast chamber 62 and an upper pneumatic chamber 64.
The lower or ballast chamber 62 is formed of a material im-pervious to water and preferably extends beyond the ends of the upper chamber 6~ a short distance for a purpose to be described hereinafter. The upper chamber 64 is also formed of a flexible material and in addition to being secured with the roof S at .
10 is secured on opposite sides of the lower tubular reservoir 62 at 66a and 66b. The flexible material 64 is preferably formed with a foam floa~tion characteristic in order that the sheet 64 will float adjacent the sheet S when the pneumatic support column is in the inoperative condition and the reservoir R is full of water~ Suitable connections 67 are provided for ; communicating with a supply of air to an auxiliary blower AB
as illustrated in Fig. 9. With the ends of the chamber closed pneumatic pressure in the support column X will be greater than that under the roof S and will tend to provide a support column at that point on the sheet S. The water ballast in the - 14 - `
. '' '' ,:
.
, , : : -1~692~
1 lower chamber will of course prevent the lifting oE the sheet S and the pneumatic support column X from the ~loor 10 of the reservoir R.
It will be apparent to those skilled in the art that other means than those illustrated herein may be used to ballast the cover. For instance, the ballast chamber 62 may be att~ched to the cover by flexible lines or a single sheet of material which will enable the cover to inflate sufficiently to provide adequate worker access to the reservoir.
1~ As mentioned previously the enclosed ends of the lower ballast chamber protrude slightly beyond the pneumatic support column chamber 64. This is done to provide access to the -ballast chamber 62 for controlling the filling of the ballast.
When the roof is in the normal operating condition floating on the liquid reservoir the foam cover 64 will pull the opening in the top of the ballast chamber 62 extending beyond the chamber 64 adjacent the sheet S. A zippered opening or access port in the sheet S is provided adjacent this fill point and when it is desired to maintain the reservoir using the pneumatic column X these access ports to be closed to contain the water normally present therein when the reservoir R is drained of the liquid L. When the sheet S is in the floating condition these ports are left open and the water is left free to flow in and ~ -out of the ballast chamber 62.
To prevent an undesired accumulation of rain water and the like on the upper side of the cover apparatus A one or ;
more drain sumps DS may be provided as illustrated in 51. The drain sumps DS provide a gathering spot for the rainwater as well as providing for the elimination of the rainwater from the top of the cover where it could possibly contaminate the liquid L in the reservoir R.
` ~ ' . . " , : ' ;,:
2'7~
1 The drain sump DS as best illustrated in Fig. lO is provided with sides 72 and 7~ made of impervious ~lexible material, The bottom or floor 76 of the drain sump DS is,also made of impervious material and is preferably ballasted to hold the bottom 76 in a position below the sheet S in order that the water will drain into the pocket 78 formed by the drain sump ~S.
To remove the rainwater from the pocket 78 of the drain sump DS a pump 80,may be positioned in the pocket 78 to remove the water preferably a submersible type electrically driven pump is used with electrical connection 82 being connected to a source of electrical power. Also, jet pumps or aductors may be employed as illustrated in Fig. l.
' In Fig. l a source of fluid under pressure is provided , such as by pump 84 is separated into two flowlines 86a and 86b. ~ '' As illustrated in ~ig. ll the conduit 86a extends out-wardly on the cover S until it reaches drain sump DS. An , ' aductor or jet pump is connected into conduit 86a in tne drain , sump DS. The aductor 88 discharge may then be run to the edge of the reservoir to a discharge location or it may be run to 20 another drain sump as illustrated in Fig. l. The aductor 88 ','' ' is provided with a suitable backflow valve 90 in the conduit ,'~
86a and a foot valve 92 on the inlet of the aductor 88 for the '' :.,: :
fluid to be evacuated from the drain sump DS. Such arrangementof using a jet pump is old and well known to those skilled in the art. ~, The foregoing disclosure and description of the ,' invention are illustrative and explanatory thereof, and various , ' ' changes in the size, shape and materials as well as in the details -~, ',' of the illustrated construction may be made without departing ' , ' from the spirit of the invention.
.
' ' ' , . ' :: .
~. . .. .. . ~ . .
Claims (10)
1. A method for maintaining a liquid storage reservoir having a floating flexible cover, comprising the steps of:
substantially emptying the stored liquid from the reservoir having a floating impervious flexible cover thereon for forming a substantially enclosed empty chamber between the storage reservoir and the floatable cover;
filling an envelope means attached to the marginal edge of said cover with a non-compressible fluid for providing ballast for the floatable flexible cover; and inflating the substantially enclosed chamber formed between the storage reservoir and the floatable flexible cover with a regulated amount of compressible fluid by use of blower means in communication with the chamber to enable access to the substantially enclosed chamber for inspection and repair of the storage reservoir below the cover.
substantially emptying the stored liquid from the reservoir having a floating impervious flexible cover thereon for forming a substantially enclosed empty chamber between the storage reservoir and the floatable cover;
filling an envelope means attached to the marginal edge of said cover with a non-compressible fluid for providing ballast for the floatable flexible cover; and inflating the substantially enclosed chamber formed between the storage reservoir and the floatable flexible cover with a regulated amount of compressible fluid by use of blower means in communication with the chamber to enable access to the substantially enclosed chamber for inspection and repair of the storage reservoir below the cover.
2. The method of claim 1, further including the step of:
disposing intermediate ballast means on the central portions of the sheet to prevent wind damage to the sheet while in the inflated position.
disposing intermediate ballast means on the central portions of the sheet to prevent wind damage to the sheet while in the inflated position.
3. The method of claim 1, further including the step of:
accessing the chamber through access means mounted with the sheet for inspection and repair of the sheet and storage reservoir by the maintenance personnel.
4. The method of claim 1, further including the steps of:
removing the blower means after maintenance operations have been completed;
draining the non-compressible fluid from the envelope means of the sheet;
accessing the chamber through access means mounted with the sheet for inspection and repair of the sheet and storage reservoir by the maintenance personnel.
4. The method of claim 1, further including the steps of:
removing the blower means after maintenance operations have been completed;
draining the non-compressible fluid from the envelope means of the sheet;
Claim 4 continued....
filling the reservoir with stored liquid; and, tensioning the sheet by inflating the envelope means of the sheet with a compressible fluid to prevent the formation of wrinkles on the sheet.
filling the reservoir with stored liquid; and, tensioning the sheet by inflating the envelope means of the sheet with a compressible fluid to prevent the formation of wrinkles on the sheet.
5. The method as set forth in claim 1, including the step of:
filling a ballast chamber secured to the floatable sheet with liquid prior to draining the liquid from the reservoir.
filling a ballast chamber secured to the floatable sheet with liquid prior to draining the liquid from the reservoir.
6. The method as set forth in claim 5, including the step of:
pressuring an enclosed chamber secured to the floatable sheet and the ballast chamber to provide a support column for the floatable sheet.
pressuring an enclosed chamber secured to the floatable sheet and the ballast chamber to provide a support column for the floatable sheet.
7. The method as set forth in claim 5, including the step of:
securing the ballast chamber to the floatable sheet with an intermediate member to enable the floatable cover to be in-flated to a desired level above the ballast chamber.
8. A method for maintaining a liquid storage reservoir having a floating flexible cover, comprising the steps of:
substantially draining the stored liquid from the reservoir having the floatable flexible cover thereon for forming a substantially enclosed empty chamber between the storage re-servoir and the cover;
providing hold down ballast at desired locations for the cover to prevent wind damage to the cover while in the inflated condition; and inflating the substantially enclosed chamber formed between the storage reservoir and the sheet with a regulated amount of compressible fluid by use of a blower means in communication
securing the ballast chamber to the floatable sheet with an intermediate member to enable the floatable cover to be in-flated to a desired level above the ballast chamber.
8. A method for maintaining a liquid storage reservoir having a floating flexible cover, comprising the steps of:
substantially draining the stored liquid from the reservoir having the floatable flexible cover thereon for forming a substantially enclosed empty chamber between the storage re-servoir and the cover;
providing hold down ballast at desired locations for the cover to prevent wind damage to the cover while in the inflated condition; and inflating the substantially enclosed chamber formed between the storage reservoir and the sheet with a regulated amount of compressible fluid by use of a blower means in communication
Claim 8 continued....
with the chamber to enable access to the substantially enclosed chamber below the cover for maintenance of the storage reservoir.
with the chamber to enable access to the substantially enclosed chamber below the cover for maintenance of the storage reservoir.
9. The method of claim 8, further including the step of:
accessing the chamber through access means mounted with the sheet for inspection and repair of the sheet and storage reservoir by the maintenance personnel.
accessing the chamber through access means mounted with the sheet for inspection and repair of the sheet and storage reservoir by the maintenance personnel.
10. The method of claim 8, further including the steps of:
removing the blower means after maintenance operations have been completed;
removing the hold down ballast from the sheet;
filling the reservoir with stored liquid; and tensioning the sheet to prevent the formation of wrinkles on the sheet.
removing the blower means after maintenance operations have been completed;
removing the hold down ballast from the sheet;
filling the reservoir with stored liquid; and tensioning the sheet to prevent the formation of wrinkles on the sheet.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA318,986A CA1069270A (en) | 1976-09-30 | 1979-01-03 | Method of maintaining a liquid storage reservoir |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US05/728,139 US4139117A (en) | 1976-09-30 | 1976-09-30 | Floating cover assembly |
CA284,637A CA1058822A (en) | 1976-09-30 | 1977-08-09 | Floating cover assembly |
CA318,986A CA1069270A (en) | 1976-09-30 | 1979-01-03 | Method of maintaining a liquid storage reservoir |
Publications (1)
Publication Number | Publication Date |
---|---|
CA1069270A true CA1069270A (en) | 1980-01-08 |
Family
ID=27165231
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA318,986A Expired CA1069270A (en) | 1976-09-30 | 1979-01-03 | Method of maintaining a liquid storage reservoir |
Country Status (1)
Country | Link |
---|---|
CA (1) | CA1069270A (en) |
-
1979
- 1979-01-03 CA CA318,986A patent/CA1069270A/en not_active Expired
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4139117A (en) | Floating cover assembly | |
US4208469A (en) | Floating cover assembly | |
US4299514A (en) | Collapsible rubber dam | |
CA1185104A (en) | Two-section arctic drilling structure | |
US5154537A (en) | Barrier curtain | |
US5246308A (en) | Fluid storage system and methods of installation | |
EP1819585B1 (en) | Method for fitting a flexible tank to an inflatable watercraft | |
WO1982001387A1 (en) | Equipment for the recovery of oil flowing out of sub-water ground | |
US4310415A (en) | Anti-pollution equipment | |
JP3760330B2 (en) | Rolling gate | |
WO1992009752A1 (en) | Oil spill containment system | |
US5346329A (en) | Floating barrier method and apparatus | |
CA1069270A (en) | Method of maintaining a liquid storage reservoir | |
CA1079925A (en) | Laminated floating cover material | |
CA1069269A (en) | Method of tensioning a floating cover for a liquid reservoir | |
US4537147A (en) | Plastic sheet barge hatch cover | |
WO2023165625A1 (en) | Apparatus and ship for recovering oil spills in water | |
US3908690A (en) | Device for removing water from the bottom of existing underground liquid fuel tanks | |
US3667641A (en) | Reservoir cover arrangement | |
WO2001051714A1 (en) | Elevating gate | |
GB2045172A (en) | Anti-pollution equipment | |
CN1528639A (en) | Ship damage sinking-preventing technique | |
RU2305654C2 (en) | Reservoir with floating surface for technological operations with oil or oil products | |
US3485049A (en) | Underground fluid storage tank | |
WO2024203559A1 (en) | Flood prevention structure and flood prevention method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MKEX | Expiry |